|
1.Imai, K. Parity-based assessment of anemia and iron deficiency in pregnant women. Taiwan J Obstet Gynecol 2020, 59, 838-841, doi:https://doi.org/10.1016/j.tjog.2020.09.010. 2.Wu, Y.; Ye, H.; Liu, J.; Ma, Q.; Yuan, Y.; Pang, Q.; Liu, J.; Kong, C.; Liu, M. Prevalence of anemia and sociodemographic characteristics among pregnant and non-pregnant women in southwest China: a longitudinal observational study. BMC Pregnancy Childbirth 2020, 20, 535, doi:10.1186/s12884-020-03222-1. 3.Karami, M.; Chaleshgar, M.; Salari, N.; Akbari, H.; Mohammadi, M. Global prevalence of anemia in pregnant women: a comprehensive systematic review and meta-analysis. Matern Child Health J 2022, 26, 1473-1487, doi:10.1007/s10995-022-03450-1. 4.Stephen, G.; Mgongo, M.; Hussein Hashim, T.; Katanga, J.; Stray-Pedersen, B.; Msuya, S.E. Anaemia in pregnancy: prevalence, risk factors, and adverse perinatal outcomes in northern Tanzania. Anemia 2018, 2018, 1846280, doi:10.1155/2018/1846280. 5.Smith, C.; Teng, F.; Branch, E.; Chu, S.; Joseph, K.S. Maternal and perinatal morbidity and mortality associated with anemia in pregnancy. Obstet Gynecol 2019, 134, 1234-1244, doi:10.1097/aog.0000000000003557. 6.Sun, Y.; Shen, Z.Z.; Huang, F.L.; Jiang, Y.; Wang, Y.W.; Zhang, S.H.; Ma, S.; Liu, J.T.; Zhan, Y.L.; Lin, H., et al. Association of gestational anemia with pregnancy conditions and outcomes: a nested case-control study. World J Clin Cases 2021, 9, 8008-8019, doi:10.12998/wjcc.v9.i27.8008. 7.Golub, M.S.; Hogrefe, C.E.; Tarantal, A.F.; Germann, S.L.; Beard, J.L.; Georgieff, M.K.; Calatroni, A.; Lozoff, B. Diet-induced iron deficiency anemia and pregnancy outcome in rhesus monkeys. Am J Clin Nutr 2006, 83, 647-656, doi:10.1093/ajcn.83.3.647. 8.de Benoist, B. Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. Food Nutr Bull 2008, 29, S238-S244. doi: 10.1177/15648265080292S129. 9.Singh, S.; Geddam, J.J.B.; Reddy, G.B.; Pallepogula, D.R.; Pant, H.B.; Neogi, S.B.; John, N.; Kolli, S.R.; Doyle, P.; Kinra, S., et al. Folate, vitamin B12, ferritin and haemoglobin levels among women of childbearing age from a rural district in south India. BMC Nutr 2017, 3, 50, doi:10.1186/s40795-017-0173-z. 10.Zughaier, S.M.; Alvarez, J.A.; Sloan, J.H.; Konrad, R.J.; Tangpricha, V. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J Clin Transl Endocrinol 2014, 1, 19-25, doi:10.1016/j.jcte.2014.01.003. 11.Mayasari, N.R.; Bai, C.H.; Hu, T.Y.; Chao, J.C.; Chen, Y.C.; Huang, Y.L.; Wang, F.F.; Tinkov, A.A.; Skalny, A.V.; Chang, J.S. Associations of food and nutrient intake with serum hepcidin and the risk of gestational iron-deficiency anemia among pregnant women: a population-based study. Nutrients 2021, 13, doi:10.3390/nu13103501. 12.Wong, R.S.; Tung, K.T.S.; Chan, Y.W.K.; Chan, B.N.K.; Leung, W.C.; Yam, J.C.; Ip, P. Adequate dietary intake and vitamin D supplementation: a study of their relative importance in determining serum vitamin D and ferritin concentrations during pregnancy. Nutrients 2022, 14, doi:10.3390/nu14153083. 13.Si, S.; Peng, Z.; Cheng, H.; Zhuang, Y.; Chi, P.; Alifu, X.; Zhou, H.; Mo, M.; Yu, Y. Association of vitamin D in different trimester with hemoglobin during pregnancy. Nutrients 2022, 14, 2455, doi: https://doi.org/10.3390/nu14122455. 14. Michalski, E.S.; Nguyen, P.H.; Gonzalez-Casanova, I.; Nguyen, S.V.; Martorell, R.; Tangpricha, V.; Ramakrishnan, U. Serum 25-hydroxyvitamin D but not dietary vitamin D intake is associated with hemoglobin in women of reproductive age in rural northern Vietnam. J Clin Transl Endocrinol 2017, 8, 41-48, doi:10.1016/j.jcte.2017.05.001. 15.Paramastri, R.; Hsu, C.Y.; Lee, H.A.; Lin, L.Y.; Kurniawan, A.L.; Chao, J.C. Association between dietary pattern, lifestyle, anthropometric status, and anemia-related biomarkers among adults: a population-based study from 2001 to 2015. Int J Environ Res Public Health 2021, 18, 3438, doi:10.3390/ijerph18073438. 16.Wingrove, K.; Lawrence, M.A.; McNaughton, S.A. A systematic review of the methods used to assess and report dietary patterns. Front Nutr 2022, 9, 892351, doi:10.3389/fnut.2022.892351. 17.Cespedes, E.M.; Hu, F.B. Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am J Clin Nutr 2015, 101, 899-900, doi:10.3945/ajcn.115.110213. 18.Amoutzopoulos, B.; Steer, T.; Roberts, C.; Cade, J.; Boushey, C.; Collins, C.; Trolle, E.; Boer, E.; Ziauddeen, N.; Rossum, C., et al. Traditional methods v. new technologies – dilemmas for dietary assessment in large-scale nutrition surveys and studies: a report following an International panel discussion at the 9th International Conference on Diet and Activity Methods (ICDAM9), Brisbane, 3 September 2015. J Nutr Sci 2018, 7, doi:10.1017/jns.2018.4. 19.Hu, Y.; Li, M.; Wu, J.; Wang, R.; Mao, D.; Chen, J.; Li, W.; Yang, Y.; Piao, J.; Yang, L., et al. Prevalence and risk factors for anemia in non-pregnant childbearing women from the chinese fifth national health and nutrition survey. Int J Env Res Public Health 2019, 16, 1290, doi:10.3390/ijerph16071290. 