跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 05:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:Arpita Das
研究生(外文):Arpita Das
論文名稱:台灣孕婦飲食模式、維生素D與鐵相關血液指標與貧血風險之關聯: 進階綜合分析
論文名稱(外文):Associations of Dietary Patterns, Vitamin D, and Iron-Related Blood Parameters with Anemia Risk Among Pregnant Women in Taiwan: An Advanced Comprehensive Analysis
指導教授:陳怡君陳怡君引用關係趙振瑞趙振瑞引用關係
指導教授(外文):Yi-Chun ChenJane C-J Chao
口試委員:Chy-Huey BaiChin-yu LiuChien-Yeh Hsu陳怡君趙振瑞
口試委員(外文):Chy-Huey BaiChin-yu LiuChien-Yeh HsuYi-Chun ChenJane C-J Chao
口試日期:2024-07-12
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:保健營養學系博士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:166
中文關鍵詞:飲食模式妊娠期貧血血清血液參數維生素D主成分分析降階迴歸分析K-均值聚類分析機器學習演算法
外文關鍵詞:Dietary patterngestational anemiaserum blood parametersvitamin Dprincipal component analysisreduced rank regression analysisK-means cluster analysismachine learning algorithms
ORCID或ResearchGate:0000-0001-7043-3328
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Objectives: Gestational anemia, also known as GA, has emerged as a significant public health concern among women of childbearing age. Concurrently, vitamin D, recognized as a prohormone, has garnered scientific interest due to its regulatory role in hepcidin. However, the precise relationship between vitamin D and the modulation of anemia-related blood biomarkers remains controversial. Therefore, each current investigation aimed to elucidate the following objectives-study 1: aimed to investigate the associations between dietary patterns derived from principal component analysis (PCA) and anemia-related blood biomarkers alongside vitamin D. Study 2: undertook to examine the dietary associations using reduced rank regression (RRR) analysis-derived dietary patterns and serum anemia-related blood parameters in conjunction with vitamin D. Study 3: was employed to reveal the associations between dietary patterns derived from k-means cluster analysis, vitamin D, and gestational anemia, incorporating risk predictions utilizing machine learning algorithms (MLA) support vector machine (SVM), k-nearest neighbor (KNN), naïve bayes (NB), random forest (RF), decision tree (DT)]. Study 4: conducted a comparative analysis between two statistical methods aiming to identify the optimal predictive method for determining the association between dietary patterns, vitamin D insufficiency, and anemia risk.
Methods: A total of 1502 adult pregnant women (> 15 years old) were selected from the National Nutrition Health Survey in Taiwan conducted from 2017 to 2019 (NNHSIT -2017 to 2019). Data collection occurred during the initial trimester, encompassing anthropometric, socioeconomic, and dietary data, including food frequency questionnaires and 24-hour dietary recalls. Dietary patterns were derived using principal component analysis (PCA), reduced rank regression (RRR), and k-means cluster analysis. Linear regression (β coefficient, 95% confidence interval), binomial logistic regression (odds ratio [OR], confidence interval [CI]), relative risk analysis, and machine learning algorithms were employed to explore the associations between serum anemia-related blood parameters, vitamin D, and GA. Additionally, covariate adjustments were made using sociodemographic, anthropometric, and dietary components to ascertain the most accurate predictive associations.
Results: Study 1: revealed significant associations between expectant mothers (EMs) adhering to plant-based dietary patterns (PbDP) and carnivore dietary patterns (CDP) with serum 25-hydroxy cholecalciferol levels. Covariate adjustments indicated that EMs with moderate PbDP consumption exhibited reduced risks for serum folate (OR = 0.60, 95% CI: 0.41, 0.87) and 25-hydroxy cholecalciferol (OR = 0.69, 95% CI: 0.52, 0.93) deficiencies. EMs with the highest CDP consumption demonstrated decreased serum iron (OR = 1.33, 94% CI: 1.02, 1.75), vitamin B12 (OR = 0.25, 95% CI: 0.17, 0.37) and 25-hydroxy cholecalciferol (OR = 0.59, 95% CI: 0.44, 0.80) levels. Similarly, high consumption of dairy and non-dairy alternative dietary pattern (DnDADP) correlated with decreased tendencies for serum folate (OR = 0.67, 95% CI: 0.46, 0.98) and vitamin B12 (OR = 0.66, 95% CI: 0.48, 0.90) concentrations. In Study 2: after accounting for all pertinent factors, linear regression analysis demonstrated a positive correlation between the ferritin related dietary pattern (FrDP) and serum iron levels, along with a tendency towards a negative correlation with serum 25(OH) vitamin D. Pregnant women in the highest FrDP tertile exhibited reduced odds of low serum iron (OR = 0.65, 95% CI: 0.50, 0.85) but increased odds of low 25(OH) vitamin D (OR = 1.79, 95% CI: 1.32, 2.43) levels. Study 3: findings from binomial analysis indicated that individuals following the moderate plant + low animal (MP+LA) dietary pattern exhibited decreased probabilities of low serum iron (OR = 0.45, 95% CI: 0.34, 0.60) and ferritin (OR = 0.27, 95% CI: 0.21, 0.36) but an elevated probability of low serum 25-(OH) vitamin D (OR = 1.47, 95% CI: 1.14, 1.88) levels. The MLA model's accuracy in identifying dietary patterns ranged from 70% to 76%, with sociodemographic and dietary variables being the most influential predictors. In study 4: the final model of logistic regression analysis showed a positive correlation between serum iron levels and the convenience food dietary patter (CFDP), while a negative correlation was noted with total iron binding capacity. Risk assessment indicated a 0.41% reduction in the odds of vitamin D insufficiency among pregnant women with high intake of plant and marine-based dietary pattern (PMDP). Conversely, moderate consumption of RRR-derived DP (CFDP) was associated with a 0.95% increased risk of vitamin D insufficiency.
Conclusions: Overall, the findings of this study elucidate the intricate interplay between dietary patterns, vitamin D status, and gestational anemia risk among pregnant women. Among all the models, RRR stands out as a promising approach for measuring vitamin D deficiency and insufficiency-related anemia risk associations. Serum vitamin D exhibits positive associations with anemia-related blood biomarkers among pregnant women, highlighting the importance of maintaining appropriate serum vitamin D and iron status at the onset of pregnancy.

Objectives: Gestational anemia, also known as GA, has emerged as a significant public health concern among women of childbearing age. Concurrently, vitamin D, recognized as a prohormone, has garnered scientific interest due to its regulatory role in hepcidin. However, the precise relationship between vitamin D and the modulation of anemia-related blood biomarkers remains controversial. Therefore, each current investigation aimed to elucidate the following objectives-study 1: aimed to investigate the associations between dietary patterns derived from principal component analysis (PCA) and anemia-related blood biomarkers alongside vitamin D. Study 2: undertook to examine the dietary associations using reduced rank regression (RRR) analysis-derived dietary patterns and serum anemia-related blood parameters in conjunction with vitamin D. Study 3: was employed to reveal the associations between dietary patterns derived from k-means cluster analysis, vitamin D, and gestational anemia, incorporating risk predictions utilizing machine learning algorithms (MLA) support vector machine (SVM), k-nearest neighbor (KNN), naïve bayes (NB), random forest (RF), decision tree (DT)]. Study 4: conducted a comparative analysis between two statistical methods aiming to identify the optimal predictive method for determining the association between dietary patterns, vitamin D insufficiency, and anemia risk.
Methods: A total of 1502 adult pregnant women (> 15 years old) were selected from the National Nutrition Health Survey in Taiwan conducted from 2017 to 2019 (NNHSIT -2017 to 2019). Data collection occurred during the initial trimester, encompassing anthropometric, socioeconomic, and dietary data, including food frequency questionnaires and 24-hour dietary recalls. Dietary patterns were derived using principal component analysis (PCA), reduced rank regression (RRR), and k-means cluster analysis. Linear regression (β coefficient, 95% confidence interval), binomial logistic regression (odds ratio [OR], confidence interval [CI]), relative risk analysis, and machine learning algorithms were employed to explore the associations between serum anemia-related blood parameters, vitamin D, and GA. Additionally, covariate adjustments were made using sociodemographic, anthropometric, and dietary components to ascertain the most accurate predictive associations.
