跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 15:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳吟暄
研究生(外文):Yin-Hsuan Chen
論文名稱:擴增實境融入科普課程對學習成效、科學學習態度與科技接受度的影響
論文名稱(外文):The effect of Augmented Reality on college students' achievements, attitudes and technology acceptance towards science education
指導教授:賴婷鈴賴婷鈴引用關係張月霞張月霞引用關係
指導教授(外文):TIing-Ling LaiYueh-Hsia Chang
口試委員:林秀玉
口試日期:2024-06-20
學位類別:碩士
校院名稱:淡江大學
系所名稱:教育科技學系碩士班
學門:教育學門
學類:教育科技學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:126
中文關鍵詞:擴增實境科普教育科學學習態度科技接受度
外文關鍵詞:Augmented RealityPopular ScienceScientific Learning ApproachTechnology Acceptance Model
DOI:10.6846/tku202400670
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
近年來科學的進步縮短了想像與的真實世界的距離,運用科技輔助能讓無法觸碰或觀察到的事物具象化,透過虛擬實境或擴增實境等教材設計,讓我們能超越時空、地點與三維空間的限制。在化學領域中,原子結構與分子模型是所有化學學習的基礎,屬於抽象概念,往往會造成學習上的困難。因此本研究合作對象淡江大學科學教育中心化學遊樂趣以此為基礎,設計開發了一款擴增實境教材【如果我轉生成血紅素】,希望能讓學生藉由觀察與操作分子模型,了解一氧化碳與氧氣在血液中進行氣體競爭的過程。本次研究以此擴增實境教材為基礎進行課程設計,期望發展出可彈性運用之化學科普教案進行實施。但因為授課時間、對象人數及課程難易度的取捨,將對象定為選修化學通識之大學生,並使用無母數進行後續的統計分析。
本研究結果如下:
(1)擴增實境應用化學通識課程之學習成效:在融入擴增實境教材【如果我轉生成血紅素】的化學通識課程中,雖然學生的學習成效有些微提升,但並未達到顯著差異。這可能與課程設計、學習單引導、以及教材內容等多方面因素有關。部分學生反映在操作擴增實境教材時,由於需要整合2D與3D內容,過程中感到困惑和阻礙,這可能影響了他們的學習成效。
(2)科學學習態度、科技接受度與擴增實境教材應用態度:學生在科學學習態度、科技接受度以及擴增實境教材應用態度方面均有顯著的提升。尤其在學生對於科技接受度的認知上,擴增實境教材的操作被視為相對容易,且能有效提升學習效率。不過,對於擴增實境教材應用態度中的「課程感受」構面,顯示出較少顯著差異,原因可能是課程設計連貫性與整體課程的複雜度。
(3)課程發展與實施歷程:在課程實施過程中,難以確認擴增實境教材如何融入於課程中,同時需平衡教材的開放性與學生自主學習的需求。生活化模擬或與連結,較容易引起學生學習興趣。
Recent advances in virtual and augmented reality have enhanced educational methods by bridging imagination and reality. In chemistry, where atomic structures and molecular modeling are abstract, these technologies offer valuable benefits. This study employed the augmented reality (AR) teaching material “Reincarnated to the Hemoglobin ” developed by Tamkang University Center for Science Education, to help students interact with molecular models and visualize the competition between carbon monoxide and oxygen in the bloodstream. The aim was to improve comprehension of complex chemical processes. Targeting college students in General Chemistry, the AR tool was integrated into a flexible lesson plan. A statistical analysis, based on a null hypothesis, was performed to evaluate the effectiveness of this AR-based teaching approach on learning outcomes.
The results of this study are as follows:
(1) Learning Effectiveness: The incorporation of the augmented reality (AR) teaching material “If I Convert to Hemoglobin” into the Chemistry Liberal Studies Curriculum showed a slight improvement in learning effectiveness; however, no significant difference was observed overall. Challenges such as integrating 2D and 3D content may have contributed to student confusion and hindered their learning outcomes.
(2) Attitudes towards Science Learning and Technology: Students' attitudes towards science learning, technology acceptance, and the use of AR materials improved significantly. They found the AR materials relatively easy to use and effective in enhancing learning efficiency. However, there were fewer significant improvements in the “course experience” due to issues with course coherence and curriculum complexity.
