跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹淳浩
研究生(外文):CHAN, CHUN-HAO
論文名稱:探討天然萃取物和代謝重編對於抑制癌症發展的治療策略與作用機制
論文名稱(外文):Therapeutic Strategies and Mechanisms of Natural Extracts and Metabolism Reprogramming on Inhibiting Cancer Progression
指導教授:陳立昇陳立昇引用關係鄧文炳鄧文炳引用關係吳家佑
指導教授(外文):CHEN, LI-SHENGDENG, WIN-PINGWU, CHIA-YU
口試委員:陳立昇鄧文炳吳家佑劉如芳劉仁賢張廷彰楊政杰
口試委員(外文):CHEN, LI-SHENGDENG, WIN-PINGWU, CHIA-YULIU, JU-FANGLIU, REN-SHYANCHANG, TING-CHANGYANG, CHENG-CHIEH
口試日期:2024-06-14
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:牙醫學系博士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:91
中文關鍵詞:大腸直腸癌褐藻醣膠肺癌亞甲基四氫葉酸脫氫酶代謝重編
外文關鍵詞:Colorectal cancerFucoidanLung CancerMTHFD2Metabolic reprogramming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本項研究中,我們深入探討了天然成分Fucoidan與MTHFD2的代謝調控在不同癌症抑制中的治療策略及作用機制。我們特別探討由海藻萃取的fucoidan對大腸癌細胞之影響,以及探討在各式癌細胞中皆被過度表現的代謝酶MTHFD2於肺癌中的致癌機制進行了研究,旨在探索具治療潛力的天然藥物,以及潛力的治療標的,期盼未來在癌症治療中能發揮更顯著的治療效果。

首先我們分析了fucoidan如何透過調控基因及蛋白表現來抑制癌細胞的增生和遷移,並探討其如何促使細胞週期停滯於特定階段,以及其如何誘導癌細胞凋亡,這一系列的機制探討提供了對fucoidan抗癌作用深刻的認識。進一步,我們通過實驗結果揭示了fucoidan對於大腸癌細胞生存信號途徑的干預情況,以及其對於腸癌細胞於活體中生長能力的影響。

此外,本研究亦詳細研究了MTHFD2,一種在多種癌細胞皆過度表現的代謝酶。我們探索了MTHFD2的過度表現如何促進肺癌的生長與擴散,以及其對癌症幹細胞特性之影響,並詳細分析MTHFD2在癌症代謝重組中的角色。研究著重於MTHFD2對肺癌細胞生長和癌幹細胞特性的影響,以及它如何調節細胞內的氧化還原平衡和細胞生存機制。透過對MTHFD2於癌症代謝以及癌症幹細胞影響的深入了解,我們發現其作為一個極具潛力的癌症治療標的,期盼能對癌症治療策略提供新的方向。

綜上所述,此研究不僅深化了我們對fucoidan和MTHFD2作為癌症治療標的的認識,也為這些天然成分及代謝調控因子在未來癌症聯合治療策略中的應用提供了理論基礎及實驗證據。這些結果展現了天然成分與代謝調控在癌症治療中的重要性,為後續的研究方向和臨床試驗奠定了基礎。我們希望這些發現能夠促進更多的預臨床研究,最終為癌症患者提供更有效的治療選擇。

In this research, we investigated the interplay between the natural compound Fucoidan and the metabolic regulator MTHFD2 in inhibiting cancer development. Specifically, we analyzed Fucoidan, a compound derived from seaweed, for its potential to combat colorectal cancer. Also, we explored the pathogenic roles of MTHFD2, a metabolic enzyme notably overexpressed in various cancers, focusing particularly on lung cancer. Our goal is to unveil the anti-cancer effects of fucoidan and metabolic gene MTHFD2 to develop potential effective cancer treatment.

Our study extensively investigated fucoidan, analyzing its direct impact on colorectal cancer cells. We have systematically explored how fucoidan suppresses cancer cell growth and motility by regulating gene and protein expression, resulting in cell cycle arrest and inducing apoptosis. This comprehensive analysis elucidates the molecular mechanisms underlying fucoidan’s therapeutic effects, highlighting its potential as an anticancer agent. Furthermore, we have demonstrated fucoidan’s ability to inhibit crucial survival signaling pathways in colorectal cancer cells, thereby diminishing their proliferative and tumor formation capacities.

