|
REFERENCES
1.Güemes, M., S.A. Rahman, and K. Hussain, What is a normal blood glucose? Archives of disease in childhood, 2016. 101(6): p. 569-574. 2.Tirone, T.A. and F.C. Brunicardi, Overview of glucose regulation. World journal of surgery, 2001. 25(4): p. 461. 3.Lin, Y.H., et al. Estimation of Blood Glucose Level of Human by Measuring Key Parameters in Electrocardiogram. in 2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). 2023. IEEE. 4.Hantzidiamantis, P.J. and S.L. Lappin, Physiology, Glucose. 2022: StatPearls Publishing, Treasure Island (FL). 5.World Health Organization, W.H.O. Mean fasting blood glucose. 2024; Available from: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/2380#:~:text=When%20fasting%20blood%20glucose%20is,separate%20tests%2C%20diabetes%20is%20diagnosed. 6.Egan, A.M. and S.F. Dinneen, What is diabetes? Medicine, 2019. 47(1): p. 1-4. 7.Lin, E.E., E. Scott-Solomon, and R. Kuruvilla, Peripheral Innervation in the Regulation of Glucose Homeostasis. Trends Neurosci, 2021. 44(3): p. 189-202. 8.Röder, P.V., et al., Pancreatic regulation of glucose homeostasis. Experimental & Molecular Medicine, 2016. 48(3): p. e219-e219. 9.Rahman, M.S., et al., Role of insulin in health and disease: an update. International journal of molecular sciences, 2021. 22(12): p. 6403. 10.Jiang, G. and B.B. Zhang, Glucagon and regulation of glucose metabolism. American Journal of Physiology-Endocrinology and Metabolism, 2003. 284(4): p. E671-E678. 11.ElSayed, N.A., et al., 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care, 2022. 46(Supplement_1): p. S19-S40. 12.Ahmad, E., et al., Type 2 diabetes. The Lancet, 2022. 400(10365): p. 1803-1820. 13.Wicklow, B. and R. Retnakaran, Gestational Diabetes Mellitus and Its Implications across the Life Span. Diabetes Metab J, 2023. 47(3): p. 333-344. 14.Moström, P., et al., Adherence of self-monitoring of blood glucose in persons with type 1 diabetes in Sweden. BMJ Open Diabetes Research & Care, 2017. 5(1): p. e000342. 15.National Institutes of Health (NIH), N.I.o.D.a.D.a.K.D.N. Continuous Glucose Monitoring. 2023; Available from: https://www.niddk.nih.gov/health-information/diabetes/overview/managing-diabetes/continuous-glucose-monitoring. 16.Zhang, Y., et al., A review of biosensor technology and algorithms for glucose monitoring. Journal of Diabetes and its Complications, 2021. 35(8): p. 107929. 17.Klonoff, D.C., Noninvasive Blood Glucose Monitoring. Diabetes Care, 1997. 20(3): p. 433-437. 18.Tu, Q. and C. Chang, Diagnostic applications of Raman spectroscopy. Nanomedicine: Nanotechnology, Biology and Medicine, 2012. 8(5): p. 545-558. 19.Kang, J.W., et al., Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Science Advances, 2020. 6(4): p. eaay5206. 20.Rachim, V.P. and W.-Y. Chung, Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring. Sensors and Actuators B: Chemical, 2019. 286: p. 173-180. 21.Li, Y. and Y. Chen, Review of Noninvasive Continuous Glucose Monitoring in Diabetics. ACS sensors, 2023. 8(10): p. 3659-3679. 22.Bolla, A.S. and R. Priefer, Blood glucose monitoring-an overview of current and future non-invasive devices. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020. 14(5): p. 739-751. 23.Yu, Z.F., C. Pirnstill, and G. Coté, Dual-modulation, dual-wavelength, optical polarimetry system for glucose monitoring. Journal of Biomedical Optics, 2016. 21(8): p. 087001. 24.Chang, T., et al., Highly integrated watch for noninvasive continual glucose monitoring. Microsystems & Nanoengineering, 2022. 8(1): p. 25. 25.Kulcu, E., et al., Physiological differences between interstitial glucose and blood glucose measured in human subjects. Diabetes care, 2003. 26(8): p. 2405-2409. 26.Lin, P.-H., et al., Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta, 2022. 241: p. 123187. 