Results: Study 1: revealed significant associations between expectant mothers (EMs) adhering to plant-based dietary patterns (PbDP) and carnivore dietary patterns (CDP) with serum 25-hydroxy cholecalciferol levels. Covariate adjustments indicated that EMs with moderate PbDP consumption exhibited reduced risks for serum folate (OR = 0.60, 95% CI: 0.41, 0.87) and 25-hydroxy cholecalciferol (OR = 0.69, 95% CI: 0.52, 0.93) deficiencies. EMs with the highest CDP consumption demonstrated decreased serum iron (OR = 1.33, 94% CI: 1.02, 1.75), vitamin B12 (OR = 0.25, 95% CI: 0.17, 0.37) and 25-hydroxy cholecalciferol (OR = 0.59, 95% CI: 0.44, 0.80) levels. Similarly, high consumption of dairy and non-dairy alternative dietary pattern (DnDADP) correlated with decreased tendencies for serum folate (OR = 0.67, 95% CI: 0.46, 0.98) and vitamin B12 (OR = 0.66, 95% CI: 0.48, 0.90) concentrations. In Study 2: after accounting for all pertinent factors, linear regression analysis demonstrated a positive correlation between the ferritin related dietary pattern (FrDP) and serum iron levels, along with a tendency towards a negative correlation with serum 25(OH) vitamin D. Pregnant women in the highest FrDP tertile exhibited reduced odds of low serum iron (OR = 0.65, 95% CI: 0.50, 0.85) but increased odds of low 25(OH) vitamin D (OR = 1.79, 95% CI: 1.32, 2.43) levels. Study 3: findings from binomial analysis indicated that individuals following the moderate plant + low animal (MP+LA) dietary pattern exhibited decreased probabilities of low serum iron (OR = 0.45, 95% CI: 0.34, 0.60) and ferritin (OR = 0.27, 95% CI: 0.21, 0.36) but an elevated probability of low serum 25-(OH) vitamin D (OR = 1.47, 95% CI: 1.14, 1.88) levels. The MLA model's accuracy in identifying dietary patterns ranged from 70% to 76%, with sociodemographic and dietary variables being the most influential predictors. In study 4: the final model of logistic regression analysis showed a positive correlation between serum iron levels and the convenience food dietary patter (CFDP), while a negative correlation was noted with total iron binding capacity. Risk assessment indicated a 0.41% reduction in the odds of vitamin D insufficiency among pregnant women with high intake of plant and marine-based dietary pattern (PMDP). Conversely, moderate consumption of RRR-derived DP (CFDP) was associated with a 0.95% increased risk of vitamin D insufficiency.
Conclusions: Overall, the findings of this study elucidate the intricate interplay between dietary patterns, vitamin D status, and gestational anemia risk among pregnant women. Among all the models, RRR stands out as a promising approach for measuring vitamin D deficiency and insufficiency-related anemia risk associations. Serum vitamin D exhibits positive associations with anemia-related blood biomarkers among pregnant women, highlighting the importance of maintaining appropriate serum vitamin D and iron status at the onset of pregnancy.

GRAPHICAL ABSTRACT II
ABSTRACT III
ACKNOWLEDGMENTS V
CONTENTS VI
LIST OF FIGURES XIII
LIST OF TABLES XV
LIST OF APPENDICES XIX
ABBREVIATIONS XX
CHAPTER 1. INTRODUCTION AND PURPOSES 1
CHAPTER 2. LITERATURE REVIEW 4
2.1. OVERVIEW OF GESTATIONAL ANEMIA 4
2.1.1. Epidemiology of gestational anemia 4
2.1.2. Risk factors and outcomes of gestational anemia 6
2.2. ADVERSE HEALTH EFFECT OF ANEMIA 10
2.2.1. Maternal health outcomes 10
2.2.2. Fetal health outcomes 11
2.3. PHYSIOLOGICAL CHANGES DURING PREGNANCY 11
2.4. OVERVIEW OF VITAMIN D 14
2.4.1. Metabolism of vitamin D 14
2.4.2. Relationships between vitamin D and anemia 16
2.4.2.1. Regulation of iron homeostasis during pregnancy 19
2.4.2.2. Iron absorption 20
2.4.3. Epidemiology of vitamin D deficiency 21
2.4.4. Classifications of vitamin D status 21
2.5. DIETARY REFERENCE INTAKES (DRIs) FOR PREGNANT WOMEN 22
2.6. RELATIONSHIPS AMONG DIETARY PATTERNS, GESTATIONAL ANEMIA, AND SERUM VITAMIN D LEVEL 24
2.6.1. Diet and anemia associations 24
2.6.2. Dietary patterns 24
2.6.2.1. Principal component analysis (PCA) 25
2.6.2.2. Reduced rank regression (RRR) 26
2.6.2.3. K- means cluster analysis 29
CHAPTER 3. AIMS AND HYPOTHESIS 30
CHAPTER 4. MATERIALS AND METHODS 32
4.1. DATA SOURCE 32
4.2. STUDY POPULATION 33
4.2.1. First study 33
4.2.2. Second study 34
4.2.3. Third study 34
4.2.4. Fourth study 35
4.3. DATA COLLECTION 35
4.3.1. Pre-pregnancy Body Mass Index (pBMI) 36
4.3.2. 24-hour dietary recall and food frequency questionnaire (FFQ) 37
4.3.3. Dietary pattern 39
4.3.4. Laboratory quantifications 41
4.3.5. Biochemical analysis of the blood 41
4.4. DEFINITION 42
4.5. STATISTICAL ANALYSIS 43
CHAPTER 5
5.1. STUDY 1 48
5.1.1. RESULTS
5.1.1.1. General characteristics of the women across serum 25-hydroxy cholecalciferol 49
5.1.1.2. Bio-chemical features of the expectant women across the tertile of serum 25- hydroxy cholecalciferol 51
5.1.1.3. DPs (Dietary Patterns) derived by PCA 53
5.1.1.4. The association between dietary patterns (DPs) and blood-related factors associated with anemia related biochemical parameters 54
5.1.1.5. Correlation among dietary patterns (DPs) and the likelihood of having low anemia-related serum blood biomarkers 57
5.1.2. DISCUSSION
5.1.2.1. Association between serum 25-hydroxy cholecalciferol and other factors associated with anemia related serum bio-markers 62
5.1.2.2. The link between four dietary patterns with anemia-related serum blood parameters 63
5.1.3. Strengths and limitations 66
5.1.4. CONCLUSIONS 67
CHAPTER 6
6.1. STUDY 2 69
6.1.1. RESULTS
6.1.1.1. Identification of a dietary pattern related to ferritin 70
6.1.1.2. General characteristics of the subjects across FrDP 71
6.1.1.3. Serum parameters characteristics of the subjects 73
6.1.1.4. Risk associations of a dietary pattern related to ferritin (FrDP) with serum biochemical parameters 75
6.1.2. DISCUSSION
6.1.2.1. Associations of FrDP with other anemia-related serum biomarkers 76
6.1.3. Strengths and limitations 78
6.1.4. CONCLUSIONS 78
CHAPTER 7
7.1. STUDY 3 79
7.1.1. RESULTS
7.1.1.1. Dietary pattern evaluation 80
7.1.1.2. General characteristics of the subjects across the two dietary patterns 81
7.1.1.3. Serum bio-chemical characteristics 82
7.1.1.4. Characteristics of nutrients intake across the cluster 84
7.1.1.5. Binomial analysis of serum biocmecial parameters among the cluster 85
7.1.1.6. Clusters dependent performace measurement of the different machine learning algoriyhms 87
7.1.1.7. Features selection of different covariates based on the machine learning algorithms 88
7.1.2. DISCUSSION
7.1.2.1. Nutritional regimen, blood parameters associated with anemia, and the utilization of machine learning techniques 89
7.1.2.2. The moderate plant plus low animal dietary pattern (MP+LA DP) and its association with iron levels and serum vitamin D status 91
7.1.3. Limitations and strengths 92
7.1.4. CONCLUSIONS 92

CHAPTER 8
8.1. STUDY 4 94
8.1.1. RESULTS
8.1.1.1. Attributes of the participants 95
8.1.1.2. The serum biochemical attributes of pregnant mothers across various levels of vitamin D 97
8.1.1.3. Dietary patterns 98
8.1.1.4. Connections between dietary pattern scores and serum vitamin D status 100
8.1.1.5. Associations between two different types of dietary patterns (PCA and RRR) with serum anemia related biomarkers 101
8.1.1.6. Status of serum anemia-related biomarkers in relation to scores of dietary patterns derived from principal component analysis (PCA) and reduced rank regression analysis (RRR) 103
8.1.2. DISCUSSION
8.1.2.1. Contrasting the dietary patterns derived from PCA and RRR 107
8.1.2.2. PCA and RRR-derived dietary patterns, anemia-related blood biomarkers, and vitamin D status 107
8.1.3. Strengths and limitations 108
8.1.4. CONCLUSIONS 108
CHAPTER 9
9.1. Overall summary 110
9.1.1. Principal component analysis (PCA) 110
9.1.2. Reduced rank regression (RRR) 110
9.1.3. Machine learning approach 111
9.1.4. Comparison of PCA and RRR analyses 111
9.2. CONCLUSIONS 112
REFERENCES 150

1.Imai, K. Parity-based assessment of anemia and iron deficiency in pregnant women. Taiwan J Obstet Gynecol 2020, 59, 838-841, doi:https://doi.org/10.1016/j.tjog.2020.09.010.