(3) Curriculum Development and Implementation: Integrating AR materials into the curriculum proved challenging, particularly in balancing material openness with students' independent learning. Effective simulations and real-life scenario links are likely to increase student engagement and interest in learning.
第一章 緒論 1
第一節 研究背景與研究動機 2
第二節 研究目的與待答問題 5
第三節 名詞定義與解釋 6
第四節 研究限制 9
第二章 文獻探討 10
第一節 教育與擴增實境 10
第二節 科普教育與化學通識 17
第三節 科學學習態度 25
第三章 研究設計與實施 33
第一節 研究方法與研究架構 33
第二節 研究場域與對象 35
第三節 研究流程 37
第四節 研究工具 40
第五節 教材介紹與課程設計 43
第六節 資料處理與分析方法 56
第四章 研究結果與討論 62
第一節 學習成效分析 62
第二節 科學學習態度與科技接受度問卷分析 79
第三節 擴增實境教材融入化學通識課程之感受回饋 88
第五章 結論與建議 93
第一節 結論 93
第二節 建議 100
參考文獻 102
附錄 113
附錄一 【如果我轉生成血紅素】前、後知識測驗題目 113
附錄二 【如果我轉生成血紅素】前、後態度問卷題目 117
附錄三 如果我轉生成血紅素學習單 121

圖次
圖2-1-1 現實—虛擬光譜 10
圖2-2-1 化學中的三種概念 21
圖2-3-1 科學態度關係圖 27
圖3-1-1 研究架構圖 35
圖3-3-1 研究流程圖 39
表次
表2-1-1 標記類型示意圖 13
表2-3-1 「科學態度」與「對科學的態度」關係表 26
表2-3-2 科學學習態度國內外相關研究 30
表3-2-1 個案研究對象之資料 36
表3-5-1 擴增實境教材畫面簡述 44
表3-6-1 「科學學習態度問卷」構面與題目舉例 57
表3-6-2 「擴增實境教材應用量表」構面與題目範例 58
表3-6-3 「科技接受度量表」構面與題目範例 59
表3-6-4 質性研究-學習單資料編碼 60
表3-6-5 質性研究-訪談資料編碼 60
表4-1-1 高低先備知識男女比 63
表4-1-2 課前、課後知識測驗平均數、標準差摘要表 64
表4-1-3 知識前後測驗無母數WILCOXON分析 65
表4-1-4 高、低先備知識者前後測敘述統計 66
表4-1-5 高先備知識者知識前後測驗無母數WILCOXON分析 67
表4-1-6 低先備知識者知識前後測驗無母數WILCOXON分析 67
表4-1-7 學習單平均數、標準差摘要表 68
表4-1-8 學習單分析之個案基本資料 69
表4-1-9 擴增實境觀察表格之撰寫評分標準 71
表4-1-10 學習單第一部分題目 73
表4-1-11 學習單第一部分題目分析 73
表4-1-12 學習單第二部分題目 74
表4-1-13 學習單第二部分題目學生回應統整 75
表4-1-14 學習單課後統整題目 76
表4-1-15 學習單課後統整學生回應統整 77
表4-2-1 課前、課後問卷之平均數、標準差摘要表 79
表4-2-2 科學學習態度 前後測無母數分析摘要表 81
表4-2-3 科技接受度 前後測無母數分析摘要表 82
表4-2-4 擴增實境教材應用態度 前後測無母數分析摘要表 83
表4-2-5 高先備知識者前後態度問卷無母數分析 85
表4-2-6 低先備知識者前後態度問卷無母數分析 86
表4-3-1 訪談者資料表 88
中文文獻
余民寧, 翁雅芸, & 張靜軒 (2018). 數理科學的學習動機有性別差異嗎? 一個來自後設分析的證據. Contemporary Educational Research Quarterly, 23(1).