20.Suryanarayana, R.; Chandrappa, M.; Santhuram, A.N.; Prathima, S.; Sheela, S.R. Prospective study on prevalence of anemia of pregnant women and its outcome: a community based study. J Family Med Prim Care 2017, 6, 739-743, doi:10.4103/jfmpc.jfmpc_33_17. 21.World Health Organization what is malnutrition? Available online: http://www.who.int/features/qa/malnutrition/en/, doi:Available online: http://www.who.int/features/qa/malnutrition/en/. 22.Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995-2011: a systematic analysis of population-representative data. Lancet Glob Health 2013, 1, e16-25, doi:10.1016/s2214-109x(13)70001-9. 23.Mahamoud, N.K.; Mwambi, B.; Oyet, C.; Segujja, F.; Webbo, F.; Okiria, J.C.; Taremwa, I.M. Prevalence of anemia and its associated socio-demographic factors among pregnant women attending an antenatal care clinic at Kisugu Health Center IV, Makindye Division, Kampala, Uganda. J Blood Med 2020, 11, 13-18, doi:10.2147/jbm.S231262. 24.Sinawangwulan, I.P.; Dewi, Y.L.R.; Wekadigunawan, C.J.J.o.M.; Health, C. Association between socio-demographic, nutrition intake, cultural belief, and incidence of anemia in pregnant women in Karanganyar, Central Java. J Matern Child Health 2018, 3, 128-137. Retrieved from https://thejmch.com/index.php/thejmch/article/view/93. 25.Mayasari, N.R.; Hu, T.-Y.; Chao, J.C.J.; Bai, C.-H.; Chen, Y.C.; Huang, Y.L.; Chang, C.-C.; Wang, F.-F.; Hadi, H.; Nurwanti, E., et al. Associations of the pre-pregnancy weight status with anaemia and the erythropoiesis-related micronutrient status. Public Health Nutr 2021, 24, 6247-6257, doi:10.1017/S1368980021002627. 26.Shah, T.; Khaskheli, M.S.; Ansari, S.; Lakhan, H.; Shaikh, F.; Zardari, A.A.; Warsi, J.; Rind, N.A.; Rind, K.H.; Shar, A.H. Gestational anemia and its effects on neonatal outcome, in the population of Hyderabad, Sindh, Pakistan. Saudi J Biol Sci 2022, 29, 83-87, doi:10.1016/j.sjbs.2021.08.053. 27.Mahayasa, P.D.; Winata, I.G.S.; Setiawan, W.A. Iron deficiency anemia treatment in pregnancy. Eur J Med Health Sci 2022, 4, 36-37, doi:10.24018/ejmed.2022.4.4.1289. 28.Abd Rahman, R.; Idris, I.B.; Isa, Z.M.; Rahman, R.A.; Mahdy, Z.A. The prevalence and risk factors of iron deficiency anemia among pregnant women in Malaysia: a systematic review. Front Nutr 2022, 9, 847693, doi:10.3389/fnut.2022.847693. 29.Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann N Y Acad Sci 2019, 1450, 15-31, doi:10.1111/nyas.14092. 30.Camaschella, C. Iron deficiency. Erratum in:Blood 2019, 133, 30-39. doi: 10.1182/blood-2018-05-815944. 31.Saboor, M.; Zehra, A.; Qamar, K.; Moinuddin. Disorders associated with malabsorption of iron: a critical review. Pak J Med Sci 2015, 31, 1549-1553, doi:10.12669/pjms.316.8125. 32.Ouédraogo, S.; Koura, G.K.; Accrombessi, M.M.; Bodeau-Livinec, F.; Massougbodji, A.; Cot, M. Maternal anemia at first antenatal visit: prevalence and risk factors in a malaria-endemic area in Benin. Am J Trop Med Hyg 2012, 87, 418-424, doi:10.4269/ajtmh.2012.11-0706. 33.Ayensu, J.; Annan, R.; Lutterodt, H.; Edusei, A.; Peng, L.S. Prevalence of anaemia and low intake of dietary nutrients in pregnant women living in rural and urban areas in the Ashanti region of Ghana. PLoS One 2020, 15, e0226026, doi:10.1371/journal.pone.0226026. 34.Gibore, N.S.; Ngowi, A.F.; Munyogwa, M.J.; Ali, M.M. Dietary habits associated with anemia in pregnant women attending antenatal care services. Curr Dev Nutr 2020, 5, 1-8, doi:10.1093/cdn/nzaa178. 35.Zulfiqar, H.; Shah, I.U.; Sheas, M.N.; Ahmed, Z.; Ejaz, U.; Ullah, I.; Saleem, S.; Imran, M.; Hameed, M.; Akbar, B.J.F.S., et al. Dietary association of iron deficiency anemia and related pregnancy outcomes. Food Sci Nutr 2021, 9, 4127-4133, https://doi.org/10.1002/fsn3.2373. 36.Cavalcanti, D.S.; Vasconcelos, P.N.D.; Muniz, V.M.; Santos, N.F.D.; Osório, M.M. Iron intake and its association with iron-deficiency anemia in agricultural workers' families from the Zona da Mata of Pernambuco, Brazil. Rev Nutr 2014, 27, 217-227, doi: https://doi.org/10.1590/1415-52732014000200008. 37.Miller, J.L. Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med 2013, 3, a011866, doi:10.1101/cshperspect.a011866. 38.Oski, F.A.; Stockman, J.A. Anemia due to inadequate iron sources or poor iron utilization. Pediatr Clin North Am 1980, 27, 237-252, doi:https://doi.org/10.1016/S0031-3955(16)33849-4. 39.Cappellini, M.D.; Comin‐Colet, J.; de Francisco, A.; Dignass, A.; Doehner, W.; Lam, C.S.; Macdougall, I.C.; Rogler, G.; Camaschella, C.; Kadir, et al. Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Am J Hematol 2017, 92, 1068-1078, doi: 10.1002/ajh.24820. 40.Nemeth, E.; Ganz, T. Anemia of inflammation. Hematpl Oncol Clin North Am 2014, 28, 671-681, doi:10.1016/j.hoc.2014.04.005. 41.Auerbach, M. Patient education: anemia caused by low iron in adults (beyond the basics). 2021. Retrieved from https://www.uptodate.com/contents/anemia-caused-by-low-iron-in-adults-beyond-the-basics/print?search=Iron (Accessed 231113) 42.Kavle, J.A.; Stoltzfus, R.J.; Witter, F.; Tielsch, J.M.; Khalfan, S.S.; Caulfield, L.E. Association between anaemia during pregnancy and blood loss at and after delivery among women with vaginal births in Pemba Island, Zanzibar, Tanzania. J Health Popul Nutr 2008, 26, 232-240. 