2.Wu, Y.; Ye, H.; Liu, J.; Ma, Q.; Yuan, Y.; Pang, Q.; Liu, J.; Kong, C.; Liu, M. Prevalence of anemia and sociodemographic characteristics among pregnant and non-pregnant women in southwest China: a longitudinal observational study. BMC Pregnancy Childbirth 2020, 20, 535, doi:10.1186/s12884-020-03222-1.
3.Karami, M.; Chaleshgar, M.; Salari, N.; Akbari, H.; Mohammadi, M. Global prevalence of anemia in pregnant women: a comprehensive systematic review and meta-analysis. Matern Child Health J 2022, 26, 1473-1487, doi:10.1007/s10995-022-03450-1.
4.Stephen, G.; Mgongo, M.; Hussein Hashim, T.; Katanga, J.; Stray-Pedersen, B.; Msuya, S.E. Anaemia in pregnancy: prevalence, risk factors, and adverse perinatal outcomes in northern Tanzania. Anemia 2018, 2018, 1846280, doi:10.1155/2018/1846280.
5.Smith, C.; Teng, F.; Branch, E.; Chu, S.; Joseph, K.S. Maternal and perinatal morbidity and mortality associated with anemia in pregnancy. Obstet Gynecol 2019, 134, 1234-1244, doi:10.1097/aog.0000000000003557.
6.Sun, Y.; Shen, Z.Z.; Huang, F.L.; Jiang, Y.; Wang, Y.W.; Zhang, S.H.; Ma, S.; Liu, J.T.; Zhan, Y.L.; Lin, H., et al. Association of gestational anemia with pregnancy conditions and outcomes: a nested case-control study. World J Clin Cases 2021, 9, 8008-8019, doi:10.12998/wjcc.v9.i27.8008.
7.Golub, M.S.; Hogrefe, C.E.; Tarantal, A.F.; Germann, S.L.; Beard, J.L.; Georgieff, M.K.; Calatroni, A.; Lozoff, B. Diet-induced iron deficiency anemia and pregnancy outcome in rhesus monkeys. Am J Clin Nutr 2006, 83, 647-656, doi:10.1093/ajcn.83.3.647.
8.de Benoist, B. Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. Food Nutr Bull 2008, 29, S238-S244. doi: 10.1177/15648265080292S129.
9.Singh, S.; Geddam, J.J.B.; Reddy, G.B.; Pallepogula, D.R.; Pant, H.B.; Neogi, S.B.; John, N.; Kolli, S.R.; Doyle, P.; Kinra, S., et al. Folate, vitamin B12, ferritin and haemoglobin levels among women of childbearing age from a rural district in south India. BMC Nutr 2017, 3, 50, doi:10.1186/s40795-017-0173-z.
10.Zughaier, S.M.; Alvarez, J.A.; Sloan, J.H.; Konrad, R.J.; Tangpricha, V. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J Clin Transl Endocrinol 2014, 1, 19-25, doi:10.1016/j.jcte.2014.01.003.
11.Mayasari, N.R.; Bai, C.H.; Hu, T.Y.; Chao, J.C.; Chen, Y.C.; Huang, Y.L.; Wang, F.F.; Tinkov, A.A.; Skalny, A.V.; Chang, J.S. Associations of food and nutrient intake with serum hepcidin and the risk of gestational iron-deficiency anemia among pregnant women: a population-based study. Nutrients 2021, 13, doi:10.3390/nu13103501.
12.Wong, R.S.; Tung, K.T.S.; Chan, Y.W.K.; Chan, B.N.K.; Leung, W.C.; Yam, J.C.; Ip, P. Adequate dietary intake and vitamin D supplementation: a study of their relative importance in determining serum vitamin D and ferritin concentrations during pregnancy. Nutrients 2022, 14, doi:10.3390/nu14153083.
13.Si, S.; Peng, Z.; Cheng, H.; Zhuang, Y.; Chi, P.; Alifu, X.; Zhou, H.; Mo, M.; Yu, Y. Association of vitamin D in different trimester with hemoglobin during pregnancy. Nutrients 2022, 14, 2455, doi: https://doi.org/10.3390/nu14122455.
14. Michalski, E.S.; Nguyen, P.H.; Gonzalez-Casanova, I.; Nguyen, S.V.; Martorell, R.; Tangpricha, V.; Ramakrishnan, U. Serum 25-hydroxyvitamin D but not dietary vitamin D intake is associated with hemoglobin in women of reproductive age in rural northern Vietnam. J Clin Transl Endocrinol 2017, 8, 41-48, doi:10.1016/j.jcte.2017.05.001.
15.Paramastri, R.; Hsu, C.Y.; Lee, H.A.; Lin, L.Y.; Kurniawan, A.L.; Chao, J.C. Association between dietary pattern, lifestyle, anthropometric status, and anemia-related biomarkers among adults: a population-based study from 2001 to 2015. Int J Environ Res Public Health 2021, 18, 3438, doi:10.3390/ijerph18073438.
16.Wingrove, K.; Lawrence, M.A.; McNaughton, S.A. A systematic review of the methods used to assess and report dietary patterns. Front Nutr 2022, 9, 892351, doi:10.3389/fnut.2022.892351.
17.Cespedes, E.M.; Hu, F.B. Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am J Clin Nutr 2015, 101, 899-900, doi:10.3945/ajcn.115.110213.
18.Amoutzopoulos, B.; Steer, T.; Roberts, C.; Cade, J.; Boushey, C.; Collins, C.; Trolle, E.; Boer, E.; Ziauddeen, N.; Rossum, C., et al. Traditional methods v. new technologies – dilemmas for dietary assessment in large-scale nutrition surveys and studies: a report following an International panel discussion at the 9th International Conference on Diet and Activity Methods (ICDAM9), Brisbane, 3 September 2015. J Nutr Sci 2018, 7, doi:10.1017/jns.2018.4.
19.Hu, Y.; Li, M.; Wu, J.; Wang, R.; Mao, D.; Chen, J.; Li, W.; Yang, Y.; Piao, J.; Yang, L., et al. Prevalence and risk factors for anemia in non-pregnant childbearing women from the chinese fifth national health and nutrition survey. Int J Env Res Public Health 2019, 16, 1290, doi:10.3390/ijerph16071290.
20.Suryanarayana, R.; Chandrappa, M.; Santhuram, A.N.; Prathima, S.; Sheela, S.R. Prospective study on prevalence of anemia of pregnant women and its outcome: a community based study. J Family Med Prim Care 2017, 6, 739-743, doi:10.4103/jfmpc.jfmpc_33_17.
21.World Health Organization what is malnutrition? Available online: http://www.who.int/features/qa/malnutrition/en/, doi:Available online: http://www.who.int/features/qa/malnutrition/en/.
22.Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995-2011: a systematic analysis of population-representative data. Lancet Glob Health 2013, 1, e16-25, doi:10.1016/s2214-109x(13)70001-9.
23.Mahamoud, N.K.; Mwambi, B.; Oyet, C.; Segujja, F.; Webbo, F.; Okiria, J.C.; Taremwa, I.M. Prevalence of anemia and its associated socio-demographic factors among pregnant women attending an antenatal care clinic at Kisugu Health Center IV, Makindye Division, Kampala, Uganda. J Blood Med 2020, 11, 13-18, doi:10.2147/jbm.S231262.
24.Sinawangwulan, I.P.; Dewi, Y.L.R.; Wekadigunawan, C.J.J.o.M.; Health, C. Association between socio-demographic, nutrition intake, cultural belief, and incidence of anemia in pregnant women in Karanganyar, Central Java. J Matern Child Health 2018, 3, 128-137. Retrieved from https://thejmch.com/index.php/thejmch/article/view/93.