27.Chakraborty, P., et al., Non-enzymatic and non-invasive glucose detection using Au nanoparticle decorated CuO nanorods. Sensors and Actuators B: Chemical, 2019. 283: p. 776-785. 28.Britannica, T.E.o.E., "heart", in Encyclopedia Britannica. 13 Apr. 2024. 29.Wuche, C., The cardiovascular system and associated disorders. British Journal of Nursing, 2022. 31(17). 30.Aoki, T. and K. Yamamoto, Fundamentals of Physiology and Biology of Vascular System, in Vascular Engineering: New Prospects of Vascular Medicine and Biology with a Multidiscipline Approach, K. Tanishita and K. Yamamoto, Editors. 2016, Springer Japan: Tokyo. p. 47-68. 31.Moorman, A.F., et al., Development of the cardiac conduction system. Circulation research, 1998. 82(6): p. 629-644. 32.ixIntroduction, in Basic Electrophysiological Methods, E. Covey and M. Carter, Editors. 2015, Oxford University Press. p. 0. 33.Yang, X.-L., et al., The history, hotspots, and trends of electrocardiogram. Journal of geriatric cardiology: JGC, 2015. 12(4): p. 448. 34.Arora, N. and B. Mishra, Origins of ECG and evolution of automated DSP techniques: a review. IEEE Access, 2021. 9: p. 140853-140880. 35.Sattar, Y. and L. Chhabra, Electrocardiogram, in StatPearls. 2023, StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.: Treasure Island (FL). 36.Martis, R.J., U.R. Acharya, and H. Adeli, Current methods in electrocardiogram characterization. Computers in biology and medicine, 2014. 48: p. 133-149. 37.Biel, L., et al., ECG analysis: a new approach in human identification. IEEE transactions on instrumentation and measurement, 2001. 50(3): p. 808-812. 38.Issa, M.F., et al., Heartbeat classification based on single lead-II ECG using deep learning. Heliyon, 2023. 9(7): p. e17974. 39.De Palma, L., et al. ECG wave segmentation algorithm for complete P-QRS-T detection. in 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 2023. IEEE. 40.Andreao, R.V., B. Dorizzi, and J. Boudy, ECG signal analysis through hidden Markov models. IEEE Transactions on Biomedical engineering, 2006. 53(8): p. 1541-1549. 41.Bashshur, R.L., On the definition and evaluation of telemedicine. Telemedicine Journal, 1995. 1(1): p. 19-30. 42.Klersy, C., et al., A meta-analysis of remote monitoring of heart failure patients. Journal of the American College of Cardiology, 2009. 54(18): p. 1683-1694. 43.Marfella, R., et al., The effect of acute hyperglycaemia on QTc duration in healthy man. Diabetologia, 2000. 43: p. 571-575. 44.Suys, B., et al., Glycemia and corrected QT interval prolongation in young type 1 diabetic patients: what is the relation? Diabetes care, 2006. 29(2): p. 427-429. 45.Laptev, D.N., G.V. Riabykina, and A.A. Seid-Guseĭnov, [24-hours monitoring of ECG and glucose level for detection of relations between glycemia and QT interval duration in patients with type 1 diabetes]. Ter Arkh, 2009. 81(4): p. 28-33. 46.Alexakis, C., et al. Feature extraction and classification of electrocardiogram (ECG) signals related to hypoglycaemia. in Computers in Cardiology, 2003. 2003. IEEE. 47.Tobore, I., et al., Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring. BMC medical informatics and decision making, 2019. 19: p. 1-14. 48.Fellah Arbi, K., et al., Blood glucose estimation based on ECG signal. Physical and Engineering Sciences in Medicine, 2023. 46(1): p. 255-264. 49.Liu, H.-C., et al., ECG-based Features Estimation for Monitoring Blood Glucose Level of Human. 2024. 50.Association, A.D., Postprandial Blood Glucose. Diabetes Care, 2001. 24(4): p. 775-778. 51.Kannel, W.B. and D.L. McGee, Diabetes and cardiovascular risk factors: the Framingham study. Circulation, 1979. 59(1): p. 8-13. 52.Garcia, M.J., et al., Morbidity and Mortality in Diabetics In the Framingham Population: Sixteen Year Follow-up Study. Diabetes, 1974. 23(2): p. 105-111. 53.Reisner, A.T., G.D. Clifford, and R.G. Mark, The physiological basis of the electrocardiogram. Advanced methods and tools for ECG data analysis, 2006. 