|
■Bandini A, Smaoui S, Steele CM. Automated pharyngeal phase detection and bolus localization in videofluoroscopic swallowing study: Killing two birds with one stone? Comput Methods Programs Biomed. 2022 Oct;225:107058. doi: 10.1016/j.cmpb.2022.107058. Epub 2022 Aug 4. PMID: 35961072; PMCID: PMC9983708. ■Kim JK, Choo YJ, Choi GS, Shin H, Chang MC, Park D. Deep Learning Analysis to Automatically Detect the Presence of Penetration or Aspiration in Videofluoroscopic Swallowing Study. J Korean Med Sci. 2022;37(6):e42. Published 2022 Feb 14. doi:10.3346/jkms.2022.37.e42 ■Lee SJ, Ko JY, Kim HI, Choi S-I. Automatic Detection of Airway Invasion from Videofluoroscopy via Deep Learning Technology. Applied Sciences. 2020; 10(18):6179. https://doi.org/10.3390/app10186179 ■Lee, J.T., Park, E., Hwang, JM. et al. Machine learning analysis to automatically measure response time of pharyngeal swallowing reflex in videofluoroscopic swallowing study. Sci Rep 10, 14735 (2020). https://doi.org/10.1038/s41598-020-71713-4 ■Lee JT, Park E, Jung TD. Automatic Detection of the Pharyngeal Phase in Raw Videos for the Videofluoroscopic Swallowing Study Using Efficient Data Collection and 3D Convolutional Networks †. Sensors (Basel). 2019;19(18):3873. Published 2019 Sep 7. doi:10.3390/s19183873 ■Martino, R., Foley, N., Bhogal, S., Diamant, N., Speechley, M., & Teasell, R. (2005). Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke, 36(12), 2756–2763. ■DePippo KL, Holas MA, Reding MJ. Validation of the 3-oz Water Swallow Test for Aspiration Following Stroke. Arch Neurol. 1992;49(12):1259–1261. doi:10.1001/archneur.1992.00530360057018 ■Suiter, D. M., & Leder, S. B. (2008). Clinical utility of the 3-ounce water swallow test. Dysphagia, 23(3), 244–250. https://doi.org/10.1007/s00455-007-9127-y ■Seo, Z. W., Min, J. H., Huh, S., Shin, Y. I., Ko, H. Y., & Ko, S. H. (2021). Prevalence and Severity of Dysphagia Using Videofluoroscopic Swallowing Study in Patients with Aspiration Pneumonia. Lung, 199(1), 55–61. https://doi.org/10.1007/s00408-020-00413-7 ■Garon, B. R., Sierzant, T., & Ormiston, C. (2009). Silent aspiration: results of 2,000 video fluoroscopic evaluations. The Journal of neuroscience nursing : journal of the American Association of Neuroscience Nurses, 41(4), 178–187. ■Smith, C. H., Logemann, J. A., Colangelo, L. A., Rademaker, A. W., & Pauloski, B. R. (1999). Incidence and patient characteristics associated with silent aspiration in the acute care setting. Dysphagia, 14(1), 1–7. https://doi.org/10.1007/PL00009579 ■Panara K, Ramezanpour Ahangar E, Padalia D. Physiology, Swallowing. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541071/ ■Chilukuri P, Odufalu F, Hachem C. Dysphagia. Mo Med. 2018 May-Jun;115(3):206-210. PMID: 30228723; PMCID: PMC6140149. ■O'Donoghue S, Bagnall A. Videofluoroscopic evaluation in the assessment of swallowing disorders in paediatric and adult populations. Folia Phoniatr Logop. 1999 Jul-Oct;51(4-5):158-71. doi: 10.1159/000021494. PMID: 10450023. ■Vansant, M.B., Parker, L.A., McWhorter, A.J. et al. Predicting Swallowing Outcomes from Objective Videofluoroscopic Timing and Displacement Measures in Head and Neck Cancer Patients. Dysphagia 35, 853–863 (2020). https://doi.org/10.1007/s00455-020-10091-5 ■Hutcheson KA, Barrow MP, Barringer DA, Knott JK, Lin HY, Weber RS, Fuller CD, Lai SY, Alvarez CP, Raut J, Lazarus CL, May A, Patterson J, Roe JW, Starmer HM, Lewin JS. Dynamic Imaging Grade of Swallowing Toxicity (DIGEST): Scale development and validation. Cancer. 2017 Jan 1;123(1):62-70. doi: 10.1002/cncr.30283. Epub 2016 Aug 26. PMID: 27564246; PMCID: PMC5161634. ■Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV). ■Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Advances in Neural Information Processing Systems (NIPS). ■He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV). ■Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). ■Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems (NIPS). ■Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). ■Chien, Chun-Tse, Ju, Rui-Yang, Chou, Kuang-Yi, & Chiang, Jen-Shiun. (2024). YOLOv9 for Fracture Detection in Pediatric Wrist Trauma X-ray Images. 10.22541/au.171490309.99649889/v1. ■Algan, G., & Ulusoy, I. (2021). Image classification with deep learning in the presence of noisy labels: A survey. Pattern Recognition, 109, 107319. ■Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324. ■Hu J, Yan C, Liu X, Li Z, Ren C, Zhang J, Peng D, Yang Y. An integrated classification model for incremental learning. Multimed Tools Appl. 2021;80(11):17275-17290. doi: 10.1007/s11042-020-10070-w. Epub 2020 Oct 21. PMID: 33106746; PMCID: PMC7577649. ■Polikar, R., Upda, L., Upda, S. S., & Honavar, V. (2001). Learn++: An incremental learning algorithm for supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 31(4), 497-508. ■Liu X, Shih HA, Xing F, Santarnecchi E, El Fakhri G, Woo J. Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI. Med Image Comput Comput Assist Interv. 2023 Oct;14221:46-56. doi: 10.1007/978-3-031-43895-0_5. Epub 2023 Oct 1. PMID: 38665992; PMCID: PMC11045038. ■Qazi, Mohammad & Hashmi, Anees & Sanjeev, Santosh & Almakky, Ibrahim & Saeed, Numan & Yaqub, Mohammad. (2024). Continual Learning in Medical Imaging from Theory to Practice: A Survey and Practical Analysis. ■Pengbo Liu, Xia Wang, Mengsi Fan, Hongli Pan, Minmin Yin, Xiaohong Zhu, Dandan Du, Xiaoying Zhao, Li Xiao, Lian Ding, et al. Learning incrementally to segment multiple organs in a ct image. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 714–724. Springer, 2022. ■Ana C Morgado, Catarina Andrade, Luís F Teixeira, and Maria João M Vasconcelos. Incremental learning for dermatological imaging modality classification. Journal of Imaging, 7(9):180, 2021. ■Shikhar Srivastava, Mohammad Yaqub, Karthik Nandakumar, Zongyuan Ge, and Dwarikanath Mahapatra. Continual domain incremental learning for chest x-ray classification in low-resource clinical settings. In MICCAI Workshop on Domain Adaptation and Representation Transfer, pages 226–238. Springer, 2021. ■Luo Y, Yin L, Bai W, Mao K. An Appraisal of Incremental Learning Methods. Entropy (Basel). 2020 Oct 22;22(11):1190. doi: 10.3390/e22111190. PMID: 33286958; PMCID: PMC7712976.
|