25.Mayasari, N.R.; Hu, T.-Y.; Chao, J.C.J.; Bai, C.-H.; Chen, Y.C.; Huang, Y.L.; Chang, C.-C.; Wang, F.-F.; Hadi, H.; Nurwanti, E., et al. Associations of the pre-pregnancy weight status with anaemia and the erythropoiesis-related micronutrient status. Public Health Nutr 2021, 24, 6247-6257, doi:10.1017/S1368980021002627.
26.Shah, T.; Khaskheli, M.S.; Ansari, S.; Lakhan, H.; Shaikh, F.; Zardari, A.A.; Warsi, J.; Rind, N.A.; Rind, K.H.; Shar, A.H. Gestational anemia and its effects on neonatal outcome, in the population of Hyderabad, Sindh, Pakistan. Saudi J Biol Sci 2022, 29, 83-87, doi:10.1016/j.sjbs.2021.08.053.
27.Mahayasa, P.D.; Winata, I.G.S.; Setiawan, W.A. Iron deficiency anemia treatment in pregnancy. Eur J Med Health Sci 2022, 4, 36-37, doi:10.24018/ejmed.2022.4.4.1289.
28.Abd Rahman, R.; Idris, I.B.; Isa, Z.M.; Rahman, R.A.; Mahdy, Z.A. The prevalence and risk factors of iron deficiency anemia among pregnant women in Malaysia: a systematic review. Front Nutr 2022, 9, 847693, doi:10.3389/fnut.2022.847693.
29.Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann N Y Acad Sci 2019, 1450, 15-31, doi:10.1111/nyas.14092.
30.Camaschella, C. Iron deficiency. Erratum in:Blood 2019, 133, 30-39. doi: 10.1182/blood-2018-05-815944.
31.Saboor, M.; Zehra, A.; Qamar, K.; Moinuddin. Disorders associated with malabsorption of iron: a critical review. Pak J Med Sci 2015, 31, 1549-1553, doi:10.12669/pjms.316.8125.
32.Ouédraogo, S.; Koura, G.K.; Accrombessi, M.M.; Bodeau-Livinec, F.; Massougbodji, A.; Cot, M. Maternal anemia at first antenatal visit: prevalence and risk factors in a malaria-endemic area in Benin. Am J Trop Med Hyg 2012, 87, 418-424, doi:10.4269/ajtmh.2012.11-0706.
33.Ayensu, J.; Annan, R.; Lutterodt, H.; Edusei, A.; Peng, L.S. Prevalence of anaemia and low intake of dietary nutrients in pregnant women living in rural and urban areas in the Ashanti region of Ghana. PLoS One 2020, 15, e0226026, doi:10.1371/journal.pone.0226026.
34.Gibore, N.S.; Ngowi, A.F.; Munyogwa, M.J.; Ali, M.M. Dietary habits associated with anemia in pregnant women attending antenatal care services. Curr Dev Nutr 2020, 5, 1-8, doi:10.1093/cdn/nzaa178.
35.Zulfiqar, H.; Shah, I.U.; Sheas, M.N.; Ahmed, Z.; Ejaz, U.; Ullah, I.; Saleem, S.; Imran, M.; Hameed, M.; Akbar, B.J.F.S., et al. Dietary association of iron deficiency anemia and related pregnancy outcomes. Food Sci Nutr 2021, 9, 4127-4133, https://doi.org/10.1002/fsn3.2373.
36.Cavalcanti, D.S.; Vasconcelos, P.N.D.; Muniz, V.M.; Santos, N.F.D.; Osório, M.M. Iron intake and its association with iron-deficiency anemia in agricultural workers' families from the Zona da Mata of Pernambuco, Brazil. Rev Nutr 2014, 27, 217-227, doi: https://doi.org/10.1590/1415-52732014000200008.
37.Miller, J.L. Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med 2013, 3, a011866, doi:10.1101/cshperspect.a011866.
38.Oski, F.A.; Stockman, J.A. Anemia due to inadequate iron sources or poor iron utilization. Pediatr Clin North Am 1980, 27, 237-252, doi:https://doi.org/10.1016/S0031-3955(16)33849-4.
39.Cappellini, M.D.; Comin‐Colet, J.; de Francisco, A.; Dignass, A.; Doehner, W.; Lam, C.S.; Macdougall, I.C.; Rogler, G.; Camaschella, C.; Kadir, et al. Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Am J Hematol 2017, 92, 1068-1078, doi: 10.1002/ajh.24820.
40.Nemeth, E.; Ganz, T. Anemia of inflammation. Hematpl Oncol Clin North Am 2014, 28, 671-681, doi:10.1016/j.hoc.2014.04.005.
41.Auerbach, M. Patient education: anemia caused by low iron in adults (beyond the basics). 2021. Retrieved from https://www.uptodate.com/contents/anemia-caused-by-low-iron-in-adults-beyond-the-basics/print?search=Iron (Accessed 231113)
42.Kavle, J.A.; Stoltzfus, R.J.; Witter, F.; Tielsch, J.M.; Khalfan, S.S.; Caulfield, L.E. Association between anaemia during pregnancy and blood loss at and after delivery among women with vaginal births in Pemba Island, Zanzibar, Tanzania. J Health Popul Nutr 2008, 26, 232-240.
43.Frass, K.A. Postpartum hemorrhage is related to the hemoglobin levels at labor: observational study. Alexandria J Med 2015, 51, 333-337, doi: https://doi.org/10.1016/j.ajme.2014.12.002.
44.Garzon, S.; Cacciato, P.M.; Certelli, C.; Salvaggio, C.; Magliarditi, M.; Rizzo, G. Iron deficiency anemia in pregnancy: novel approaches for an old problem. Oman Med J 2020, 35, e166, doi:10.5001/omj.2020.108.
45.Breymann, C.; Auerbach, M. Iron deficiency in gynecology and obstetrics: clinical implications and management. Hematology Am Soc Hematol Educ Program 2017, 2017, 152-159, doi: https://doi.org/10.1182/asheducation-2017.1.152.
46.Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron absorption: factors, limitations, and improvement methods. ACS Omega 2022, 7, 20441-20456, doi:10.1021/acsomega.2c01833.
47.Zijp, I.M.; Korver, O.; Tijburg, L.B. Effect of tea and other dietary factors on iron absorption. Crit Rev Food Sci Nutr 2000, 40, 371-398, doi:10.1080/10408690091189194.
48.Hsieh, T.-H.; Lee, J.J.; Yu, E.W.-R.; Hu, H.-Y.; Lin, S.-Y.; Ho, C.-Y. Association between obesity and education level among the elderly in Taipei, Taiwan between 2013 and 2015: a cross-sectional study. Sci Rep 2020, 10, 20285, doi:10.1038/s41598-020-77306-5.
49.Wen, F.-H.; Lee, C.-F.; Lin, C.-J.; Lin, H.-M. Total gestational weight change and rate of change in pregnant Taiwanese women. Taiwan J Obstet Gynecol 2019, 58, 196-200, doi:https://doi.org/10.1016/j.tjog.2019.01.005.
50.Rahman, M.S.; Mushfiquee, M.; Masud, M.S.; Howlader, T. Association between malnutrition and anemia in under-five children and women of reproductive age: evidence from Bangladesh demographic and health survey 2011. PLoS One 2019, 14, e0219170, doi:10.1371/journal.pone.0219170.
51.Wawer, A.A.; Hodyl, N.A.; Fairweather-Tait, S.; Froessler, B. Are pregnant women who are living with overweight or obesity at greater risk of developing iron deficiency/anaemia? Nutrients 2021, 13, 13051572, doi:10.3390/nu13051572.
52.Jones, A.D.; Zhao, G.; Jiang, Y.P.; Zhou, M.; Xu, G.; Kaciroti, N.; Zhang, Z.; Lozoff, B. Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status. Eur J Clin Nutr 2016, 70, 918-924, doi:10.1038/ejcn.2015.229.
53.Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40-50, doi:10.1182/blood-2018-06-856500.
54.Rappaport, V.J.; Velazquez, M.; Williams, K. Hemoglobinopathies in pregnancy. Obstet Gynecol Clin North Am 2004, 31, 287-317, doi:10.1016/j.ogc.2004.03.006.
55.Kasparek, J.; Burkhardt, T.; Hoesli, I.; Bencaiova, G. Pregnancy outcomes in women with a hemoglobinopathy trait: a multicenter, retrospective study. Arch Gynecol Obstet 2021, 304, 1197-1203, doi:10.1007/s00404-021-06058-y.