43.Frass, K.A. Postpartum hemorrhage is related to the hemoglobin levels at labor: observational study. Alexandria J Med 2015, 51, 333-337, doi: https://doi.org/10.1016/j.ajme.2014.12.002. 44.Garzon, S.; Cacciato, P.M.; Certelli, C.; Salvaggio, C.; Magliarditi, M.; Rizzo, G. Iron deficiency anemia in pregnancy: novel approaches for an old problem. Oman Med J 2020, 35, e166, doi:10.5001/omj.2020.108. 45.Breymann, C.; Auerbach, M. Iron deficiency in gynecology and obstetrics: clinical implications and management. Hematology Am Soc Hematol Educ Program 2017, 2017, 152-159, doi: https://doi.org/10.1182/asheducation-2017.1.152. 46.Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron absorption: factors, limitations, and improvement methods. ACS Omega 2022, 7, 20441-20456, doi:10.1021/acsomega.2c01833. 47.Zijp, I.M.; Korver, O.; Tijburg, L.B. Effect of tea and other dietary factors on iron absorption. Crit Rev Food Sci Nutr 2000, 40, 371-398, doi:10.1080/10408690091189194. 48.Hsieh, T.-H.; Lee, J.J.; Yu, E.W.-R.; Hu, H.-Y.; Lin, S.-Y.; Ho, C.-Y. Association between obesity and education level among the elderly in Taipei, Taiwan between 2013 and 2015: a cross-sectional study. Sci Rep 2020, 10, 20285, doi:10.1038/s41598-020-77306-5. 49.Wen, F.-H.; Lee, C.-F.; Lin, C.-J.; Lin, H.-M. Total gestational weight change and rate of change in pregnant Taiwanese women. Taiwan J Obstet Gynecol 2019, 58, 196-200, doi:https://doi.org/10.1016/j.tjog.2019.01.005. 50.Rahman, M.S.; Mushfiquee, M.; Masud, M.S.; Howlader, T. Association between malnutrition and anemia in under-five children and women of reproductive age: evidence from Bangladesh demographic and health survey 2011. PLoS One 2019, 14, e0219170, doi:10.1371/journal.pone.0219170. 51.Wawer, A.A.; Hodyl, N.A.; Fairweather-Tait, S.; Froessler, B. Are pregnant women who are living with overweight or obesity at greater risk of developing iron deficiency/anaemia? Nutrients 2021, 13, 13051572, doi:10.3390/nu13051572. 52.Jones, A.D.; Zhao, G.; Jiang, Y.P.; Zhou, M.; Xu, G.; Kaciroti, N.; Zhang, Z.; Lozoff, B. Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status. Eur J Clin Nutr 2016, 70, 918-924, doi:10.1038/ejcn.2015.229. 53.Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40-50, doi:10.1182/blood-2018-06-856500. 54.Rappaport, V.J.; Velazquez, M.; Williams, K. Hemoglobinopathies in pregnancy. Obstet Gynecol Clin North Am 2004, 31, 287-317, doi:10.1016/j.ogc.2004.03.006. 55.Kasparek, J.; Burkhardt, T.; Hoesli, I.; Bencaiova, G. Pregnancy outcomes in women with a hemoglobinopathy trait: a multicenter, retrospective study. Arch Gynecol Obstet 2021, 304, 1197-1203, doi:10.1007/s00404-021-06058-y. 56.Peng, C.T.; Liu, S.C.; Peng, Y.C.; Lin, T.H.; Wang, S.J.; Le, C.Y.; Shih, M.C.; Tien, N.; Lu, J.J.; Lin, C.Y. Distribution of thalassemias and associated hemoglobinopathies identified by prenatal diagnosis in Taiwan. Blood cells Mol Dis 2013, 51, 138-141, doi:10.1016/j.bcmd.2013.04.007. 57.Haider, B.A.; Olofin, I.; Wang, M.; Spiegelman, D.; Ezzati, M.; Fawzi, W.W. Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis. BMJ 2013, 346, f3443, doi:10.1136/bmj.f3443. 58.Yuan, X.; Han, X.; Zhou, W.; Long, W.; Wang, H.; Yu, B.; Zhang, B. Association of folate and vitamin B12 imbalance with adverse pregnancy outcomes among 11,549 pregnant women: an observational cohort study. Front Nutr 2022, 9, 947118, doi:10.3389/fnut.2022.947118. 59.Molloy, A.M.; Kirke, P.N.; Brody, L.C.; Scott, J.M.; Mills, J.L. Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr Bull 2008, 29, S101-115, doi:10.1177/15648265080292s114. 60.Helmy, M.; Elkhouly, N.; Ghalab, R. Maternal anemia with pregnancy and its adverse effects. Menoufia Med J 2018, 31, 7-11, doi:10.4103/1110-2098.234258. 61.Institute of medicine (US) committee on nutritional status during pregnancy and lactation. Nutrition during pregnancy: part I weight gain: part II nutrient supplements. Washington (DC): National Academies Press (US); 1990. 5, Total Amount and Pattern of Weight Gain: Physiologic and Maternal Determinants. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK235227/, doi:https://www.ncbi.nlm.nih.gov/books/NBK235227/. 62.Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A. Physiological changes in pregnancy. Cardiovasc J Afr 2016, 27, 89-94, doi:10.5830/cvja-2016-021. 63.Eke, A.C. An update on the physiologic changes during pregnancy and their impact on drug pharmacokinetics and pharmacogenomics. J Basic Clin Physiol Pharmacol 2022, 33, 581-598, doi:10.1515/jbcpp-2021-0312.64. 64.Costantine, M. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol 2014, 5, 65, doi:10.3389/fphar.2014.00065. 65.Motosko, C.C.; Bieber, A.K.; Pomeranz, M.K.; Stein, J.A.; Martires, K.J. Physiologic changes of pregnancy: a review of the literature. Int J Womens Dermatol 2017, 3, 219-224, doi:https://doi.org/10.1016/j.ijwd.2017.09.003. 