跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:程俊凱
研究生(外文):CHENG, CHUN-KAI
論文名稱:腦部核磁共振影像做為慢性腎臟病併發認知退化障礙的生物標記之研究
論文名稱(外文):Study of Magnetic Resonance Images as Biomarker a Signature for End Stage Renal Disease Associated Cognitive Impairment
指導教授:陳瑞明陳瑞明引用關係
指導教授(外文):CHEN, RUEI-MING
口試委員:陳睿泰侯羿州陳瑞明
口試委員(外文):CHEN, JUI-TAIHOU, YI-CHOUCHEN, RUEI-MING
口試日期:2024-07-10
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:57
中文關鍵詞:核磁共振成像臨床失智評估量表慢性腎臟病末期腎臟病簡易心智量表失智症
外文關鍵詞:Magnetic Resonance ImagingClinical Dementia RatingChronic Kidney DiseaseEnd-Stage Renal DiseaseMini-Mental State ExaminationDementia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在藉由核磁共振影像,探討慢性腎病人腦部結構變化對認知功能退化的影響。許多文獻顯示,ESRD患者的認知障礙風險顯著高於一般人群,需要透過洗腎來排除體內的尿毒素。隨著腎功能的衰退,可能對腦部健康產生不利影響。可藉由此差異性了解兩者間腦部結構變化與認知功能之間的關係。本研究對象共49名,分為控制組、ESRD-無認知障礙組(ESRD-NonCI)和ESRD-有認知障礙組(ESRD-CI)。參與者均接受簡易心智量表(MMSE)、臨床失智評估量表(CDR)以及相關的血液檢測。數據分析顯示,控制組與ESRD-NonCI組的MMSE值無顯著差異,而ESRD-CI組的MMSE值顯著低於前兩組(p < 0.05),顯示ESRD患者的認知功能明顯下降。從腦部MRI影像結果顯示ESRD-CI組的腦容積較小,腦室擴大,進一步支持認知障礙與腦部結構變化之間的關聯。血液檢測結果顯示,IS和白蛋白(Alb)的水平在ESRD患者中普遍偏高,這些生化指標可能與認知功能的下降有關。研究結果顯示對ESRD患者進行定期認知評估和腦部監測的重要性。核磁共振影像也提供早期識別認知障礙標記的工具。提供醫療人員及時介入的時機,採取相應措施以改善患者未來的生活質量。這些發現也為未來的研究提供了方向,特別是預防和減緩認知功能退化方面。結論: ESRD患者腦部健康會受到多重因素的影響,包括腎功能衰退所引起的生化變化和腦部結構變化。這一研究不僅為臨床實踐提供了重要參考,可為相關領域的深入研究奠定基礎。希望未來能有更多的研究聚焦於ESRD患者的認知健康,以促進更全面的護理和管理策略。
The study investigates the relationship between brain tissue changes and cognitive function in patients with end-stage renal disease (ESRD). It highlights that ESRD patients are at a higher risk of cognitive impairment compared to the general population. The research involved 49 samples from ESRD patients and a control group, utilizing magnetic resonance imaging (MRI) to analyze brain structure. Participants were categorized into three groups: a control group, an ESRD group without cognitive impairment (ESRD-NonCI), and an ESRD group with cognitive impairment (ESRD-CI). Cognitive assessments were conducted using the Mini-Mental State Examination (MMSE) and the Clinical Dementia Rating Scale (CDR), along with blood tests for biochemical markers like serum urea nitrogen (IS) and albumin (Alb). The results showed no significant difference in MMSE scores between the control and ESRD-NonCI groups, while the ESRD-CI group had significantly lower scores. Additionally, the CDR results indicated a significant cognitive decline in the ESRD-CI group. The study found that higher brain volume ratios correlated with better cognitive function, while the ESRD-CI group exhibited more brain atrophy and enlarged ventricles. In conclusion, the findings suggest that structural brain changes in ESRD patients are linked to cognitive impairments, emphasizing the need for further research and potential interventions to address cognitive decline in this population.
目錄
誌 謝............ i
圖目錄 List of Figure... iv
表目錄 List of Table.... v
縮寫表 ................vi
摘要 ................vii
Abstract ........ix
第一章緒論 ........1
1.1大腦橫切面解剖........1
1.2 3D-slicer ........4
1.3文獻探討 ........5
1.4研究動機與目的 .......9
第二章 材料與方法....... 11
2.1研究對象 .......11
2.2核磁共振影像採集......11
2.3影像分析 ........12
2.4統計分析 ........14
第三章 結果 ........16
3.1研究樣本背景 ........16
3.2樣本血液生化檢驗各分組的差異... 17
3.3樣本認知障礙特性 ........19
3.4神經學生化檢驗(neurologic biomarkers)的各分組差異......20
3.5核磁共振影像的變異與影響 ........................21
3.5.1核磁共振影像之腦組織與腦白質病變(Brain tissue and Leukoarariosis)的變異 21
3.5.2核磁共振影像之腦室(Ventricle)的變異 ........22
3.5.3核磁共振影像之腦軟化(Encephalomalacia)的影響.25
3.5.4核磁共振影像之皮爾生(Pearson)相關係數比較 26
第四章 討論 ........31
第五章 結論 ........36
參考文獻 ................37
表圖 ................42-57