56.Peng, C.T.; Liu, S.C.; Peng, Y.C.; Lin, T.H.; Wang, S.J.; Le, C.Y.; Shih, M.C.; Tien, N.; Lu, J.J.; Lin, C.Y. Distribution of thalassemias and associated hemoglobinopathies identified by prenatal diagnosis in Taiwan. Blood cells Mol Dis 2013, 51, 138-141, doi:10.1016/j.bcmd.2013.04.007.
57.Haider, B.A.; Olofin, I.; Wang, M.; Spiegelman, D.; Ezzati, M.; Fawzi, W.W. Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis. BMJ 2013, 346, f3443, doi:10.1136/bmj.f3443.
58.Yuan, X.; Han, X.; Zhou, W.; Long, W.; Wang, H.; Yu, B.; Zhang, B. Association of folate and vitamin B12 imbalance with adverse pregnancy outcomes among 11,549 pregnant women: an observational cohort study. Front Nutr 2022, 9, 947118, doi:10.3389/fnut.2022.947118.
59.Molloy, A.M.; Kirke, P.N.; Brody, L.C.; Scott, J.M.; Mills, J.L. Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr Bull 2008, 29, S101-115, doi:10.1177/15648265080292s114.
60.Helmy, M.; Elkhouly, N.; Ghalab, R. Maternal anemia with pregnancy and its adverse effects. Menoufia Med J 2018, 31, 7-11, doi:10.4103/1110-2098.234258.
61.Institute of medicine (US) committee on nutritional status during pregnancy and lactation. Nutrition during pregnancy: part I weight gain: part II nutrient supplements. Washington (DC): National Academies Press (US); 1990. 5, Total Amount and Pattern of Weight Gain: Physiologic and Maternal Determinants. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK235227/, doi:https://www.ncbi.nlm.nih.gov/books/NBK235227/.
62.Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A. Physiological changes in pregnancy. Cardiovasc J Afr 2016, 27, 89-94, doi:10.5830/cvja-2016-021.
63.Eke, A.C. An update on the physiologic changes during pregnancy and their impact on drug pharmacokinetics and pharmacogenomics. J Basic Clin Physiol Pharmacol 2022, 33, 581-598, doi:10.1515/jbcpp-2021-0312.64.
64.Costantine, M. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol 2014, 5, 65, doi:10.3389/fphar.2014.00065.
65.Motosko, C.C.; Bieber, A.K.; Pomeranz, M.K.; Stein, J.A.; Martires, K.J. Physiologic changes of pregnancy: a review of the literature. Int J Womens Dermatol 2017, 3, 219-224, doi:https://doi.org/10.1016/j.ijwd.2017.09.003.
66.Ross AC, T.C., Yaktine AL, et al. Dietary reference intakes for calcium and vitamin D. Institute of Medicine (US) Committee to Review 2011. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK56070/.
67.Spiro, A.; Buttriss, J.L. Vitamin D: an overview of vitamin D status and intake in Europe. Nutr Bull 2014, 39, 322-350, doi:https://doi.org/10.1111/nbu.12108.
68.Napolitano, L.M. Vitamin D supplementation and hemoglobin: dosing matters in prevention/treatment of anemia. Nutr J 2021, 20, 23, doi:10.1186/s12937-021-00680-x.
69.Sim, J.J.; Lac, P.T.; Liu, I.L.; Meguerditchian, S.O.; Kumar, V.A.; Kujubu, D.A.; Rasgon, S.A. Vitamin D deficiency and anemia: a cross-sectional study. Ann Hematol 2010, 89, 447-452, doi:10.1007/s00277-009-0850-3.
70.Ochogwu, O.L.; Salawu, L.; Owojuyigbe, T.O.; Adedeji, T.A. Vitamin D deficiency and its association with anemia and blood transfusion requirements in Nigerian Adults with sickle cell anemia. Plasmatology 2021, 15, 26348535211051690, doi:10.1177/26348535211051690.
71.Perlstein, T.S.; Pande, R.; Berliner, N.; Vanasse, G.J. Prevalence of 25-hydroxyvitamin D deficiency in subgroups of elderly persons with anemia: association with anemia of inflammation. Blood 2011, 117, 2800-2806, doi:10.1182/blood-2010-09-309708.
72. Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D sources, metabolism, and deficiency: available compounds and guidelines for its treatment. Metabolites 2021, 11, 255, doi:10.3390/metabo11040255.
73. Holick, M.F. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 2004, 79, 362-371, doi:https://doi.org/10.1093/ajcn/79.3.362.
74.Bacchetta, J.; Zaritsky, J.J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Zavala, K.; Nayak, A.; Wesseling-Perry, K.; Westerman, M.; Hollis, B.W. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol 2014, 25, 564-572, doi: 10.1681/ASN.2013040355.
75.Katsumata, S.; Katsumata, R.; Matsumoto, N.; Inoue, H.; Takahashi, N.; Uehara, M. Iron deficiency decreases renal 25-hydroxyvitamin D3-1α-hydroxylase activity and bone formation in rats. BMC Nutr 2016, 2, 33, doi: https://doi.org/10.1186/s40795-016-0072-8.
76. Perwad, F.; Zhang, M.Y.; Tenenhouse, H.S.; Portale, A.A. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1α-hydroxylase expression in vitro. Am J Physiol Renal Physiol 2007, 293, F1577-F1583, doi: https://doi.org/10.1152/ajprenal.00463.2006.
77.Mogire, R.M.; Muriuki, J.M.; Morovat, A.; Mentzer, A.J.; Webb, E.L.; Kimita, W.; Ndungu, F.M.; Macharia, A.W.; Cutland, C.L.; Sirima, S.B., et al. Vitamin D deficiency and its association with iron deficiency in African children. Nutrients 2022, 14, 1372, doi: https://doi.org/10.3390/nu14071372.
78.Smith, E.M.; Alvarez, J.A.; Kearns, M.D.; Hao, L.; Sloan, J.H.; Konrad, R.J.; Ziegler, T.R.; Zughaier, S.M.; Tangpricha, V. High-dose vitamin D3 reduces circulating hepcidin concentrations: a pilot, randomized, double-blind, placebo-controlled trial in healthy adults. Clin Nutr 2017, 36, 980-985, doi: https://doi.org/10.1016/j.clnu.2016.06.015.80.
79. Smith, E.M.; Tangpricha, V. Vitamin D and anemia: insights into an emerging association. Curr Opin in Endocrinol Diabetes Obes 2015, 22, 432-438, doi: 10.1097/MED.0000000000000199.
80.Agoro, R.; Park, M.Y.; Le Henaff, C.; Jankauskas, S.; Gaias, A.; Chen, G.; Mohammadi, M.; Sitara, D. C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 2021, 106, 391-403, doi: https://doi.org/10.3324/haematol.2019.237040.
81.Fisher, A.L.; Nemeth, E. Iron homeostasis during pregnancy. Am J Clin Nutr 2017, 106, 1567S-1574S, doi:https://doi.org/10.3945/ajcn.117.155812.
82.Braithwaite, V.S.; Crozier, S.R.; D’Angelo, S.; Prentice, A.; Cooper, C.; Harvey, N.C.; Jones, K.S.; MAVIDOS Trial Group. The effect of vitamin D supplementation on hepcidin, iron status, and inflammation in pregnant women in the United Kingdom. Nutrients 2019, 11, 190, doi: https://doi.org/10.3390/nu11010190.
83.Basutkar, R.; Eipe, T.; Tsundue, T.; Perumal, D.; Sivasankaran, P. Reduced vitamin D levels and iron deficiency anaemia in pregnant women: an evolving correlation. J Young Pharm 2018, 11, 92-96, doi:10.5530/jyp.2019.11.19.
84.Han, O. Molecular mechanism of intestinal iron absorption. Metallomics 2011, 3, 103-109, doi:10.1039/c0mt00043d.
85.Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: a pooled analysis of 7.9 million participants. Front Nutr 2023, 10, 1070808, doi : https://doi.org/10.3389/fnut.2023.1070808.
86.Jiang, Z.; Pu, R.; Li, N.; Chen, C.; Li, J.; Dai, W.; Wang, Y.; Hu, J.; Zhu, D.; Yu, Q., et al. High prevalence of vitamin D deficiency in Asia: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2023, 63, 3602-3611, doi:10.1080/10408398.2021.1990850.