吳坤璋、黃台珠、吳裕益 (2006). 以結構方程模式檢驗影響國小學生對科學的態度之理論模式。科學教育學刊, 1(2),83-106。
宋秀芬 (2008). 趣味科學活動對國中生科學態度與對科學的態度之研究(為出版之碩士論文)。國立台灣師範大學,台北市。
林樹聲、趙金祁(1999) 大學教育中通識化科學課程的必要及實踐進向. 通識教育季刊, 6(4), 1-18. https://doi.org/10.6745/JGE.199912_6(4).0001
李旺龍(2014) 科學家該怎麼投入科學傳播?。科學月刊,531:194-198。 https://smcase.ntu.edu.tw/SMCASE/?p=5676
李詩慧(2017) 科學教育在大學通識課程的實踐──以台大張文亮教授課程為例(未出版碩士論文)。國立臺灣師範大學碩士論文。取自 http://ndltd.ncl.edu.tw/handle/wdbhs2
徐永檀(2012) 補習班專家教師與生手教師學科教學知識(PCK)之比較-以國中化學反應單元為例(未出版之碩士論文)。臺北市立教育大學科學教育碩士論文。 https://hdl.handle.net/11296/5635kf
徐俊龍、吳盈妮(2017) 十二年國民基本教育課程綱要實施教材教學研發與課程轉化之研究(NAER-106-11-A-1-01-01-1-03)。國家教育研究院課程及教學研究中心。https://rh.naer.edu.tw/handle/c6593
許德發 (2000). 專科學生對科學的態度、生物學科自我效能與其營養健康信念表徵、學業成就之關係研究(為出版之碩士論文)。國立台灣師範大學,台北市。
張訓譯(2018) 翻轉教學之偏鄉問題再思考。臺灣教育評論月刊,7(8),82-
103
87。https://www-airitilibrarycom.
ezproxy.lib.tku.edu.tw/Article/Detail?DocID=P20130114001-201808-
201808230011-201808230011-82-87
張春興. (2007). 教育心理學: 三化取向的理論與實踐 (重修二版). 臺北市: 東華
書局。
陳英正、陳英豪(2017) 以科技接受模式探討國小資源班教師實施資訊科技融
入教學之意願。人文社會科學研究,11(2),17-37。
https://doi.org/10.6618/HSSRP.2017.11(2)2
陳信劼(2001) 中學生對化學反應特性的自發性類比研究(未出版之碩士論
文)。國立彰化師範大學科學教育碩士論文。
https://hdl.handle.net/11296/nd4jpp
陳雅君、洪瑞兒、佘曉清、林煥祥(2016) 臺灣學生科學素養與科學教學者研
究成果表現之發展趨勢探討。科學教育學刊,24(4),333-354。
https://doi.org/10.6173/CJSE.2016.2404.01
陳裕政 (2012). 國小六年級學生學習動機、科學態度與科學探究能力之相關研
究。國立屏東教育大學數理教育碩士論文,屏東縣。取自
https://hdl.handle.net/11296/kp43ub
王琬菁(2002) 「原子價」概念融入科學課文對學生學習化學式與其相關概念
(未出版之碩士論文)。國立臺灣師範大學科學教育碩士論文。
https://hdl.handle.net/11296/f97j98
黃季雍(2014) 科普、科傳與科學傳播的人才培育。科學月刊,531:204-
210。 https://smcase.ntu.edu.tw/SMCASE/?p=5676
浦青青、郭乃綺(2023) 中學生參與博物館雙語學習活動之態度-以「氣候變
遷」雙語活動為例。科技博物,27(1),35-66。
https://www.airitilibrary.com/Article/Detail?DocID=16841220-N202304120009-
00003
104
翁穎哲、譚克平(2008) 設計研究法簡介及其在教育研究的應用範例。科學教育月刊,(307),15-30。 https://doi.org/10.6216/SEM.200804_(307).0003
教育部(2018) 十二年國民基本教育課程綱要:國民中小學暨普通型高級中等學校:自然科學領域。取自https://www.edu.tw/
教育部 (2023) 十數位時代媒體素養教育白皮書。取自https://www.edu.tw/
謝秉桓、林啟華、曾茂仁、鐘建坪、邱美虹(2014) 九年級個案學生粒子概念之探討--以擴散作用為例。科學教育月刊,(367),2-23。 https://doi.org/10.6216/SEM.201404_(367).0001
鄭湧涇、楊坤原(1998) 國中學生對生物學的態度。師大學報:科學教育類, 43(2),37-54。 https://doi.org/10.6300/JNTNU.1998.43(2).03
鈕文英(2023) 質性研究方法與論文寫作(四版)。雙葉書廊。
盧鈺 (2021). 國民中學STEM課程融入自然科學領域教學之研究—以光議題為例。台北市立大學應用物理計畫學系應用科學碩士班碩士論文,台北市。取自 https://hdl.handle.net/11296/j2p479

外文文獻
Ahtee, M., & Varjola, I.(1998). Students’ understanding of chemical reaction. International Journal of Science Education, 20(3), 305-316.