66.Ross AC, T.C., Yaktine AL, et al. Dietary reference intakes for calcium and vitamin D. Institute of Medicine (US) Committee to Review 2011. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK56070/. 67.Spiro, A.; Buttriss, J.L. Vitamin D: an overview of vitamin D status and intake in Europe. Nutr Bull 2014, 39, 322-350, doi:https://doi.org/10.1111/nbu.12108. 68.Napolitano, L.M. Vitamin D supplementation and hemoglobin: dosing matters in prevention/treatment of anemia. Nutr J 2021, 20, 23, doi:10.1186/s12937-021-00680-x. 69.Sim, J.J.; Lac, P.T.; Liu, I.L.; Meguerditchian, S.O.; Kumar, V.A.; Kujubu, D.A.; Rasgon, S.A. Vitamin D deficiency and anemia: a cross-sectional study. Ann Hematol 2010, 89, 447-452, doi:10.1007/s00277-009-0850-3. 70.Ochogwu, O.L.; Salawu, L.; Owojuyigbe, T.O.; Adedeji, T.A. Vitamin D deficiency and its association with anemia and blood transfusion requirements in Nigerian Adults with sickle cell anemia. Plasmatology 2021, 15, 26348535211051690, doi:10.1177/26348535211051690. 71.Perlstein, T.S.; Pande, R.; Berliner, N.; Vanasse, G.J. Prevalence of 25-hydroxyvitamin D deficiency in subgroups of elderly persons with anemia: association with anemia of inflammation. Blood 2011, 117, 2800-2806, doi:10.1182/blood-2010-09-309708. 72. Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D sources, metabolism, and deficiency: available compounds and guidelines for its treatment. Metabolites 2021, 11, 255, doi:10.3390/metabo11040255. 73. Holick, M.F. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 2004, 79, 362-371, doi:https://doi.org/10.1093/ajcn/79.3.362. 74.Bacchetta, J.; Zaritsky, J.J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Zavala, K.; Nayak, A.; Wesseling-Perry, K.; Westerman, M.; Hollis, B.W. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol 2014, 25, 564-572, doi: 10.1681/ASN.2013040355. 75.Katsumata, S.; Katsumata, R.; Matsumoto, N.; Inoue, H.; Takahashi, N.; Uehara, M. Iron deficiency decreases renal 25-hydroxyvitamin D3-1α-hydroxylase activity and bone formation in rats. BMC Nutr 2016, 2, 33, doi: https://doi.org/10.1186/s40795-016-0072-8. 76. Perwad, F.; Zhang, M.Y.; Tenenhouse, H.S.; Portale, A.A. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1α-hydroxylase expression in vitro. Am J Physiol Renal Physiol 2007, 293, F1577-F1583, doi: https://doi.org/10.1152/ajprenal.00463.2006. 77.Mogire, R.M.; Muriuki, J.M.; Morovat, A.; Mentzer, A.J.; Webb, E.L.; Kimita, W.; Ndungu, F.M.; Macharia, A.W.; Cutland, C.L.; Sirima, S.B., et al. Vitamin D deficiency and its association with iron deficiency in African children. Nutrients 2022, 14, 1372, doi: https://doi.org/10.3390/nu14071372. 78.Smith, E.M.; Alvarez, J.A.; Kearns, M.D.; Hao, L.; Sloan, J.H.; Konrad, R.J.; Ziegler, T.R.; Zughaier, S.M.; Tangpricha, V. High-dose vitamin D3 reduces circulating hepcidin concentrations: a pilot, randomized, double-blind, placebo-controlled trial in healthy adults. Clin Nutr 2017, 36, 980-985, doi: https://doi.org/10.1016/j.clnu.2016.06.015.80. 79. Smith, E.M.; Tangpricha, V. Vitamin D and anemia: insights into an emerging association. Curr Opin in Endocrinol Diabetes Obes 2015, 22, 432-438, doi: 10.1097/MED.0000000000000199. 80.Agoro, R.; Park, M.Y.; Le Henaff, C.; Jankauskas, S.; Gaias, A.; Chen, G.; Mohammadi, M.; Sitara, D. C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 2021, 106, 391-403, doi: https://doi.org/10.3324/haematol.2019.237040. 81.Fisher, A.L.; Nemeth, E. Iron homeostasis during pregnancy. Am J Clin Nutr 2017, 106, 1567S-1574S, doi:https://doi.org/10.3945/ajcn.117.155812. 82.Braithwaite, V.S.; Crozier, S.R.; D’Angelo, S.; Prentice, A.; Cooper, C.; Harvey, N.C.; Jones, K.S.; MAVIDOS Trial Group. The effect of vitamin D supplementation on hepcidin, iron status, and inflammation in pregnant women in the United Kingdom. Nutrients 2019, 11, 190, doi: https://doi.org/10.3390/nu11010190. 83.Basutkar, R.; Eipe, T.; Tsundue, T.; Perumal, D.; Sivasankaran, P. Reduced vitamin D levels and iron deficiency anaemia in pregnant women: an evolving correlation. J Young Pharm 2018, 11, 92-96, doi:10.5530/jyp.2019.11.19. 84.Han, O. Molecular mechanism of intestinal iron absorption. Metallomics 2011, 3, 103-109, doi:10.1039/c0mt00043d. 85.Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: a pooled analysis of 7.9 million participants. Front Nutr 2023, 10, 1070808, doi : https://doi.org/10.3389/fnut.2023.1070808. 86.Jiang, Z.; Pu, R.; Li, N.; Chen, C.; Li, J.; Dai, W.; Wang, Y.; Hu, J.; Zhu, D.; Yu, Q., et al. High prevalence of vitamin D deficiency in Asia: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2023, 63, 3602-3611, doi:10.1080/10408398.2021.1990850. 87.Mendes, M.M.; Gomes, A.P.; Araújo, M.M.; Coelho, A.S.; Carvalho, K.M.; Botelho, P.B. Prevalence of vitamin D deficiency in South America: a systematic review and meta-analysis. Nutr Rev 2023,1290-1309, doi: 10.1093/nutrit/nuad010. 88.Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr 2020, 74, 1498-1513, doi:10.1038/s41430-020-0558-y. 89.Soepnel, L.M.; Mabetha, K.; Draper, C.E.; Silubonde, T.M.; Smuts, C.M.; Pettifor, J.M.; Norris, S.A. A cross-sectional study of the associations between biomarkers of vitamin D, iron status, and hemoglobin in south African women of reproductive age: the healthy life trajectories initiative, South Africa. Curr Dev Nutr 2023, 7, 100072, doi: https://doi.org/10.1016/j.cdnut.2023.100072. 90.Ali, A.M.; Alobaid, A.; Malhis, T.N.; Khattab, A.F. Effect of vitamin D3 supplementation in pregnancy on risk of pre-eclampsia - randomized controlled trial. Clin Nutr 2019, 38, 557-563, doi:10.1016/j.clnu.2018.02.023. 91.Marangoni, F.; Cetin, I.; Verduci, E.; Canzone, G.; Giovannini, M.; Scollo, P.; Corsello, G.; Poli, A. Maternal diet and nutrient requirements in pregnancy and breastfeeding. an Italian consensus document. Nutrients 2016, 8, 629, doi: https://doi.org/10.3390/nu8100629. 92.Picciano, M.F. Pregnancy and lactation: physiological adjustments, nutritional requirements and the role of dietary supplements. J Nutr 2003, 133, 1997S-2002S, doi:10.1093/jn/133.6.1997S. 93.Hollis, B.W. Vitamin D requirement during pregnancy and lactation. J Bone Miner Res 2007, 22, V39-V44, doi: 10.1359/jbmr.07s215. 94.Ministry of Health and Welfare National dietary nutrient reference intake. Retrieved from: https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1050&pid=13117. 95.Beck, K.L.; Conlon, C.A.; Kruger, R.; Coad, J. Dietary determinants of and possible solutions to iron deficiency for young women living in industrialized Countries: a review. Nutrients 2014, 6, 3747-3776, doi:10.3390/nu6093747. 96.Ngimbudzi, E.B.; Massawe, S.N.; Sunguya, B.F. The burden of anemia in pregnancy among women attending the antenatal clinics in Mkuranga District, Tanzania. Front Public Health 2021, 9, 724562, doi:10.3389/fpubh.2021.724562. 97.Eweis, M.; Farid, E.Z.; El-Malky, N.; Abdel-Rasheed, M.; Salem, S.; Shawky, S. Prevalence and determinants of anemia during the third trimester of pregnancy. Clin Nutr ESPEN 2021, 44, 194-199, doi: https://doi.org/10.1016/j.clnesp.2021.06.023. 98.Malhotra, U.; Roy, M.; Sontakke, M.; Choudhary, P. A recent paradigm on iron absorption, prevalence, and emerging dietary approaches to eradicate iron deficiency. Food Bioengg 2023, 2, 53-63, doi:https://doi.org/10.1002/fbe2.12042. 99.Hu, F.B. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 2002, 13, 3-9, doi: doi: 10.1097/00041433-200202000-00002. 100.Panagiotakos, D. α-priori versus α-posterior methods in dietary pattern analysis: a review in nutrition epidemiology. Nutr Bull 2008, 33, 311-315, doi:https://doi.org/10.1111/j.1467-3010.2008.00731.x. 101. Vermeulen, E.; Stronks, K.; Visser, M.; Brouwer, I.A.; Snijder, M.B.; Mocking, R.J.T.; Derks, E.M.; Schene, A.H.; Nicolaou, M. Dietary pattern derived by reduced rank regression and depressive symptoms in a multi-ethnic population: the HELIUS study. Eur J Clin Nutr 2017, 71, 987-994, doi:10.1038/ejcn.2017.61. 102.Kant, A.K. Dietary patterns and health outcomes. J Am Diet Assoc 2004, 104, 615-635, doi:https://doi.org/10.1016/j.jada.2004.01.010. 103.Sauvageot, N.; Leite, S.; Alkerwi, A.a.; Sisanni, L.; Zannad, F.; Saverio, S.; Donneau, A.-F.; Albert, A.; Guillaume, M. Association of empirically derived dietary patterns with cardiovascular risk factors: a comparison of PCA and RRR methods. PLoS One 2016, 11, e0161298, doi: https://doi.org/10.1371/journal.pone.0161298. 104.Jolliffe, I.T.; Cadima, J. Principal component analysis: a review and recent developments. Philos Trans Royal Soc A 2016, 374, 20150202, doi:doi:10.1098/rsta.2015.0202. 105.Mishra, S. P.; Sarkar, U.; Taraphder, S.; Datta, S.; Swain, D.; Saikhom, R.; Panda, S.; Laishram, M. Principal component analysis. Int J Livest Res 2017, 7, 60-78, doi:10.5455/ijlr.20170415115235. 106.Moreira, J.; Silva, B.; Faria, H.; Santos, R.; Sousa, A.S.P. Systematic review on the applicability of principal component analysis for the study of movement in the older adult population. Sensors 2023, 23, 205, doi: https://doi.org/10.3390/s23010205. 107.Karamizadeh, S.; Abdullah, S.; Manaf, A.; Zamani, M.; Hooman, A. An overview of principal component analysis. J Sig Inf Proc 2013, 4, doi:10.4236/jsip.2013.43B031. 108.Reinsel, G. Reduced-rank regression. In book: encyclopedia of statistical sciences 2006; 10.1002/0471667196.ess5040.pub2. 109.Weikert, C.; Schulze, M.B. Evaluating dietary patterns: the role of reduced rank regression. Curr Opin Clin Nutr Metab Care 2016, 19, 341-346, doi:10.1097/mco.0000000000000308. 110.Li, Y.; Yatsuya, H.; Wang, C.; Uemura, M.; Matsunaga, M.; He, Y.; Khine, M.; Ota, A. Dietary patterns derived from reduced rank regression are associated with the 5-year occurrence of metabolic syndrome: Aichi workers’ cohort study. Nutrients 2022, 14, 3019, doi: https://doi.org/10.3390/nu14153019. 111.Duan, M.-J.; Dekker, L.H.; Carrero, J.-J.; Navis, G. Blood lipids-related dietary patterns derived from reduced rank regression are associated with incident type 2 diabetes. Clin Nutr 2021, 40, 4712-4719, doi: https://doi.org/10.1016/j.clnu.2021.04.046. 