Furthermore, our extensive analysis on MTHFD2, which is found overexpressed in multiple cancer types, particularly emphasizes its influence in lung cancer. We investigated how MTHFD2's overexpression contributes to the proliferation and metastasis of lung cancer cells and delved into its significant part in cancer metabolic reprogramming. The research reveals the impact of MTHFD2 on energy metabolism and cellular growth signals, highlighting its regulatory capacity in maintaining cellular redox homeostasis and survival strategies. By comprehensively understanding the metabolic roles of MTHFD2, we aim to validate its suitability as a targeted approach for lung cancer therapy.

In conclusion, this result of the study not only enriches our understanding of Fucoidan and MTHFD2 as potential targets in oncology but also serves as a foundation for integrating these biological elements into possible novel cancer treatment. The findings highlight the pivotal role of natural substances and metabolic regulation in developing future cancer therapies, providing a reference for ongoing and future researches and clinical applications. We believe these studies will pave the way for further preclinical research and lead to better and more specific treatments for cancer patients. This marks a major step towards personalized and complete cancer care, drawing on insights from our research findings.

Acknowledgement i
Table of Contents ii
List of Tables vi
List of Figures vii
Abbreviations ix
中文摘要 xi
Abstract xiii
Chapter 1. Introduction 1
Global Impact of Cancer 2
Challenges in Current Cancer Therapies 2
Cancer Stemness and Metastasis 3
Metabolic Reprogramming and Redox Homeostasis 4
Potential of Traditional Chinese Medicine and Novel Compounds VMW-FC 5
Research Objectives 6
Chapter 2. Materials and Methods 8
Study 1. Anti-colorectal cancer effects of fucoidan complex-based functional beverage through retarding proliferation, cell cycle and epithelial–mesenchymal transition signaling pathways
Cell culture 9
VMW-FC Preparation 9
Cell viability 10
Colony formation assay 10
Wound-healing assay 11
Transwell migration assay 11
Cell Cycle Analysis 12
Apoptosis Detection 13
Real-time polymerase chain reaction (qPCR) 13
Western Blot 14
Animal Studies 15
Statistical analysis 16
Study 2. Modulating Redox Homeostasis and Cellular Reprogramming through Inhibited Methylenetetrahydrofolate Dehydrogenase 2 Enzymatic Activities in Lung Cancer
Cell culture 18
In silico analysis of MTHFD2 gene expression 18
Isolation of total RNA and quantitative real-time polymerase chain reaction 19
Gene knockdown by lentiviral transduction 19
Cell viability and proliferation 20
Anchorage-independent growth 21
Analysis of cell apoptosis 21
Hypoxia induction 22
Sphere formation assay 22
Western Blot 23
Cellular NADPH determination 23
Cellular ROS determination 23
In vivo limiting dilution transplantation assay 24
Statistical analysis 24
Chapter 3. Results and Discussion 25
Study 1. Anti-colorectal cancer effects of fucoidan complex-based functional beverage through retarding proliferation, cell cycle and epithelial–mesenchymal transition signaling pathways
Fucoidan complex-based functional beverage (VMW-FC) inhibits colorectal cancer (CRC) cell proliferation and cell viability 26
VMW-FC reduces CRC cell migration capability 26
VMW-FC induces the accumulation of sub-G1 phase in cell cycle 27
VMW-FC promotes apoptotic population in CRC cells 27
VMW-FC attenuates in vivo tumor growth without further adverse effects 28
VMW-FC inhibits CRC through modulating proliferation, cell cycle, apoptosis and migration-related biomarkers 29
Discussion 31
Study 2. Modulating Redox Homeostasis and Cellular Reprogramming through Inhibited Methylenetetrahydrofolate Dehydrogenase 2 Enzymatic Activities in Lung Cancer
Expression profile of MTHFD2 in lung cancer (LCa) 36
Impact of MTHFD2 knockdown on LCa growth and proliferation 36
MTHFD2-mediated lung cancer stemness 37