Akram, H., Abdelrady, A. H., Al-Adwan, A. S., & Ramzan, M. (2022). Teachers’ perceptions of technology integration in teaching-learning practices: A systematic review. Frontiers in psychology, 13, 920317.
Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research?. Educational researcher, 41(1), 16-25. https://doi.org/10.3102/0013189X11428813
Arici, F., Yildirim, P., Caliklar, Ş., & Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers & Education, 142, 103647.
Azuma, R. T. (1997). A survey of augmented reality. Presence: teleoperators & virtual environments, 6(4), 355-385. https ://doi.org/10.1162/pres.1997.6.4.355
Baabdullah, A. M., Alsulaimani, A. A., Allamnakhrah, A., Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2022). Usage of augmented reality (AR) and development of e-learning outcomes: An empirical evaluation of students’e-learning experience. Computers & Education, 177, 104383. https://doi.org/10.1016/j.compedu.2021.104383
Bano, M., Zowghi, D., Kearney, M., Schuck, S., & Aubusson, P. (2018). Mobile learning for science and mathematics school education: A systematic review of empirical evidence. Computers & Education, 121, 30-58. https://doi.org/10.1016/j.compedu.2018.02.006
Barrett, T. J., Stull, A. T., Hsu, T. M., & Hegarty, M. (2015). Constrained
106
interactivity for relating multiple representations in science: When virtual is better than real. Computers & Education, 81, 69-81.
Bernauer, J. A., Fuller, R. G., & Cassels, A. M. (2024). Transforming courses across teaching modalities in higher education. Current Issues in Education, Arizona State University, 25(1). Robert Morris University.
Bereiter, C. (1990). Aspects of an educational learning theory. Review of educational research, 60(4), 603-624. https://doi.org/10.3102/00346543060004603
Berney, S., & Bétrancourt, M. (2016). Does animation enhance learning? A meta-analysis. Computers & Education, 101, 150-167. https://doi.org/10.1016/j.compedu.2016.06.005
Biggs, J. (1993). What do inventories of students' learning processes really measure? A theoretical review and clarification. British journal of educational psychology, 63(1), 3-19. https://doi.org/10.1111/j.2044-8279.1993.tb01038.x
Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The journal of the learning sciences, 2(2), 141-178. https://doi.org/10.1207/s15327809jls0202_2
Buchner, J., & Kerres, M.(2023). Media comparison studies dominate comparative research on augmented reality in education. Computers & Education, 195, 104711. https://doi.org/10.1016/j.compedu.2022.104711
Burns, T. W., O'Connor, D. J., & Stocklmayer, S. M. (2003). Science Communication:A Contemporary Definition. Public Understanding of Science, 12(2), 183-202. https://doi.org/10.1177/09636625030122004
Cakir, M. (2008). Constructivist approaches to learning in science and their implications for science pedagogy: A literature review. International journal of environmental and science education, 3(4), 193-206. https://eric.ed.gov/?id=EJ894860
107
Carroll, A., Baglioni, A. J., Houghton, S., & Bramston, P. (1999). At‐risk and not at‐risk primary school children: An examination of goal orientations and social reputations. British Journal of Educational Psychology, 69(3), 377-392.
Chang, H. Y., Binali, T., Liang, J. C., Chiou, G. L., Cheng, K. H., Lee, S. W. Y., & Tsai, C. C. (2022). Ten years of augmented reality in education: A meta-analysis of (quasi-) experimental studies to investigate the impact. Computers & Education, 191, 104641.
Chang, S. C., & Hwang, G. J. (2018). Impacts of an augmented reality-based flipped learning guiding approach on students’ scientific project performance and perceptions. Computers & Education, 125, 226-239.
Chazan, B. (2022). Principles and pedagogies in Jewish education (p. 97). Springer Nature.
Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of science education and technology, 22, 449-462.