87.Mendes, M.M.; Gomes, A.P.; Araújo, M.M.; Coelho, A.S.; Carvalho, K.M.; Botelho, P.B. Prevalence of vitamin D deficiency in South America: a systematic review and meta-analysis. Nutr Rev 2023,1290-1309, doi: 10.1093/nutrit/nuad010.
88.Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr 2020, 74, 1498-1513, doi:10.1038/s41430-020-0558-y.
89.Soepnel, L.M.; Mabetha, K.; Draper, C.E.; Silubonde, T.M.; Smuts, C.M.; Pettifor, J.M.; Norris, S.A. A cross-sectional study of the associations between biomarkers of vitamin D, iron status, and hemoglobin in south African women of reproductive age: the healthy life trajectories initiative, South Africa. Curr Dev Nutr 2023, 7, 100072, doi: https://doi.org/10.1016/j.cdnut.2023.100072.
90.Ali, A.M.; Alobaid, A.; Malhis, T.N.; Khattab, A.F. Effect of vitamin D3 supplementation in pregnancy on risk of pre-eclampsia - randomized controlled trial. Clin Nutr 2019, 38, 557-563, doi:10.1016/j.clnu.2018.02.023.
91.Marangoni, F.; Cetin, I.; Verduci, E.; Canzone, G.; Giovannini, M.; Scollo, P.; Corsello, G.; Poli, A. Maternal diet and nutrient requirements in pregnancy and breastfeeding. an Italian consensus document. Nutrients 2016, 8, 629, doi: https://doi.org/10.3390/nu8100629.
92.Picciano, M.F. Pregnancy and lactation: physiological adjustments, nutritional requirements and the role of dietary supplements. J Nutr 2003, 133, 1997S-2002S, doi:10.1093/jn/133.6.1997S.
93.Hollis, B.W. Vitamin D requirement during pregnancy and lactation. J Bone Miner Res 2007, 22, V39-V44, doi: 10.1359/jbmr.07s215.
94.Ministry of Health and Welfare National dietary nutrient reference intake. Retrieved from: https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1050&pid=13117.
95.Beck, K.L.; Conlon, C.A.; Kruger, R.; Coad, J. Dietary determinants of and possible solutions to iron deficiency for young women living in industrialized Countries: a review. Nutrients 2014, 6, 3747-3776, doi:10.3390/nu6093747.
96.Ngimbudzi, E.B.; Massawe, S.N.; Sunguya, B.F. The burden of anemia in pregnancy among women attending the antenatal clinics in Mkuranga District, Tanzania. Front Public Health 2021, 9, 724562, doi:10.3389/fpubh.2021.724562.
97.Eweis, M.; Farid, E.Z.; El-Malky, N.; Abdel-Rasheed, M.; Salem, S.; Shawky, S. Prevalence and determinants of anemia during the third trimester of pregnancy. Clin Nutr ESPEN 2021, 44, 194-199, doi: https://doi.org/10.1016/j.clnesp.2021.06.023.
98.Malhotra, U.; Roy, M.; Sontakke, M.; Choudhary, P. A recent paradigm on iron absorption, prevalence, and emerging dietary approaches to eradicate iron deficiency. Food Bioengg 2023, 2, 53-63, doi:https://doi.org/10.1002/fbe2.12042.
99.Hu, F.B. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 2002, 13, 3-9, doi: doi: 10.1097/00041433-200202000-00002.
100.Panagiotakos, D. α-priori versus α-posterior methods in dietary pattern analysis: a review in nutrition epidemiology. Nutr Bull 2008, 33, 311-315, doi:https://doi.org/10.1111/j.1467-3010.2008.00731.x.
101. Vermeulen, E.; Stronks, K.; Visser, M.; Brouwer, I.A.; Snijder, M.B.; Mocking, R.J.T.; Derks, E.M.; Schene, A.H.; Nicolaou, M. Dietary pattern derived by reduced rank regression and depressive symptoms in a multi-ethnic population: the HELIUS study. Eur J Clin Nutr 2017, 71, 987-994, doi:10.1038/ejcn.2017.61.
102.Kant, A.K. Dietary patterns and health outcomes. J Am Diet Assoc 2004, 104, 615-635, doi:https://doi.org/10.1016/j.jada.2004.01.010.
103.Sauvageot, N.; Leite, S.; Alkerwi, A.a.; Sisanni, L.; Zannad, F.; Saverio, S.; Donneau, A.-F.; Albert, A.; Guillaume, M. Association of empirically derived dietary patterns with cardiovascular risk factors: a comparison of PCA and RRR methods. PLoS One 2016, 11, e0161298, doi: https://doi.org/10.1371/journal.pone.0161298.
104.Jolliffe, I.T.; Cadima, J. Principal component analysis: a review and recent developments. Philos Trans Royal Soc A 2016, 374, 20150202, doi:doi:10.1098/rsta.2015.0202.
105.Mishra, S. P.; Sarkar, U.; Taraphder, S.; Datta, S.; Swain, D.; Saikhom, R.; Panda, S.; Laishram, M. Principal component analysis. Int J Livest Res 2017, 7, 60-78, doi:10.5455/ijlr.20170415115235.
106.Moreira, J.; Silva, B.; Faria, H.; Santos, R.; Sousa, A.S.P. Systematic review on the applicability of principal component analysis for the study of movement in the older adult population. Sensors 2023, 23, 205, doi: https://doi.org/10.3390/s23010205.
107.Karamizadeh, S.; Abdullah, S.; Manaf, A.; Zamani, M.; Hooman, A. An overview of principal component analysis. J Sig Inf Proc 2013, 4, doi:10.4236/jsip.2013.43B031.
108.Reinsel, G. Reduced-rank regression. In book: encyclopedia of statistical sciences
2006; 10.1002/0471667196.ess5040.pub2.
109.Weikert, C.; Schulze, M.B. Evaluating dietary patterns: the role of reduced rank regression. Curr Opin Clin Nutr Metab Care 2016, 19, 341-346, doi:10.1097/mco.0000000000000308.
110.Li, Y.; Yatsuya, H.; Wang, C.; Uemura, M.; Matsunaga, M.; He, Y.; Khine, M.; Ota, A. Dietary patterns derived from reduced rank regression are associated with the 5-year occurrence of metabolic syndrome: Aichi workers’ cohort study. Nutrients 2022, 14, 3019, doi: https://doi.org/10.3390/nu14153019.
111.Duan, M.-J.; Dekker, L.H.; Carrero, J.-J.; Navis, G. Blood lipids-related dietary patterns derived from reduced rank regression are associated with incident type 2 diabetes. Clin Nutr 2021, 40, 4712-4719, doi: https://doi.org/10.1016/j.clnu.2021.04.046.
112.Piernas, C.; Gao, M.; Jebb, S.A. Dietary patterns derived by reduced rank regression and non-communicable disease risk. Proc Nutr Soc 2022, 29, 1-8, doi:10.1017/S0029665122001094.
113.Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A review of statistical methods for dietary pattern analysis. Nutr J 2021, 20, doi:10.1186/s12937-021-00692-7.
114.Sinaga, K.P.; Yang, M.-S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716-80727, doi: 10.1109/ACCESS.2020.2988796 .
115.Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S. Top 10 algorithms in data mining. Knowl Inf Syst 2008, 14, 1-37, doi: https://doi.org/10.1007/s10115-007-0114-2.
116.Noura, Q.; Khaoula El, K.; Nada, O.; Karima El, R.; Nour El Houda, C. Cluster analysis of dietary patterns associated with colorectal cancer derived from a Moroccan case–control study. BMJ Health Care Inform 2023, 30, e100710, doi:10.1136/bmjhci-2022-100710.
117.Wu, J.; Wu, J. Cluster analysis and K-means clustering: an introduction. In: Advances in K-means Clustering. Springer Theses. Springer, Berlin, Heidelberg. 2012, 1-16, doi: https://doi.org/10.1007/978-3-642-29807-3_.
118.Singh, K.; Malik, D.; Sharma, N. Evolving limitations in K-means algorithm in data mining and their removal. Internat J Comput Eng Manag 2011, 12, 105-109, available from: https://www.semanticscholar.org/paper/Evolving-limitations-in-K-means-algorithm-in-data-Singh-Malik/25fb009c04e0ae5b36dff66366ee63296a5bd568#citing-papers.
119.Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inf Sci 2023, 622, 178-210, doi:https://doi.org/10.1016/j.ins.2022.11.139.
120.Yuan, C.; Yang, H. Research on k-value selection method of k-means clustering algorithm. JMultidicip Sci 2019, 2, 226-235, doi: https://doi.org/10.3390/j2020016.