Impact of MTHFD2 on cellular metabolic reprogramming-dependent tumor aggressiveness 38
Cellular oxygen sensing and MTHFD2-mediated metabolic reprogramming 38
Influence of MTHFD2 on oxidative stress response and metabolic reprogramming in lung cancer 39
Discussion 40
Chapter 4. Conclusion and Perspective 45
Chapter 5. Future work 50
Chapter 6. References 54
Chapter 7. Tables and Figures 61
Chapter 8. Appendix 90
List of Tables
Table 1 62
 List of Figures
Figure 1 63
Figure 2 64
Figure 3 65
Figure 4 66
Figure 5 67
Figure 6 68
Figure 7 69
Figure 8 70
Figure 9 71
Figure 10 72
Figure 11 73
Figure 12 74
Figure 13 75
Figure 14 76
Figure 15 77
Figure 16 78
Figure 17 79
Figure 18 80
Figure 19 81
Figure 20 82
Figure 21 83
Figure 22 84
Figure 23 85
Figure 24 86
Figure 25 87
Figure 26 88
Figure 27 89
1.Baidoun, F., et al., Colorectal cancer epidemiology: recent trends and impact on outcomes. Current drug targets, 2021. 22(9): p. 998-1009.
2.Leiter, A., R.R. Veluswamy, and J.P. Wisnivesky, The global burden of lung cancer: current status and future trends. Nature Reviews Clinical Oncology, 2023. 20(9): p. 624-639.
3.Zhu, X. and S. Li, Nanomaterials in tumor immunotherapy: new strategies and challenges. Molecular Cancer, 2023. 22(1): p. 94.
4.Hoeben, A., E.A. Joosten, and M.H. van den Beuken-van Everdingen, Personalized medicine: recent progress in cancer therapy. Cancers, 2021. 13(2): p. 242.
5.Sugihara, E. and H. Saya, Complexity of cancer stem cells. International journal of cancer, 2013. 132(6): p. 1249-1259.
6.Yadav, A.K. and N.S. Desai, Cancer stem cells: acquisition, characteristics, therapeutic implications, targeting strategies and future prospects. Stem Cell Reviews and Reports, 2019. 15: p. 331-355.
7.Emami Nejad, A., et al., The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell International, 2021. 21: p. 1-26.
8.Faubert, B., A. Solmonson, and R.J. DeBerardinis, Metabolic reprogramming and cancer progression. Science, 2020. 368(6487): p. eaaw5473.
9.Panieri, E. and M. Santoro, ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell death & disease, 2016. 7(6): p. e2253-e2253.
10.Nilsson, R., et al., Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nature communications, 2014. 5(1): p. 3128.
11.Senthilkumar, K., et al., Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. International journal of biological macromolecules, 2013. 60: p. 366-374.
12.Chen, P.-H., et al., A novel fucoidan complex-based functional beverage attenuates oral cancer through inducing apoptosis, G2/M cell cycle arrest and retarding cell migration/invasion. Journal of Functional Foods, 2021. 85: p. 104665.
13.Xu, K.-J., J. Song, and X.-M. Zhao, The drug cocktail network. BMC systems biology, 2012. 6: p. 1-12.
14.Lehár, J., et al., Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nature biotechnology, 2009. 27(7): p. 659-666.
15.Gawlik-Dziki, U., M. Świeca, and D. Dziki, Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt (Triticum spelta L.). Journal of Agricultural and Food Chemistry, 2012. 60(18): p. 4603-4612.
16.Biskup, I., M. Gajcy, and I. Fecka, The potential role of selected bioactive compounds from spelt and common wheat in glycemic control. Advances in Clinical & Experimental Medicine, 2017. 26(6).
17.Ahmad, T., et al., Phytochemicals in Daucus carota and their health benefits. Foods, 2019. 8(9): p. 424.
18.Deding, U., et al., Carrot intake and risk of colorectal cancer: A prospective cohort study of 57,053 Danes. Nutrients, 2020. 12(2): p. 332.
19.Manchali, S., K.N.C. Murthy, and B.S. Patil, Crucial facts about health benefits of popular cruciferous vegetables. Journal of functional foods, 2012. 4(1): p. 94-106.
20.Murillo, G. and R.G. Mehta, Cruciferous vegetables and cancer prevention. Nutrition and cancer, 2001. 41(1-2): p. 17-28.
21.Sun, H., et al., Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods. Food chemistry, 2014. 156: p. 380-389.