112.Piernas, C.; Gao, M.; Jebb, S.A. Dietary patterns derived by reduced rank regression and non-communicable disease risk. Proc Nutr Soc 2022, 29, 1-8, doi:10.1017/S0029665122001094. 113.Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A review of statistical methods for dietary pattern analysis. Nutr J 2021, 20, doi:10.1186/s12937-021-00692-7. 114.Sinaga, K.P.; Yang, M.-S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716-80727, doi: 10.1109/ACCESS.2020.2988796 . 115.Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S. Top 10 algorithms in data mining. Knowl Inf Syst 2008, 14, 1-37, doi: https://doi.org/10.1007/s10115-007-0114-2. 116.Noura, Q.; Khaoula El, K.; Nada, O.; Karima El, R.; Nour El Houda, C. Cluster analysis of dietary patterns associated with colorectal cancer derived from a Moroccan case–control study. BMJ Health Care Inform 2023, 30, e100710, doi:10.1136/bmjhci-2022-100710. 117.Wu, J.; Wu, J. Cluster analysis and K-means clustering: an introduction. In: Advances in K-means Clustering. Springer Theses. Springer, Berlin, Heidelberg. 2012, 1-16, doi: https://doi.org/10.1007/978-3-642-29807-3_. 118.Singh, K.; Malik, D.; Sharma, N. Evolving limitations in K-means algorithm in data mining and their removal. Internat J Comput Eng Manag 2011, 12, 105-109, available from: https://www.semanticscholar.org/paper/Evolving-limitations-in-K-means-algorithm-in-data-Singh-Malik/25fb009c04e0ae5b36dff66366ee63296a5bd568#citing-papers. 119.Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inf Sci 2023, 622, 178-210, doi:https://doi.org/10.1016/j.ins.2022.11.139. 120.Yuan, C.; Yang, H. Research on k-value selection method of k-means clustering algorithm. JMultidicip Sci 2019, 2, 226-235, doi: https://doi.org/10.3390/j2020016. 121.Holland, E.; Moore Simas, T.A.; Doyle Curiale, D.K.; Liao, X.; Waring, M.E. Self-reported pre-pregnancy weight versus weight measured at first prenatal visit: effects on categorization of pre-pregnancy body mass index. Matern Child Health J 2013, 17, 1872-1878, doi:10.1007/s10995-012-1210-9. 122.Tsai, I.H.; Chen, C.-P.; Sun, F.-J.; Wu, C.-H.; Yeh, S.-L. Associations of the pre-pregnancy body mass index and gestational weight gain with pregnancy outcomes in Taiwanese women. Asia Pac J Clin Nutr 2012, 21, 82-87. Retrieved from https://apjcn.nhri.org.tw/. 123.Lin, Y.-C.; Yen, L.-L.; Chen, S.-Y.; Kao, M.-D.; Tzeng, M.-S.; Huang, P.-C.; Pan, W.-H. Prevalence of overweight and obesity and its associated factors: findings from national nutrition and health survey in Taiwan, 1993–1996. Prev Med 2003, 37, 233-241, doi: https://doi.org/10.1016/S0091-7435(03)00119-1. 124.Zang, J.; Luo, B.; Chang, S.; Jin, S.; Shan, C.; Ma, L.; Zhu, Z.; Guo, C.; Zou, S.; Jia, X., et al. Validity and reliability of a food frequency questionnaire for assessing dietary intake among Shanghai residents. Nutr J 2019, 18, 30, doi:10.1186/s12937-019-0454-2. 125.Das, A.; Bai, C.-H.; Chang, J.-S.; Huang, Y.-L.; Wang, F.-F.; Chen, Y.-C.; Chao, J.C.-J. Associations of dietary patterns and vitamin D levels with iron status in pregnant women: a cross-sectional study in Taiwan. Nutrients 2023, 15, 1805, doi: https://doi.org/10.3390/nu15081805. 126.Kurniawan, A.L.; Hsu, C.Y.; Lee, H.A.; Rau, H.H.; Paramastri, R.; Syauqy, A.; Chao, J.C. Comparing two methods for deriving dietary patterns associated with risk of metabolic syndrome among middle-aged and elderly Taiwanese adults with impaired kidney function. BMC Med Res Methodol 2020, 20, 255, doi:10.1186/s12874-020-01142-4. 127.Pfeiffer, C.M.; Looker, A.C. Laboratory methodologies for indicators of iron status: strengths, limitations, and analytical challenges. Am J Clin Nutr 2017, 106, 1606S-1614S, doi:https://doi.org/10.3945/ajcn.117.155887. 128.Yamanishi, H.; Iyama, S.; Yamaguchi, Y.; Kanakura, Y.; Iwatani, Y. Total iron-binding capacity calculated from serum transferrin concentration or serum iron concentration and unsaturated iron-binding capacity. Clin Chem 2003, 49, 175-178, doi:10.1373/49.1.175. 129.Shane, B. Folate status assessment history: implications for measurement of biomarkers in NHANES. Am J Clin Nutr 2011, 94, 337s-342s, doi:10.3945/ajcn.111.013367. 130.Karmi, O.; Zayed, A.; Baraghethi, S.; Qadi, M.; Ghanem, R. Measurement of vitamin B 12 concentration: a review on available methods. The IIOAB J 2011, 2, 23-32. Retrieved from https://www.iioab.org/. 131.Abdel-Wareth, L.; Haq, A.; Turner, A.; Khan, S.; Salem, A.; Mustafa, F.; Hussein, N.; Pallinalakam, F.; Grundy, L.; Patras, G., et al. Total vitamin D assay comparison of the roche diagnostics “vitamin D total” electrochemiluminescence protein binding assay with the chromsystems HPLC method in a population with both D2 and D3 forms of vitamin D. Nutrients 2013, 5, 971-980. 