121.Holland, E.; Moore Simas, T.A.; Doyle Curiale, D.K.; Liao, X.; Waring, M.E. Self-reported pre-pregnancy weight versus weight measured at first prenatal visit: effects on categorization of pre-pregnancy body mass index. Matern Child Health J 2013, 17, 1872-1878, doi:10.1007/s10995-012-1210-9.
122.Tsai, I.H.; Chen, C.-P.; Sun, F.-J.; Wu, C.-H.; Yeh, S.-L. Associations of the pre-pregnancy body mass index and gestational weight gain with pregnancy outcomes in Taiwanese women. Asia Pac J Clin Nutr 2012, 21, 82-87. Retrieved from https://apjcn.nhri.org.tw/.
123.Lin, Y.-C.; Yen, L.-L.; Chen, S.-Y.; Kao, M.-D.; Tzeng, M.-S.; Huang, P.-C.; Pan, W.-H. Prevalence of overweight and obesity and its associated factors: findings from national nutrition and health survey in Taiwan, 1993–1996. Prev Med 2003, 37, 233-241, doi: https://doi.org/10.1016/S0091-7435(03)00119-1.
124.Zang, J.; Luo, B.; Chang, S.; Jin, S.; Shan, C.; Ma, L.; Zhu, Z.; Guo, C.; Zou, S.; Jia, X., et al. Validity and reliability of a food frequency questionnaire for assessing dietary intake among Shanghai residents. Nutr J 2019, 18, 30, doi:10.1186/s12937-019-0454-2.
125.Das, A.; Bai, C.-H.; Chang, J.-S.; Huang, Y.-L.; Wang, F.-F.; Chen, Y.-C.; Chao, J.C.-J. Associations of dietary patterns and vitamin D levels with iron status in pregnant women: a cross-sectional study in Taiwan. Nutrients 2023, 15, 1805, doi: https://doi.org/10.3390/nu15081805.
126.Kurniawan, A.L.; Hsu, C.Y.; Lee, H.A.; Rau, H.H.; Paramastri, R.; Syauqy, A.; Chao, J.C. Comparing two methods for deriving dietary patterns associated with risk of metabolic syndrome among middle-aged and elderly Taiwanese adults with impaired kidney function. BMC Med Res Methodol 2020, 20, 255, doi:10.1186/s12874-020-01142-4.
127.Pfeiffer, C.M.; Looker, A.C. Laboratory methodologies for indicators of iron status: strengths, limitations, and analytical challenges. Am J Clin Nutr 2017, 106, 1606S-1614S, doi:https://doi.org/10.3945/ajcn.117.155887.
128.Yamanishi, H.; Iyama, S.; Yamaguchi, Y.; Kanakura, Y.; Iwatani, Y. Total iron-binding capacity calculated from serum transferrin concentration or serum iron concentration and unsaturated iron-binding capacity. Clin Chem 2003, 49, 175-178, doi:10.1373/49.1.175.
129.Shane, B. Folate status assessment history: implications for measurement of biomarkers in NHANES. Am J Clin Nutr 2011, 94, 337s-342s, doi:10.3945/ajcn.111.013367.
130.Karmi, O.; Zayed, A.; Baraghethi, S.; Qadi, M.; Ghanem, R. Measurement of vitamin B 12 concentration: a review on available methods. The IIOAB J 2011, 2, 23-32. Retrieved from https://www.iioab.org/.
131.Abdel-Wareth, L.; Haq, A.; Turner, A.; Khan, S.; Salem, A.; Mustafa, F.; Hussein, N.; Pallinalakam, F.; Grundy, L.; Patras, G., et al. Total vitamin D assay comparison of the roche diagnostics “vitamin D total” electrochemiluminescence protein binding assay with the chromsystems HPLC method in a population with both D2 and D3 forms of vitamin D. Nutrients 2013, 5, 971-980.
132.Health Promotion Administration, Ministry of Health and Welfare. Taiwan’s Obesity Prevention and Management Strategy; HealthPromotion Administration, Ministry of Health and Welfare: Taipei, Taiwan, 2018; p. 55.Retrieved from https://www.hpa.gov.tw/EngPages/Index.aspx
133.Bellanger, R.A. Iron deficiency anemia in women. US Pharm 2010, 35, 50-58.Retrived from https://www.uspharmacist.com/article/iron-deficiency-anemia-in-women
134.Sukla, S.K.; Mohanty, P.K.; Patel, S.; Das, K.; Hiregoudar, M.; Soren, U.K.; Meher, S. Iron profile of pregnant sickle cell anemia patients in Odisha, India. Hematol Transfus Cell Ther 2023, 45, S11-S17, doi:https://doi.org/10.1016/j.htct.2021.06.012.
135.Word Health Organization. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. Retrieved from https://www.who.int/publications/i/item/9789240000124.
136.World Health Organization. Archived: iron deficiency anemia: assessment, prevention and control; World Health Organization:Geneva, Switzerland, 2001; pp. 47–62.
137.Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2011, 96, 1911-1930, doi:10.1210/jc.2011-0385.
138.Kurniawan, A.L.; Hsu, C.-Y.; Rau, H.-H.; Lin, L.-Y.; Chao, J.C.J. Dietary patterns in relation to testosterone levels and severity of impaired kidney function among middle-aged and elderly men in Taiwan: a cross-sectional study. Nutr J 2019, 18, 42, doi:10.1186/s12937-019-0467-x.
139.Lima, T.P.F.; Sena, G.R.; Neves, C.S.; Vidal, S.A.; Lima, J.T.O.; Mello, M.J.G.; Silva, F.A.d.O.L.d.F. Previsão de óbito e importância de características clínicas em idosos com COVID-19 utilizando o Algoritmo Random Forest. Rev Bras Saude Mater Infant 2021, 21, 445-451, doi:10.1590/1806-9304202100S200007.
140.Judistiani, R.T.D.; Gumilang, L.; Nirmala, S.A.; Irianti, S.; Wirhana, D.; Permana, I.; Sofjan, L.; Duhita, H.; Tambunan, L.A.; Gurnadi, J.I., et al. Association of colecalciferol, ferritin, and anemia among pregnant women: result from cohort study on vitamin D status and its impact during pregnancy and childhood in Indonesia. Anemia 2018, 2018, 2047981, doi:10.1155/2018/2047981.
141.Perzia, B.M.; Ying, G.S.; Dunaief, J.L.; Dunaief, D.M. Reduction in ferritin concentrations among patients consuming a dark-green leafy vegetable-rich, low inflammatory foods everyday (life) diet. Curr Dev Nutr 2022, 6, nzac095, doi:10.1093/cdn/nzac095.
142.Ma, Q.; Kim, E.Y.; Lindsay, E.A.; Han, O. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells. J Food Sci 2011, 76, H143-150, doi:10.1111/j.1750-3841.2011.02184.x.
143.Koebnick, C.; Heins, U.A.; Hoffmann, I.; Dagnelie, P.C.; Leitzmann, C. Folate status during pregnancy in women is improved by long-term high vegetable intake compared with the average Western Diet. J Nutr 2001, 131, 733-739, doi:https://doi.org/10.1093/jn/131.3.733.
144.Specker, B.L.; Tsang, R.C.; Ho, M.; Miller, D. Effect of vegetarian diet on serum 1,25-dihydroxyvitamin D concentrations during lactation. Obstet Gynecol 1987, 70, 870-874. Retrieved from https://pubmed.ncbi.nlm.nih.gov/3500439/.
145.Jackson, J.; Williams, R.; McEvoy, M.; MacDonald-Wicks, L.; Patterson, A. Is higher consumption of animal flesh foods associated with better iron status among adults in developed Countries? a systematic review. Nutrients 2016, 8, 89, doi: https://doi.org/10.3390/nu8020089.
146.Tuntipopipat, S.; Zeder, C.; Siriprapa, P.; Charoenkiatkul, S. Inhibitory effects of spices and herbs on iron availability. Intl J Food Sci Nutr 2009, 60, 43-55, doi:10.1080/09637480802084844.
147.Gille, D.; Schmid, A. Vitamin B12 in meat and dairy products. Nutr Rev 2015, 73, 106-115, doi:10.1093/nutrit/nuu011.
148.Paula, W.O.; Gonçalves, V.S.S.; Patriota, E.S.O.; Franceschini, S.C.C.; Pizato, N. Impact of ultra-processed food consumption on quality of diet among Brazilian pregnant women assisted in primary health care. Int J Environ Res Public Health 2023, 20, 1015, doi: https://doi.org/10.3390/ijerph20021015.