1: p. 25. 54.Johnson, B.K., Physiology of the Autonomic Nervous System, in Basic Sciences in Anesthesia, E. Farag, et al., Editors. 2018, Springer International Publishing: Cham. p. 355-364. 55.Edwards, J.L., et al., Diabetic neuropathy: Mechanisms to management. Pharmacology & Therapeutics, 2008. 120(1): p. 1-34. 56.Pop-Busui, R., Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care, 2010. 33(2): p. 434-41. 57.Hajdu, M., et al., Determinants of the heart rate variability in type 1 diabetes mellitus. Front Endocrinol (Lausanne), 2023. 14: p. 1247054. 58.Kubota, T., et al., Utility of continuous glucose monitoring following gastrectomy. Gastric Cancer, 2020. 23(4): p. 699-706. 59.Costa, M., et al., Does Reconstruction Type After Gastric Resection Matters for Type 2 Diabetes Improvement? Journal of Gastrointestinal Surgery, 2020. 24(6): p. 1269-1277. 60.Statista. "Annual Revenue of The Diabetes Care Devices Market Worldwide from 2016 to 2028 (in Billion U.S. Dollars).". 29 May 2024; Available from: https://www-statista-com.ressources-electroniques.univ-lille.fr/forecasts/1009408/worldwide-glucose-monitoring-devices-market-size 61.Insights, C.M. Non-Invasive Blood Glucose Monitoring Devices Market Size, Trends and Insights By Technology (MIR/NIR (Mid/Near-Infrared Spectroscopy), Raman Spectroscopy, Occlusion Spectroscopy, Optical Coherence Tomography, Thermal Emission Spectroscopy, Photoacoustic Spectroscopy, Impedance/Dielectric Spectroscopy, Electromagnetic, Others), By Modality (Wearable Blood Glucose Monitoring Systems, Non-wearable /Table-top Blood Glucose Monitoring Systems), By End-Use (Hospitals, Home Care Settings, Clinics, Others), and By Region - Global Industry Overview, Statistical Data, Competitive Analysis, Share, Outlook, and Forecast 2023–2032. Aug 2023; Available from: https://www.custommarketinsights.com/report/non-invasive-blood-glucose-monitoring-devices-market/. 62.Markets, R.a. France Diabetes Market Report 2023: Type 2 Diabetes is Expected to Grow Year on Year, Fueling Demand for Treatment. 2023; Available from: https://finance.yahoo.com/news/france-diabetes-market-report-2023-101800028.html? 63.Federation, I.D. About diabetes-Facts & figures. Available from: https://idf.org/about-diabetes/diabetes-facts-figures/. 64.Intelligence, M. Blood Glucose Monitoring Devices Market Size & Share Analysis - Growth Trends & Forecasts (2024 - 2029). Available from: https://www.mordorintelligence.com/industry-reports/global-blood-glucose-monitoring-market-industry. 65.Association, A.D., 7. Diabetes Technology: Standards of Medical Care in Diabetes—2020. Diabetes Care, 2019. 43(Supplement_1): p. S77-S88. 66.Purohit, M.P. Glucose Self-Monitoring Urine Test. 2018; Available from: https://www.dovemed.com/common-procedures/procedures-laboratory/glucose-self-monitoring-urine-test. 67.Ascensia Diabetes Care.; Available from: Introducing the Eversense® E3 CGM System | Ascensia Diabetes Care. 68.Medtronic. Available from: https://www.medtronicdiabetes.com/products/guardian-connect-continuous-glucose-monitoring-system. 69.Abbott. Available from: https://www.freestyle.abbott/us-en/products/freestyle-libre-3.html. 70.Dexcom. Available from: https://www.dexcom.com/en-gb/dexcom-g7-cgm-system. 71.Garg, S.K., et al., Evaluation of accuracy and safety of the next-generation up to 180-day long-term implantable eversense continuous glucose monitoring system: the PROMISE study. Diabetes Technology & Therapeutics, 2022. 24(2): p. 84-92. 72.Beck, R.W., et al., Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. Jama, 2017. 317(4): p. 371-378. 73.Institut national d'études démographiques,INED. Age moyen à la maternité. 2024; Available from: https://www.ined.fr/fr/tout-savoir-population/chiffres/france/naissance-fecondite/age-moyen-maternite/.
|