|
Almasoudi, S., & Jamoussi, B. (2024). Desalination technologies and their environmental impacts: A review. Sustainable Chemistry One World, 1. Alshemary, A. Z., Cheikh, L., & Çardaklı, İ. S. (2024). Extraction and degradation rate analysis of calcium phosphate from diverse fish Bones: A comparative study. Journal of Saudi Chemical Society, 28(3). Beguin, F., Presser, V., Balducci, A., & Frackowiak, E. (2014). Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 26(14), 2219-2251. Bouchelta, C., Medjram, M. S., Bertrand, O., & Bellat, J. (2008). Preparation and characterization of activated carbon from date stones by physical activation with steam. Journal of Analytical and Applied, 82(1), 70-77. Butler, H. J., Smith, B. R., Fritzsch, R., Radhakrishnan, P., Palmer, D. S., & Baker, M. J. (2018). Optimised spectral pre-processing for discrimination of biofluids via ATR-FTIR spectroscopy. Analyst, 143(24), 6121-6134. Campione, A., Cipollina, A., Bogle, I. D. L., Gurreri, L., Tamburini, A., Tedesso, M. & Micale, G. (2019). A hierarchical model for novel schemes of electrodialysis desalination. Desalination, 465, 79-93. Chen, J., Liu, J., Wu, D., Bai, X., Lin, Y., Wu, T., Zhang, C., Chen, D., & Li, H. (2021). Improving the supercapacitor performance of activated carbon materials derived from pretreated rice husk. Journal of Energy Storage, 44, Part B. Chu, M., Tian, W., Zhao, J., Zou, M., Lu, Z., Zhang, D., & Jiang, J. (2022). A comprehensive review of capacitive deionization technology with biochar-based electrodes: Biochar-based electrode preparation, deionization mechanism and applications. Chemosphere, 307, Part 3. Curto, D., Franzitta, V., & Guercio, A. (2021). A Review of the Water Desalination Technologies. Applied Sciences, 11(2), 670. Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1-3), 1-76. Gao, Y., Xu, S., Yue, Q., Wu, Y., & Gao, B. (2016). Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater. Journal of the Taiwan Institute of Chemical Engineers, 61, 327-335. Geczo, A., Giannakoudakis, D. A., Triantafyllidis, K., Elshaer, M. R., Aguado, E., & Bashkova, S. (2021). Mechanistic insights into acetaminophen removal on cashew nut shell biomass-derived activated carbons. Environmental Science and Pollution Research, 28, 58969-58982. González-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 82, Part 1, 1393-1414. Han, J., Shi, L., Yan, T., Zhang, J., & Zhang, D. (2018). Removal of ions from saline water using N, P co-doped 3D hierarchical carbon architectures via capacitive deionization. Environmental Science: Nano, 5(10), 2337-2345. Huang, B., Shao, H., Liu, N., Xu, Z. J., & Huang, Y. (2015). From fish scales to highly porous N-doped carbon: a low cost material solution for CO2 capture. RSC Advances, 5(107). Islam, M. S., Sultana, A., Saadat, A. H. M., Islam, M. S., Shammi, M., & Uddin, M. K. (2018). Desalination Technologies for Developing Countries: A Review. Journal of Scientific Research, 10(1), 77-97. Johnson, A. M., Venolia, A. W., Wilbourne, R. G., & Newman, J. (1970). The Electrosorb Process for Desalting Water. Kasera, N., Kolar, P., & Hall, S. G. (2022). Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: a review. Biochar, 4(17). Kim, J., Yi, Y., Peck, D., Yoon, S., Jung, D., & Park, H. S. (2019). Controlling hierarchical porous structures of rice-husk-derived carbons for improved capacitive deionization performance. Environmental Science: Nano, 6(3), 916-924. Lee, C. L., H'ng, P. S., Paridah, M. T., Chin, K. L., Rashid, U., Maminski, M., Go, W. Z., Nazrin, R. A. R., Rosli, S. N. A., & Khoo, P. S. (2018). Production of bioadsorbent from phosphoric acid pretreated palm kernel shell and coconut shell by two-stage continuous physical activation via N2 and air. Royal Society Open Science, 5(12). Li, G. X., Hou, P. X., Zhao, S. Y., Liu, C., & Cheng, H. M. (2016). A flexible cotton-derived carbon sponge for high-performance capacitive deionization. Carbon, 101, 1-8. Li, H., Xi, H., Zhu, S., Wen, Z., & Wang, R. (2006). Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon. Microporous and Mesoporous Materials, 96(1-3), 357-362. Liu, Y., Nie, C., Liu, X., Xu, X., Sun, Z., & Pan, L. (2015). Review on carbon-based composite materials for capacitive deionization. RSC Advances, 5, 15205-15225. Liu, Y., Chen, T., Lu, T., Sun, Z., Chua, D. H. C., & Pan, L. (2015). Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization. Electrochimica Acta, 158, 403-409. Liou, T., Chang, F., & Lo, J. (1997). Pyrolysis Kinetics of Acid-Leached Rice Husk. Industrial & Engineering Chemistry Research, 36(3), 568-573. Liou, T., & Wu, S. (2009). Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions. Journal of Hazardous Materials, 171(1-3), 693-703. Lu, B., Hu, L., Yin, H., Mao. X., Xiao, W., & Wang, D. (2016). Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. International Journal of Hydrogen Energy, 41(41), 18713-18720. Lu, S., Fang, L., Wang, X., Liu, T. X., Zhao, X., Xu, B. B., Hua, Q., & Liu, H. (2024). Insights into activators on biomass-derived carbon-based composites for electrochemical energy storage. Materials Today Chemistry, 37. Luo, Y., Street, J., Steele, P. H., & Entsminger, E. D. (2016). Activated Carbon Derived from Pyrolyzed Pinewood Char using Elevated Temperature, KOH, H3PO4, and H2O2. BioResources, 11(4), 10433-10477. McCutcheon, J. R., McGinnis, R, L., & Elimelech, M. (2006). Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, 278(1-2), 114-123. Menya, E., Olupot, P. W., Storz, H., Lubwama, M., & Kiros, Y. Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products. Waste Management, 81, 104-116. MILLER, J. E. Review of Water Resources and Desalination Technologies. (2003). Mishra, R. K., Singh, B., & Acharya, B. (2024). A comprehensive review on activated carbon from pyrolysis of lignocellulosic biomass: An application for energy and the environment. Carbon Resources Conversion, 7(4). Mota, J. A., Chagas, R. A., Vieira, E. F. S., & Cestari, A. R. (2012). Synthesis and characterization of a novel fish scale-immobilized chitosan adsorbent—Preliminary features of dichlorophenol sorption by solution calorimetry. Journal of Hazardous Materials, 229-230, 346-353. Nadakatti, S., Tendulkar, M., & Kadam, M. (2011). Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination, 268(1-3), 182-188. Nahil, M. A., & Williams, P. T. (2012). Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 37, 142-149. Niu, J., Shao, R., Liang, J., Dou, M., Li, Z., Huang, Y., & Wang, F. (2017). Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy, 36, 322-330. Nurjanah, I., Chang, T., You, S., Huang, C., & Sean, W. (2024). Reverse osmosis integrated with renewable energy as sustainable technology: A review. Desalination, 581. Ozpinar, P., Dogan, C., Demiral, H., Moralo, U., Erol, S., Yildiz, D., Samdan, C., & Demiral, I. (2023). Effect of binder on the electrochemical performance of activated carbon electrodes obtained from waste hazelnut shells: Comparison of PTFE and PVDF. Diamond and Related Materials, 137. Pallarés, J., González-Cencerrado, A. & Arauzo, I. (2018). Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy, 115, 64-73. Park, K., Lee, J., Park, P., Yoon, S., Moon, J., Eum, H., & Lee, C. (2007). Development of a carbon sheet electrode for electrosorption desalination. Desalination, 206(1-3), 86-91. Plessis, A. D. (2023). Water Resources from a Global Perspective. South Africa’s Water Predicament, 101, 1-25. Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J. S., Keesman, K. J., Kaskel, S., Biesheuvel, P. M. & Presser, V. (2013). Direct Prediction of the Desalination Performance of Porous Carbon Electrodes for Capacitive Deionization. Energy and Enviromental Science, 6(12), 3700-3712. Qin, D., Bi, S., You, X., Wang, M., Cong, X., Yuan, C., Yu, M., Cheng, X., & Chen, X. (2022). Development and application of fish scale wastes as versatile natural biomaterials. Chemical Engineering Journal, 428. Rybarczyk, M. K., Peng, H., Tang, C., Lieder, M., Zhang, Q., & Titirici, M. (2016). Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries. Green Chemistry, 18(19), 5169-5179. Sayed, E. T., Olabi, A. G., Shehata, N., Radi, M. A., Muhaisen, O. M., Rodriguez, C., Atieh, M. A., & Abdelkareem, M. A. (2023). Application of bio-based electrodes in emerging capacitive deionization technology for desalination and wastewater treatment. Ain Shams Engineering Journal, 14(8). Sikiru, S., Dele-Afolabi, T. T., Ghotbi, M. Y., & Rehman, Z. U. (2024). Recent advancements in technology projection on electric double layer effect in battery recycling for energy storage. Journal of Power Sources, 596. Silva, A. P., Argondizo, A., Juchen, P. T., & Ruotolo, L. A. M. (2021). Ultrafast capacitive deionization using rice husk activated carbon electrodes. Separation and Purification Technology, 271. Spencer, W., Senanayake, G., Altarawneh, M., Ibana, D., & Nikolosky, A. N. (2024). Review of the effects of coal properties and activation parameters on activated carbon production and quality. Minerals Engineering, 212. Sun, J., Yan, W., Liu, X., Hu, T., Xiong, Y., Tian, S., Feng, J., Huang, Z., & Zhao, Z. (2024). Rice husk waste-derived super-biochar with the max surface area and Philic-CO2 textural structure: Boosting effect and mechanism of post-desilication. Chemical Engineering Journal, 490. Sun, Y., Xue, S., Sun, J., Li, X., Ou, Y., Zhu, B., & D, M. (2023). Silk-derived nitrogen-doped porous carbon electrodes with enhanced ionic conductivity for high-performance supercapacitors. Journal of Colloid and Interface Science, 645, 297-305. Tang, W. W., He, D., Zhang, C. Y., & Waite, T. D. (2017). Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Research, 121, 302-310. Tenno, R., & Nguyen, P. (2016). Multistage Flash Evaporator Control in PDE Representation. IFAC-PapersOnLine, 49(24), 70-75. Teo, E. Y. L., Muniandy, L., Ng, E., Adam, F., Mohamed, A. R., Jose, R., & Chong, K. F. (2016). High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 192, 110-119. Thommes, M. (2010). Physical Adsorption Characterization of Nanoporous Materials. Chemie Ingenieur Technik, 82(7), 1059-1073. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. Vafakhah, S., Beiramzadeh, Z., Saeedikhani, M., & Yang, H. Y. (2020). A review on free-standing electrodes for energy-effective desalination: Recent advances and perspectives in capacitive deionization. Desalination, 493. Van, K. L., & Thi, T. T. L. (2014). Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Progress in Natural Science: Materials International, 24(3), 191-198. Wang, J., Shen, L., Xu, Y., Dou, H., & Zhang, X. (2015). Lamellar-structured biomass-derived phosphorus- and nitrogen-co-doped porous carbon for high-performance supercapacitors. New Journal of Chemistry, 39(12), 9497-9503. Weerasinghe, M. I. U., Kumarage, P. M. L., Amarathunga, I. G. K. D., Bandara, T. M. W. J., Velauthapillai, D., Karunarathne, B. C., Punniamoorthy, R., Rajapakse, R. M. G., & Kumara, G. R. A. (2024). Active carbon derived from rice husk as sustainable substitutes for costly platinum electrodes in dye-sensitized solar cells. Journal of Science: Advanced Materials and Devices, 9(3). Xia, K., Gao, Q., Jiang, J., & Hu, J. (2008). Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 46(13), 1718-1726. Xu, K., Sun, Q., Guo, Y., Zhang, Y., & Dong, S. (2013). Preparation of super-hydrophobic white carbon black from nano-rice husk ash. Research on Chemical Intermediates, 40, 1965-1973. Xue, N., Lu, J., Gu, D., Lou, Y., Yuan, Y., Li, G., Kumagai, S., Saito, Y., Yoshioka, T., & Zhang, N. (2023). Carbon footprint analysis and carbon neutrality potential of desalination by electrodialysis for different applications. Water Research, 232. Zhang, X. F., Wang, B.m Yu, J., Wu, X. N., Zang, Y. H., Gao, H. C., Su, P. C., & Hao, S. Q. (2018). Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization. RSC Advances, 8(3), 1159-1167. Zhou, F., Li, K., Hang, F., Zhang, Z., Chen, P., Wei, L., & Xie, C. (2022). Efficient removal of methylene blue by activated hydrochar prepared by hydrothermal carbonization and NaOH activation of sugarcane bagasse and phosphoric acid. RSC Advances, 12(3), 1885-1896. Zingare, P. A., Dhoble, S. J., & Deshmukh, A. D. (2022). Highly stable fish-scale derived lamellar carbon for high performance supercapacitor application. Diamond and Related Materials, 124.
|