22.Johnson, M. and R.D. Pace, Sweet potato leaves: properties and synergistic interactions that promote health and prevent disease. Nutrition reviews, 2010. 68(10): p. 604-615.
23.Qian, Z., et al., Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Scientific reports, 2015. 5(1): p. 17348.
24.Cheng, K.-C., et al., Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo. Journal of food and drug analysis, 2020. 28(1): p. 84-93.
25.Huang, H.-P., et al., Anthocyanin-rich Mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/p53 and c-jun. Food Chemistry, 2011. 129(4): p. 1703-1709.
26.Chen, P.-N., et al., Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer letters, 2006. 235(2): p. 248-259.
27.Long, H.-L., et al., Mulberry anthocyanins improves thyroid cancer progression mainly by inducing apoptosis and autophagy cell death. The Kaohsiung Journal of Medical Sciences, 2018. 34(5): p. 255-262.
28.Lee, S.-B. and H.-R. Park, Anticancer activity of guava (Psidium guajava L.) branch extracts against HT-29 human colon cancer cells. Journal of Medicinal Plants Research, 2010. 4(10): p. 891-896.
29.Kido, L.A., et al., Prevention of prostate cancer in transgenic adenocarcinoma of the mouse prostate mice by yellow passion fruit extract and antiproliferative effects of its bioactive compound piceatannol. Journal of cancer prevention, 2020. 25(2): p. 87.
30.Brown, A.C., Anticancer activity of Morinda citrifolia (Noni) fruit: a review. Phytotherapy Research, 2012. 26(10): p. 1427-1440.
31.Gani, M.B.A., et al., In vitro antiproliferative activity of fresh pineapple juices on ovarian and colon cancer cell lines. International Journal of Peptide Research and Therapeutics, 2015. 21: p. 353-364.
32.Bai, X., et al., Fucoidan induces apoptosis of HT-29 cells via the activation of DR4 and mitochondrial pathway. Marine Drugs, 2020. 18(4): p. 220.
33.Yang, J., et al., Author Correction: Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2021. 22(12): p. 834-834.
34.Hsu, H.-Y., et al., Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGFβ receptor degradation in breast cancer. Carcinogenesis, 2013. 34(4): p. 874-884.
35.Reyes, M.E., et al., Brown seaweed fucoidan in cancer: Implications in metastasis and drug resistance. Marine Drugs, 2020. 18(5): p. 232.
36.Choo, G.-S., et al., Anticancer effect of fucoidan on DU-145 prostate cancer cells through inhibition of PI3K/Akt and MAPK pathway expression. Marine Drugs, 2016. 14(7): p. 126.
37.Han, Y.-s., J.H. Lee, and S.H. Lee, Antitumor effects of fucoidan on human colon cancer cells via activation of Akt signaling. Biomolecules & therapeutics, 2015. 23(3): p. 225.
38.Duan, Y., et al., Fucoidan induces apoptosis and inhibits proliferation of hepatocellular carcinoma via the p38 MAPK/ERK and PI3K/Akt signal pathways. Cancer Management and Research, 2020: p. 1713-1723.
39.Martínez-Maqueda, D., B. Miralles, and I. Recio, HT29 cell line. The Impact of Food Bioactives on Health: in vitro and ex vivo models, 2015: p. 113-124.
40.Hou, J., et al., Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PloS one, 2010. 5(4): p. e10312.
41.Landi, M.T., et al., Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PloS one, 2008. 3(2): p. e1651.
42.Bhattacharjee, A., et al., Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proceedings of the National Academy of Sciences, 2001. 98(24): p. 13790-13795.
43.Pastrana, E., V. Silva-Vargas, and F. Doetsch, Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell stem cell, 2011. 8(5): p. 486-498.
44.Watson, J.A., et al., Epigenetics: the epicenter of the hypoxic response. Epigenetics, 2010. 5(4): p. 293-296.
45.Ferguson, L.R., et al. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. in Seminars in cancer biology. 2015. Elsevier.
46.Pikman, Y., et al., Targeting MTHFD2 in acute myeloid leukemia. Journal of Experimental Medicine, 2016. 213(7): p. 1285-1306.
47.Lehtinen, L., et al., High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget, 2013. 4(1): p. 48.