Cho, S. K., & Kim, O. T. (2012). From science popularization to public engagement: The history of science communication in Korea. Science Communication in the World: Practices, Theories and Trends, 181-191.
Collins, A.M., Joseph, D., & Bielaczyc, K. (2004). Design Research: Theoretical and Methodological Issues. Journal of the Learning Sciences, 13, 15 - 42. https://api.semanticscholar.org/CorpusID:7154229
Conley, Q., Atkinson, R. K., Nguyen, F., & Nelson, B. C. (2020). MantarayAR: Leveraging augmented reality to teach probability and sampling. Computers & Education, 153, 103895.
Creswell, J. W., & Garrett, A. L. (2008). The “movement” of mixed methods
108
research and the role of educators. South African journal of education, 28(3),
321-333. https://doi.org/10.15700/saje.v28n3a176
Danaei, D., Jamali, H. R., Mansourian, Y., & Rastegarpour, H. (2020). Comparing
reading comprehension between children reading augmented reality and print
storybooks. Computers & Education, 153, 103900.
Diacopoulos, M. M., & Crompton, H. (2020). A systematic review of mobile
learning in social studies. Computers & Education, 154, 103911.
Driver, R., & Oldham, V. (1986). A Constructivist Approach to Curriculum
Development in Science, Studies in Science Education, 13:1, 105-122.
https://doi.org/10.1080/03057268608559933
Edelson, D. C. (2002). Design research: What we learn when we engage in
design. The Journal of the Learning sciences, 11(1), 105-121.
https://doi.org/10.1207/S15327809JLS1101_4
Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based
learning: The effects on learning achievement and attitude in physics
education. Computers & Education, 142, 103635.
Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of
atoms and molecules: Implications for teaching chemistry. Science Education, 80
(5), 509-34. https://doi.org/10.1002/(SICI)1098-237X(199609)
80:5<509::AID-SCE2>3.0.CO;2-F
Hesse III, J. J., & Anderson, C. W. (1992). Students' conceptions of chemical
change. Journal of Research in science teaching, 29(3), 277-299.
https://doi.org/10.1002/tea.3660290307
Hsu, T. C. (2017). Learning English with augmented reality: Do learning styles
matter ?. Computers & Education, 106, 137-149.
https://doi.org/10.1016/j.compedu.2016.12.007
109
Ibáñez, M. B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123.
Ibáñez, M. B., Portillo, A. U., Cabada, R. Z., & Barrón, M. L. (2020). Impact of augmented reality technology on academic achievement and motivation of students from public and private Mexican schools. A case study in a middle-school geometry course. Computers & Education, 145, 103734. https://doi.org/10.1016/j.compedu.2019.103734
Indicators, O. E. C. D. (2012). Education at a Glance 2016. Editions OECD, 90.
Khan, T., Johnston, K., & Ophoff, J. (2019). The impact of an augmented reality application on learning motivation of students. Advances in human-computer interaction, 2019. https://doi.org/10.1155/2019/7208494
Küçük, S., Yilmaz, R., Baydas, Ö., & Göktas, Y. (2014). Augmented reality applications attitude scale in secondary schools: Validity and reliability study. Egitim ve Bilim, 39(176).
Lamb, R., Antonenko, P., Etopio, E., & Seccia, A. (2018). Comparison of virtual reality and hands on activities in science education via functional near infrared spectroscopy. Computers & Education, 124, 14-26.
Lee, M. H., Johanson, R. E., & Tsai, C. C. (2008). Exploring Taiwanese high school students' conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92(2), 191-220.
Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & management, 40(3), 191-204.
Liang, J. C., Chou, C. C. & Chiu, M. H. (2011). Student test performances on behavior of gas particles and mismatch of teacher predictions. Chemistry Education Research and Practice, 12, 238-250.
110
https://doi.org/10.1039/C1RP90029C
Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
Oladejo, A. I., Ademola, I. A., Ayanwale, M. A., & Tobih, D. (2023). Concept Difficulty in Secondary School Chemistry--An Intra-Play of Gender, School Location and School Type. Journal of Technology and Science Education, 13(1), 255-275.
Özmen, H. (2008). The influence of computer-assisted instruction on students’ conceptual understanding of chemical bonding and attitude toward chemistry: A case for Turkey. Computers & Education, 51(1), 423-438.
Patrick, P. G. (Ed.). (2023). How People Learn in Informal Science Environments. Springer Nature.
