|
參考文獻
Ako, M., Kawara, T., Uchida, S., Miyazaki, S., Nishihara, K., Mukai, J., . . . Okubo, Y. (2003). Correlation between electroencephalography and heart rate variability during sleep. Psychiatry and clinical neurosciences, 57(1), 59-65. Aldredge, J. L., & Welch, A. J. (1973). Variations of heart rate during sleep as a function of the sleep cycle. Electroencephalography and Clinical Neurophysiology, 35(2), 193-198. Bakker, J. P., Ross, M., Vasko, R., Cerny, A., Fonseca, P., Jasko, J., . . . Anderer, P. (2021). Estimating sleep stages using cardiorespiratory signals: validation of a novel algorithm across a wide range of sleep-disordered breathing severity. Journal of Clinical Sleep Medicine, 17(7), 1343-1354. Bobra, N. P., Wang, Z., Zhang, W., & Luo, A. (2013). A high-quality, low-energy, small-size system-on-chip (soc) solution enabling ECG mobile applications. Paper presented at the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society. Born, J., & Wilhelm, I. (2012). System consolidation of memory during sleep. Psychological research, 76, 192-203. Cénat, J. M., Blais-Rochette, C., Kokou-Kpolou, C. K., Noorishad, P.-G., Mukunzi, J. N., McIntee, S.-E., . . . Labelle, P. R. (2021). Prevalence of symptoms of depression, anxiety, insomnia, posttraumatic stress disorder, and psychological distress among populations affected by the COVID-19 pandemic: A systematic review and meta-analysis. Psychiatry research, 295, 113599. Chaudhuri, S., Pawar, T. D., Duttagupta, S., Chaudhuri, S., Pawar, T. D., & Duttagupta, S. (2009). Review of ECG Analysis. Ambulation Analysis in Wearable ECG, 15-26. Chi, D.-J., & Chu, C.-C. (2021). Artificial intelligence in corporate sustainability: Using LSTM and GRU for going concern prediction. Sustainability, 13(21), 11631. Herzig, D., Eser, P., Omlin, X., Riener, R., Wilhelm, M., & Achermann, P. (2018). Reproducibility of heart rate variability is parameter and sleep stage dependent. Frontiers in physiology, 8, 1100. Holgado-Cuadrado, R., Plaza-Seco, C., Lovisolo, L., & Blanco-Velasco, M. (2023). Characterization of noise in long-term ECG monitoring with machine learning based on clinical criteria. Medical & Biological Engineering & Computing, 61(9), 2227-2240. Huyett, P., Siegel, N., & Bhattacharyya, N. (2021). Prevalence of sleep disorders and association with mortality: results from the NHANES 2009–2010. The Laryngoscope, 131(3), 686-689. Iber, C. (2007). The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification. (No Title). Jurysta, F., Van De Borne, P., Migeotte, P.-F., Dumont, M., Lanquart, J.-P., Degaute, J.-P., & Linkowski, P. (2003). A study of the dynamic interactions between sleep EEG and heart rate variability in healthy young men. Clinical neurophysiology, 114(11), 2146-2155. Kuo, C.-F., Tsai, C.-Y., Cheng, W.-H., Hs, W.-H., Majumdar, A., Stettler, M., . . . Tseng, C.-H. (2023). Machine learning approaches for predicting sleep arousal response based on heart rate variability, oxygen saturation, and body profiles. Digital Health, 9, 20552076231205744. Léger, D., Debellemaniere, E., Rabat, A., Bayon, V., Benchenane, K., & Chennaoui, M. (2018). Slow-wave sleep: from the cell to the clinic. Sleep medicine reviews, 41, 113-132. Long, X., Fonseca, P., Aarts, R. M., Haakma, R., Rolink, J., & Leonhardt, S. (2015). Detection of nocturnal slow wave sleep based on cardiorespiratory activity in healthy adults. IEEE Journal of Biomedical and Health Informatics, 21(1), 123-133. Mensen, A., Zhang, Z., Qi, M., & Khatami, R. (2016). The occurrence of individual slow waves in sleep is predicted by heart rate. Scientific Reports, 6(1), 29671. Merrigan, J. M., Buysse, D. J., Bird, J. C., & Livingston, E. H. (2013). JAMA patient page. Insomnia. Jama, 309(7), 733. Nagarkoti, S. K., Singh, B., & Kumar, M. (2012). An algorithm for fetal heart rate detection using wavelet transform. Paper presented at the 2012 1st International Conference on Recent Advances in Information Technology (RAIT). Nam, B., Bark, B., Lee, J., & Kim, I. Y. (2024). InsightSleepNet: the interpretable and uncertainty-aware deep learning network for sleep staging using continuous Photoplethysmography. BMC Medical Informatics and Decision Making, 24(1), 50. Samann, F., & Schanze, T. (2023). Multiple ECG segments denoising autoencoder model. Biomedical Engineering/Biomedizinische Technik, 68(3), 275-284. Schuurmans, A. A., de Looff, P., Nijhof, K. S., Rosada, C., Scholte, R. H., Popma, A., & Otten, R. (2020). Validity of the Empatica E4 wristband to measure heart rate variability (HRV) parameters: A comparison to electrocardiography (ECG). Journal of medical systems, 44, 1-11. Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in public health, 5, 290215. Shahrbabaki, S. S., Ahmed, B., Penzel, T., & Cvetkovic, D. (2016). Pulse transit time and heart rate variability in sleep staging. Paper presented at the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Shinar, Z., Baharav, A., Dagan, Y., & Akselrod, S. (2001). Automatic detection of slow-wave-sleep using heart rate variability. Paper presented at the Computers in Cardiology 2001. Vol. 28 (Cat. No. 01CH37287). Smagulova, K., & James, A. P. (2019). A survey on LSTM memristive neural network architectures and applications. The European Physical Journal Special Topics, 228(10), 2313-2324. Stein, P. K., & Pu, Y. (2012). Heart rate variability, sleep and sleep disorders. Sleep medicine reviews, 16(1), 47-66. Su, C.-T. (2013). Quality engineering: off-line methods and applications: CRC press. Trinder, J., Kleiman, J., Carrington, M., Smith, S., Breen, S., Tan, N., & Kim, Y. (2001). Autonomic activity during human sleep as a function of time and sleep stage. Journal of sleep research, 10(4), 253-264. Usmankhujaev, S., Ibrokhimov, B., Baydadaev, S., & Kwon, J. (2021). Time series classification with inceptionfcn. Sensors, 22(1), 157. Verma, A. K., Nandakumar, B., Acedillo, K., Yu, Y., Marshall, E., Schneck, D., . . . Howell, M. J. (2024). Slow-wave sleep dysfunction in mild parkinsonism is associated with excessive beta and reduced delta oscillations in motor cortex. Frontiers in Neuroscience, 18, 1338624. Van Gent, P., Farah, H., Van Nes, N., & Van Arem, B. (2019). HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transportation research part F: traffic psychology and behaviour, 66, 368-37 Wang, C., & Holtzman, D. M. (2020). Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology, 45(1), 104-120. Wang, Y., Yi, X., Luo, M., Wang, Z., Qin, L., Hu, X., & Wang, K. (2023). Prediction of outpatients with conjunctivitis in Xinjiang based on LSTM and GRU models. Plos one, 18(9), e0290541.
|