149.Cifelli, C.J.; Agarwal, S.; Fulgoni III, V.L. Association between intake of total dairy and individual dairy foods and markers of folate, vitamin B6 and vitamin B12 status in the U.S. population. Nutrients 2022, 14, 2441, doi: https://doi.org/10.3390/nu14122441.
150.Dasgupta, A.; Saikia, U.K.; Sarma, D. Status of 25(OH)D levels in pregnancy: a study from the north eastern part of India. Indian J Endocrinol Metab 2012, 16, S405-S407, doi: 10.4103/2230-8210.104109 .
151.Huang, Y.-L.; Pham, T.T.M.; Chen, Y.-C.; Chang, J.-S.; Chao, J.C.-J.; Bai, C.-H. Effects of climate, sun exposure, and dietary intake on vitamin D concentrations in pregnant women: a population-based study. Nutrients 2023, 15, 1182, doi: https://doi.org/10.3390/nu15051182.
152.Pagani, A.; Nai, A.; Silvestri, L.; Camaschella, C. Hepcidin and anemia: a tight relationship. Front Physiol 2019, 10, 01294, doi:10.3389/fphys.2019.01294.
153.Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians. Int J Behav Nutr Phys Act 2016, 13, 30, doi:10.1186/s12966-016-0353-2.
154.Lyu, L.C.; Lin, C.F.; Chang, F.H.; Chen, H.F.; Lo, C.C.; Ho, H.F. Meal distribution, relative validity and reproducibility of a meal-based food frequency questionnaire in Taiwan. Asia Pac J Clin Nutr 2007, 16, 766-776. Retrieved from https://apjcn.nhri.org.tw.
155.Thomas, C.E.; Guillet, R.; Queenan, R.A.; Cooper, E.M.; Kent, T.R.; Pressman, E.K.; Vermeylen, F.M.; Roberson, M.S.; O'Brien, K.O. Vitamin D status is inversely associated with anemia and serum erythropoietin during pregnancy. Am J Clin Nutr 2015, 102, 1088-1095, doi:10.3945/ajcn.115.116756.
156.Ochoa, J.; Pulido-Moran, M.; Hijano, S.; Kajarabille, N.; Moreno-Fernandez, J.; Díaz-Castro, J. Interactions between omega-3 fatty acids and iron. J Funct Foods 2016, 62, 3002-3022, doi: 10.1080/10408398.2020.1862047.
157.West, A.R.; Oates, P.S. Mechanisms of heme iron absorption: current questions and controversies. World J Gastroenterol 2008, 14, 4101-4110, doi:10.3748/wjg.14.4101.
158.Ogłuszka, M.; Lipiński, P.; Starzyński, R.R. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci 2022, 62, 3002-3022, doi:10.1080/10408398.2020.1862047.
159.Gharekhani, A.; Khatami, M.R.; Dashti-Khavidaki, S.; Razeghi, E.; Abdollahi, A.; Hashemi-Nazari, S.S.; Mansournia, M.A. Potential effects of omega-3 fatty acids on anemia and inflammatory markers in maintenance hemodialysis patients. Daru 2014, 22, 11, doi:10.1186/2008-2231-22-11.
160.Sugirtharan, A.; Ramiah, S. Impact of dietary practices on serum ferritin content of pregnant mothers in the Batticaloa District Sri Lanka. AGRIEAST: J Agric Sci 2020, 14, 44, doi:10.4038/agrieast.v14i1.84.
161.Lamberg-Allardt, C. Vitamin D in foods and as supplements. Prog Biophys Mol Biol 2006, 92, 33-38, doi:10.1016/j.pbiomolbio.2006.02.017.
162.Lima, M.S.; Pereira, M.; Castro, C.T.; Santos, D.B. Vitamin D deficiency and anemia in pregnant women: a systematic review and meta-analysis. Nutr Rev 2022, 80, 428-438, doi:10.1093/nutrit/nuab114.
163.O’Callaghan, K.; Tariq, U.; Gernand, A.; Tinajero, M.; Onoyovwi, A.; Zlotkin, S.; Al Mahmud, A.; Ahmed, T.; Keya, F.; Roth, D. Effect of maternal vitamin D supplementation on iron status during pregnancy. Curr Dev Nutr 2020, 4, 4141054, doi: 10.1093/cdn/nzaa054_126.
164.Silva, V.C.; Gorgulho, B.; Marchioni, D.M.; Araujo, T.A.d.; Santos, I.d.S.; Lotufo, P.A.; Benseñor, I.M. Clustering analysis and machine learning algorithms in the prediction of dietary patterns: cross‐sectional results of the Brazilian Longitudinal Study of Adult Health (ELSA‐Brasil). J Hum Nutr Diet 2022, 35, 883-894, doi:10.1111/jhn.12992.
165.Panaretos, D.; Koloverou, E.; Dimopoulos, A.C.; Kouli, G.-M.; Vamvakari, M.; Tzavelas, G.; Pitsavos, C.; Panagiotakos, D.B. A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2002–2012): the ATTICA study. Br J Nutr 2018, 120, 326-334, doi:10.1017/S0007114518001150.
166.Schmid, A.; Walther, B. Natural vitamin D content in animal products. Adv Nutr 2013, 4, 453-462, doi: 10.3945/an.113.003780.
167.Detopoulou, P.; Papadopoulou, S.K.; Voulgaridou, G.; Dedes, V.; Tsoumana, D.; Gioxari, A.; Gerostergios, G.; Detopoulou, M.; Panoutsopoulos, G.I. Ketogenic diet and vitamin D metabolism: a review of evidence. Metabolites 2022, 12, 1288, doi:10.3390/metabo12121288.
168.O'Callaghan, K.M.; Qamar, H.; Gernand, A.D.; Onoyovwi, A.; Zlotkin, S.; Mahmud, A.A.; Ahmed, T.; Keya, F.K.; Roth, D.E. Maternal prenatal, with or without postpartum, vitamin D3 supplementation does not improve maternal iron status at delivery or infant iron status at 6 months of age: secondary analysis of a randomised controlled trial. BMJ Nutr Prev Health 2023, 6, 282, doi:10.1136/bmjnph-2023-000758.
169.Madar, A.A.; Stene, L.C.; Meyer, H.E.; Brekke, M.; Lagerløv, P.; Knutsen, K.V. Effect of vitamin D3 supplementation on iron status: a randomized, double-blind, placebo-controlled trial among ethnic minorities living in Norway. Nutr J 2015, 15, 1-10, doi:10.1186/s12937-016-0192-7.
170.Hitesh, T.; Khatuja, R.; Agrawal, P.; Dhamnetiya, D.; Jha, R.P.; Renjhen, P. Unlocking the mystery of the role of vitamin D in iron deficiency anemia in antenatal women: a case control study in a tertiary care hospital in New Delhi. BMC Pregnancy Childbirth 2023, 23, 749, doi:10.1186/s12884-023-06047-w.
171.Boland, M.; Bronlund, J. eNutrition-the next dimension for eHealth? Trends Food Sci Technol 2019, 91, 634-639, doi:10.1016/j.tifs.2019.08.00.
172.Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A Review of mushrooms as a potential source of dietary vitamin D. Nutrients 2018, 10, doi:10.3390/nu10101498.
173.Tamama, K. Potential benefits of dietary seaweeds as protection against COVID-19. Nutr Rev 2021, 79, 814-823, doi:10.1093/nutrit/nuaa126.
174.Batis, C.; Mendez, M.A.; Gordon-Larsen, P.; Sotres-Alvarez, D.; Adair, L.; Popkin, B. Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults. Public Health Nutr 2016, 19, 195-203, doi:10.1017/s1368980014003103.
175.Behera, S.S.; El Sheikha, A.F.; Hammami, R.; Kumar, A. Traditionally fermented pickles: how the microbial diversity associated with their nutritional and health benefits? J Funct Foods 2020, 70, 103971, doi:https://doi.org/10.1016/j.jff.2020.103971.
176.Faruqi A, M.S. Iron Binding Capacity. [Updated 2023 Jan 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559119/.
177.Raza, N.; Sarwar, I.; Munazza, B.; Ayub, M.; Suleman, M. Assessment of iron deficiency in pregnant women by determining iron status. J Ayub Med Coll Abbottabad 2011, 23, 36-40.

電子全文 電子全文(網際網路公開日期:20290723)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top