132.Health Promotion Administration, Ministry of Health and Welfare. Taiwan’s Obesity Prevention and Management Strategy; HealthPromotion Administration, Ministry of Health and Welfare: Taipei, Taiwan, 2018; p. 55.Retrieved from https://www.hpa.gov.tw/EngPages/Index.aspx 133.Bellanger, R.A. Iron deficiency anemia in women. US Pharm 2010, 35, 50-58.Retrived from https://www.uspharmacist.com/article/iron-deficiency-anemia-in-women 134.Sukla, S.K.; Mohanty, P.K.; Patel, S.; Das, K.; Hiregoudar, M.; Soren, U.K.; Meher, S. Iron profile of pregnant sickle cell anemia patients in Odisha, India. Hematol Transfus Cell Ther 2023, 45, S11-S17, doi:https://doi.org/10.1016/j.htct.2021.06.012. 135.Word Health Organization. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. Retrieved from https://www.who.int/publications/i/item/9789240000124. 136.World Health Organization. Archived: iron deficiency anemia: assessment, prevention and control; World Health Organization:Geneva, Switzerland, 2001; pp. 47–62. 137.Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2011, 96, 1911-1930, doi:10.1210/jc.2011-0385. 138.Kurniawan, A.L.; Hsu, C.-Y.; Rau, H.-H.; Lin, L.-Y.; Chao, J.C.J. Dietary patterns in relation to testosterone levels and severity of impaired kidney function among middle-aged and elderly men in Taiwan: a cross-sectional study. Nutr J 2019, 18, 42, doi:10.1186/s12937-019-0467-x. 139.Lima, T.P.F.; Sena, G.R.; Neves, C.S.; Vidal, S.A.; Lima, J.T.O.; Mello, M.J.G.; Silva, F.A.d.O.L.d.F. Previsão de óbito e importância de características clínicas em idosos com COVID-19 utilizando o Algoritmo Random Forest. Rev Bras Saude Mater Infant 2021, 21, 445-451, doi:10.1590/1806-9304202100S200007. 140.Judistiani, R.T.D.; Gumilang, L.; Nirmala, S.A.; Irianti, S.; Wirhana, D.; Permana, I.; Sofjan, L.; Duhita, H.; Tambunan, L.A.; Gurnadi, J.I., et al. Association of colecalciferol, ferritin, and anemia among pregnant women: result from cohort study on vitamin D status and its impact during pregnancy and childhood in Indonesia. Anemia 2018, 2018, 2047981, doi:10.1155/2018/2047981. 141.Perzia, B.M.; Ying, G.S.; Dunaief, J.L.; Dunaief, D.M. Reduction in ferritin concentrations among patients consuming a dark-green leafy vegetable-rich, low inflammatory foods everyday (life) diet. Curr Dev Nutr 2022, 6, nzac095, doi:10.1093/cdn/nzac095. 142.Ma, Q.; Kim, E.Y.; Lindsay, E.A.; Han, O. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells. J Food Sci 2011, 76, H143-150, doi:10.1111/j.1750-3841.2011.02184.x. 143.Koebnick, C.; Heins, U.A.; Hoffmann, I.; Dagnelie, P.C.; Leitzmann, C. Folate status during pregnancy in women is improved by long-term high vegetable intake compared with the average Western Diet. J Nutr 2001, 131, 733-739, doi:https://doi.org/10.1093/jn/131.3.733. 144.Specker, B.L.; Tsang, R.C.; Ho, M.; Miller, D. Effect of vegetarian diet on serum 1,25-dihydroxyvitamin D concentrations during lactation. Obstet Gynecol 1987, 70, 870-874. Retrieved from https://pubmed.ncbi.nlm.nih.gov/3500439/. 145.Jackson, J.; Williams, R.; McEvoy, M.; MacDonald-Wicks, L.; Patterson, A. Is higher consumption of animal flesh foods associated with better iron status among adults in developed Countries? a systematic review. Nutrients 2016, 8, 89, doi: https://doi.org/10.3390/nu8020089. 146.Tuntipopipat, S.; Zeder, C.; Siriprapa, P.; Charoenkiatkul, S. Inhibitory effects of spices and herbs on iron availability. Intl J Food Sci Nutr 2009, 60, 43-55, doi:10.1080/09637480802084844. 147.Gille, D.; Schmid, A. Vitamin B12 in meat and dairy products. Nutr Rev 2015, 73, 106-115, doi:10.1093/nutrit/nuu011. 148.Paula, W.O.; Gonçalves, V.S.S.; Patriota, E.S.O.; Franceschini, S.C.C.; Pizato, N. Impact of ultra-processed food consumption on quality of diet among Brazilian pregnant women assisted in primary health care. Int J Environ Res Public Health 2023, 20, 1015, doi: https://doi.org/10.3390/ijerph20021015. 149.Cifelli, C.J.; Agarwal, S.; Fulgoni III, V.L. Association between intake of total dairy and individual dairy foods and markers of folate, vitamin B6 and vitamin B12 status in the U.S. population. Nutrients 2022, 14, 2441, doi: https://doi.org/10.3390/nu14122441. 150.Dasgupta, A.; Saikia, U.K.; Sarma, D. Status of 25(OH)D levels in pregnancy: a study from the north eastern part of India. Indian J Endocrinol Metab 2012, 16, S405-S407, doi: 10.4103/2230-8210.104109 . 151.Huang, Y.-L.; Pham, T.T.M.; Chen, Y.-C.; Chang, J.-S.; Chao, J.C.-J.; Bai, C.-H. Effects of climate, sun exposure, and dietary intake on vitamin D concentrations in pregnant women: a population-based study. Nutrients 2023, 15, 1182, doi: https://doi.org/10.3390/nu15051182. 152.Pagani, A.; Nai, A.; Silvestri, L.; Camaschella, C. Hepcidin and anemia: a tight relationship. Front Physiol 2019, 10, 01294, doi:10.3389/fphys.2019.01294. 153.Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians. Int J Behav Nutr Phys Act 2016, 13, 30, doi:10.1186/s12966-016-0353-2. 154.Lyu, L.C.; Lin, C.F.; Chang, F.H.; Chen, H.F.; Lo, C.C.; Ho, H.F. Meal distribution, relative validity and reproducibility of a meal-based food frequency questionnaire in Taiwan. Asia Pac J Clin Nutr 2007, 16, 766-776. Retrieved from https://apjcn.nhri.org.tw. 155.Thomas, C.E.; Guillet, R.; Queenan, R.A.; Cooper, E.M.; Kent, T.R.; Pressman, E.K.; Vermeylen, F.M.; Roberson, M.S.; O'Brien, K.O. Vitamin D status is inversely associated with anemia and serum erythropoietin during pregnancy. Am J Clin Nutr 2015, 102, 1088-1095, doi:10.3945/ajcn.115.116756. 