48.Lin, H., et al., MTHFD2 overexpression predicts poor prognosis in renal cell carcinoma and is associated with cell proliferation and vimentin-modulated migration and invasion. Cellular Physiology and Biochemistry, 2018. 51(2): p. 991-1000.
49.Liu, X., et al., Methylenetetrahydrofolate dehydrogenase 2 overexpression is associated with tumor aggressiveness and poor prognosis in hepatocellular carcinoma. Digestive and Liver Disease, 2016. 48(8): p. 953-960.
50.Panopoulos, A.D., et al., The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell research, 2012. 22(1): p. 168-177.
51.Folmes, C.D., et al., Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell metabolism, 2011. 14(2): p. 264-271.
52.Hansson, J., et al., Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell reports, 2012. 2(6): p. 1579-1592.
53.Samanta, D., et al., PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer research, 2016. 76(15): p. 4430-4442.
54.Guzy, R.D., et al., Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell metabolism, 2005. 1(6): p. 401-408.
55.Taylor, C.T., Mitochondria and cellular oxygen sensing in the HIF pathway. Biochemical journal, 2008. 409(1): p. 19-26.
56.Fan, J., et al., Quantitative flux analysis reveals folate-dependent NADPH production. Nature, 2014. 510(7504): p. 298-302.
57.Stanton, R.C., Glucose‐6‐phosphate dehydrogenase, NADPH, and cell survival. IUBMB life, 2012. 64(5): p. 362-369.
58.Moreno-Sánchez, R., et al., Control of the NADPH supply for oxidative stress handling in cancer cells. Free Radical Biology and Medicine, 2017. 112: p. 149-161.
59.Shang, M., et al., The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nature communications, 2021. 12(1): p. 1940.
60.Chen, J., et al., Interferon-γ-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology, 2012. 217(4): p. 385-393.
61.Deng, X., et al., Upregulation of MTHFD2 is associated with PD‑L1 activation in bladder cancer via the PI3K/AKT pathway. International Journal of Molecular Medicine, 2023. 51(2): p. 1-15.
62.Li, L., et al., MTHFD2 promotes PD‐L1 expression via activation of the JAK/STAT signalling pathway in bladder cancer. Journal of Cellular and Molecular Medicine, 2023. 27(19): p. 2922-2936.
63.Atashrazm, F., et al., Fucoidan and cancer: a multifunctional molecule with anti-tumor potential. Marine drugs, 2015. 13(4): p. 2327-2346.
64.Lim, S.J., et al., Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocolloids, 2014. 42: p. 280-288.
65.Jin, W., et al., A comparative study of the anticoagulant activities of eleven fucoidans. Carbohydrate polymers, 2013. 91(1): p. 1-6.
66.Alboofetileh, M., et al., Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. International journal of biological macromolecules, 2019. 124: p. 131-137.
67.Takahashi, H., et al., An exploratory study on the anti-inflammatory effects of fucoidan in relation to quality of life in advanced cancer patients. Integrative cancer therapies, 2018. 17(2): p. 282-291.
68.Tomori, M., et al., Evaluation of the immunomodulatory effects of fucoidan derived from Cladosiphon okamuranus Tokida in mice. Marine drugs, 2019. 17(10): p. 547.
69.Biskup, I., M. Gajcy, and I. Fecka, The potential role of selected bioactive compounds from spelt and common wheat in glycemic control. Advances in clinical and experimental medicine: official organ Wroclaw Medical University, 2017. 26(6): p. 1013-1019.
70.Favela‐González, K.M., A.Y. Hernández‐Almanza, and N.M. De la Fuente‐Salcido, The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. Journal of Food Biochemistry, 2020. 44(10): p. e13414.
71.Qian, Z., et al., Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Scientific reports, 2015. 5(1): p. 1-13.
72.Gani, M.B.A., et al., In vitro antiproliferative activity of fresh pineapple juices on ovarian and colon cancer cell lines. International Journal of Peptide Research and Therapeutics, 2015. 21(3): p. 353-364.


電子全文 電子全文(網際網路公開日期:20290716)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top