Patrick, P. G., & Weinstein, J. (2023). General Systems Theory and Boundary Crossing: Exploring the Relationship Between Zoo Educators and Elementary Educators. In How People Learn in Informal Science Environments (pp. 335-356). Cham: Springer International Publishing.
Pence, H. E. (2010). Smartphones, smart objects, and augmented reality. The Reference Librarian, 52(1-2), 136-145.
Rau, P. L. P., Zheng, J., Guo, Z., & Li, J. (2018). Speed reading on virtual reality and augmented reality. Computers & Education, 125, 240-245.
Rogers, A. (2019). Second-generation non-formal education and the sustainable development goals: Operationalising the SDGs through community learning centres. International Journal of Lifelong Education, 38(5), 515-526. https://doi.org/10.1080/02601370.2019.1636893
Schunk, D. H. (2012). Learning theories an educational perspective. Pearson Education, Inc.
111
Sirakaya, M., & Alsancak Sirakaya, D. (2018). Trends in educational augmented reality studies: a systematic review. Malaysian Online Journal of Educational Technology, 6(2), 60-74. 10.17220/mojet.2018.02.005
Soltani, P., & Morice, A. H. (2020). Augmented reality tools for sports education and training. Computers & Education, 155, 103923.
Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565.
Teddlie, C., & Tashakkori, A. (2011). Mixed methods research. The Sage handbook of qualitative research, 4, 285-300.
Teo, T., Khazaie, S., & Derakhshan, A. (2022). Exploring teacher immediacy-(non) dependency in the tutored augmented reality game-assisted flipped classrooms of English for medical purposes comprehension among the Asian students. Computers & Education, 179, 104406.
Tinoca, L., Piedade, J., Santos, S., Pedro, A., & Gomes, S. (2022). Design-based research in the educational field: a systematic literature review. Education Sciences, 12(6), 410. https://doi.org/10.3390/educsci12060410
Van Krevelen, D. W. F., & Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. International journal of virtual reality, 9(2), 1-20.
Yang, F. C. O., Lai, H. M., & Wang, Y. W. (2023). Effect of augmented reality-based virtual educational robotics on programming students’ enjoyment of learning, computational thinking skills, and academic achievement. Computers & Education, 195, 104721.
Yip, J., Wong, S. H., Yick, K. L., Chan, K., & Wong, K. H. (2019). Improving quality of teaching and learning in classes by using augmented reality
112
video. Computers & Education, 128, 88-101.
Zhan, T., Yin, K., Xiong, J., He, Z., & Wu, S. T. (2020). Augmented reality and virtual reality displays: perspectives and challenges. Iscience, 23(8). 10.1016/j.isci.2020.101397
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 生成式AI對話機器人融入國小媒體識讀教學對高年級學生學習成就、認知負荷及科技接受度影響之研究
2. 擴增實境應用於國小自然科學教科書之學習成效研究 -以「簡單機械」教學單元為例
3. 擴增實境結合環境教育桌遊融入國小自然課程之研究-以碳足跡教學為例
4. 數位平台輔助學習對國中數學學習成就、歷程行為與科技接受度之影響
5. 探討運用語音辨識輔助結合獎章機制對日語拗音學習成效、遊戲成效、學習動機、口說焦慮及學習感知之影響-以初級日語程度學習者為例
6. 教育桌遊對學習成效、語言學習焦慮與課程滿意度之影響:以初級華語教學課程為例
7. 生成式人工智慧融入智慧醫療課程之教學模式建構與學習成效評估
8. AR 擴增實境應用設計之研究 –以科學教育為例
9. 教師虛擬實境科技接受度與人格特質、認知彈性之研究
10. 博物館使用AR及VR對學習動機與學習成效之相關影響
11. 運用互動式電子白板融入教學來探討國小教師創新接受度、科技接受度與使用滿意度之相關研究-以雲林縣為例
12. 擴增實境如何讓顧客買單? -擴增實境特性對真實性知覺及購買意願的影響
13. 基於 6E 的STEAM 教學模式對高中生在 AR 學習中之影響
14. 投擲遊戲融入國小體育教學團隊合作素養之行動研究
15. 登山健行活動融入國小中度身心障礙學童生活管理課程學習成效之行動研究