156.Ochoa, J.; Pulido-Moran, M.; Hijano, S.; Kajarabille, N.; Moreno-Fernandez, J.; Díaz-Castro, J. Interactions between omega-3 fatty acids and iron. J Funct Foods 2016, 62, 3002-3022, doi: 10.1080/10408398.2020.1862047. 157.West, A.R.; Oates, P.S. Mechanisms of heme iron absorption: current questions and controversies. World J Gastroenterol 2008, 14, 4101-4110, doi:10.3748/wjg.14.4101. 158.Ogłuszka, M.; Lipiński, P.; Starzyński, R.R. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci 2022, 62, 3002-3022, doi:10.1080/10408398.2020.1862047. 159.Gharekhani, A.; Khatami, M.R.; Dashti-Khavidaki, S.; Razeghi, E.; Abdollahi, A.; Hashemi-Nazari, S.S.; Mansournia, M.A. Potential effects of omega-3 fatty acids on anemia and inflammatory markers in maintenance hemodialysis patients. Daru 2014, 22, 11, doi:10.1186/2008-2231-22-11. 160.Sugirtharan, A.; Ramiah, S. Impact of dietary practices on serum ferritin content of pregnant mothers in the Batticaloa District Sri Lanka. AGRIEAST: J Agric Sci 2020, 14, 44, doi:10.4038/agrieast.v14i1.84. 161.Lamberg-Allardt, C. Vitamin D in foods and as supplements. Prog Biophys Mol Biol 2006, 92, 33-38, doi:10.1016/j.pbiomolbio.2006.02.017. 162.Lima, M.S.; Pereira, M.; Castro, C.T.; Santos, D.B. Vitamin D deficiency and anemia in pregnant women: a systematic review and meta-analysis. Nutr Rev 2022, 80, 428-438, doi:10.1093/nutrit/nuab114. 163.O’Callaghan, K.; Tariq, U.; Gernand, A.; Tinajero, M.; Onoyovwi, A.; Zlotkin, S.; Al Mahmud, A.; Ahmed, T.; Keya, F.; Roth, D. Effect of maternal vitamin D supplementation on iron status during pregnancy. Curr Dev Nutr 2020, 4, 4141054, doi: 10.1093/cdn/nzaa054_126. 164.Silva, V.C.; Gorgulho, B.; Marchioni, D.M.; Araujo, T.A.d.; Santos, I.d.S.; Lotufo, P.A.; Benseñor, I.M. Clustering analysis and machine learning algorithms in the prediction of dietary patterns: cross‐sectional results of the Brazilian Longitudinal Study of Adult Health (ELSA‐Brasil). J Hum Nutr Diet 2022, 35, 883-894, doi:10.1111/jhn.12992. 165.Panaretos, D.; Koloverou, E.; Dimopoulos, A.C.; Kouli, G.-M.; Vamvakari, M.; Tzavelas, G.; Pitsavos, C.; Panagiotakos, D.B. A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2002–2012): the ATTICA study. Br J Nutr 2018, 120, 326-334, doi:10.1017/S0007114518001150. 166.Schmid, A.; Walther, B. Natural vitamin D content in animal products. Adv Nutr 2013, 4, 453-462, doi: 10.3945/an.113.003780. 167.Detopoulou, P.; Papadopoulou, S.K.; Voulgaridou, G.; Dedes, V.; Tsoumana, D.; Gioxari, A.; Gerostergios, G.; Detopoulou, M.; Panoutsopoulos, G.I. Ketogenic diet and vitamin D metabolism: a review of evidence. Metabolites 2022, 12, 1288, doi:10.3390/metabo12121288. 168.O'Callaghan, K.M.; Qamar, H.; Gernand, A.D.; Onoyovwi, A.; Zlotkin, S.; Mahmud, A.A.; Ahmed, T.; Keya, F.K.; Roth, D.E. Maternal prenatal, with or without postpartum, vitamin D3 supplementation does not improve maternal iron status at delivery or infant iron status at 6 months of age: secondary analysis of a randomised controlled trial. BMJ Nutr Prev Health 2023, 6, 282, doi:10.1136/bmjnph-2023-000758. 169.Madar, A.A.; Stene, L.C.; Meyer, H.E.; Brekke, M.; Lagerløv, P.; Knutsen, K.V. Effect of vitamin D3 supplementation on iron status: a randomized, double-blind, placebo-controlled trial among ethnic minorities living in Norway. Nutr J 2015, 15, 1-10, doi:10.1186/s12937-016-0192-7. 170.Hitesh, T.; Khatuja, R.; Agrawal, P.; Dhamnetiya, D.; Jha, R.P.; Renjhen, P. Unlocking the mystery of the role of vitamin D in iron deficiency anemia in antenatal women: a case control study in a tertiary care hospital in New Delhi. BMC Pregnancy Childbirth 2023, 23, 749, doi:10.1186/s12884-023-06047-w. 171.Boland, M.; Bronlund, J. eNutrition-the next dimension for eHealth? Trends Food Sci Technol 2019, 91, 634-639, doi:10.1016/j.tifs.2019.08.00. 172.Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A Review of mushrooms as a potential source of dietary vitamin D. Nutrients 2018, 10, doi:10.3390/nu10101498. 173.Tamama, K. Potential benefits of dietary seaweeds as protection against COVID-19. Nutr Rev 2021, 79, 814-823, doi:10.1093/nutrit/nuaa126. 174.Batis, C.; Mendez, M.A.; Gordon-Larsen, P.; Sotres-Alvarez, D.; Adair, L.; Popkin, B. Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults. Public Health Nutr 2016, 19, 195-203, doi:10.1017/s1368980014003103. 175.Behera, S.S.; El Sheikha, A.F.; Hammami, R.; Kumar, A. Traditionally fermented pickles: how the microbial diversity associated with their nutritional and health benefits? J Funct Foods 2020, 70, 103971, doi:https://doi.org/10.1016/j.jff.2020.103971. 176.Faruqi A, M.S. Iron Binding Capacity. [Updated 2023 Jan 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559119/. 177.Raza, N.; Sarwar, I.; Munazza, B.; Ayub, M.; Suleman, M. Assessment of iron deficiency in pregnant women by determining iron status. J Ayub Med Coll Abbottabad 2011, 23, 36-40.
|