表目錄 List of Table
Table 1 Demographic and Clinical Characteristics of Study groups....... 42
Table 2 Comparison of Biochemical and hematologic parameters among three groups ........................................................................43
Table 3 Cognitive Assessment Scores in ESRD Patients with and without CI 44
Table 4 Comparison in certain brain biomarkers across three groups..... 45
Table 5 Comparison of Brain tissue and Leukoarariosis Volume and Surface Area in ESRD Patients With and Without CI...... ................................46
Table 6 Comparison of Ventricular Volume and Surface Area in Control, ESRD Patients with and without CI........................................... 47
Table 7 Comparison of Encephalomalacia Volume and Surface Area among Control, ESRD without and with CI Groups........................................ 48
Table 8 Pearson correlation association between brain structural characteristics and biological markers among groups.................................... 49
Table 9Pearson correlation association between brain structural characteristics and biomarkers among groups............................................ 50

圖目錄 List of Figure
Fig. 1 3D-Slicer 影像分析步驟:.................. 13
Fig. 2統計分析與作圖:........................... 15
Fig. 3 The Magnetic Resonance Imaging (MRI) on the right-hand side names the tissues........................................ 51
Fig. 4The 3D-slice view of the MRI image displays the parts of the brain. ................................................52
Fig. 5 The axial T2 flair of the MRI image in the 3D slicer view by using segmation...................................... 53
Fig. 6 The levels of Crintine.................. 54
Fig. 7 The Level of Indoxyl.................... 55
Fig. 8 Urea nitrogen (BUN)..................... 56
Fig. 9 The MMSE score.......................... 57




[1].Adams RD and Victor M. Principles of Neurology. McGraw-Hill Education, 2009.
[2].Borden NM, Forseen SE and Stefan C. Imaging Anatomy of the Human Brain: A Comprehensive Atlas Including Adjacent Structures. Demos Medical, 2016.
[3].Drake RL, Vogl AW and Mitchell AWM. Gray's Anatomy For Students. Elsevier Health Sciences, 2019.
[4].Bear MF, Connors BW and Paradiso MA. Neuroscience: Exploring the Brain. Lippincott Williams & Wilkins, 2015.
[5].Kandel ER, Schwartz JH and Jessell TM. Principles of Neural Science. McGraw-Hill, 2000.
[6].Kumar V and Abbas AK. Pathologic Basis of Disease. Elsevier, 2015.
[7].Nussbaum RL and Roberts D. Robbins and Cotran Pathologic Basis of Disease. Elsevier, 2016.
[8].Hachinski VC, Potter P and Merskey H. Leuko-araiosis. Arch Neurol 1987; 44: 21-23. DOI: 10.1001/archneur.1987.00520130013009.
[9].Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689-701. DOI: 10.1016/s1474-4422(10)70104-6.
[10].Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12: 822-838. DOI: 10.1016/s1474-4422(13)70124-8.
[11].Chen Y. Overview-Research Progress of Leukoaraiosis. Journal of Behavioral and Brain Science 2022; 12: 599-626. DOI: doi: 10.4236/jbbs.2022.1211036.
[12].3D Slicer image computing platform, https://www.slicer.org/.
[13].Álvarez-Linera Prado J and Jiménez-Huete A. Neuroimaging in dementia. Clinical-radiological correlation. Radiologia (Engl Ed) 2019; 61: 66-81. 20181025. DOI: 10.1016/j.rx.2018.08.004.
[14].Gaxatte C, Daroux M, Bloch J, et al. Cognitive impairment and chronic kidney disease: which links? Nephrol Ther 2011; 7: 10-17. 20101102. DOI: 10.1016/j.nephro.2010.09.001.
[15].Živanović M, Aracki Trenkić A, Milošević V, et al. The role of magnetic resonance imaging in the diagnosis and prognosis of dementia. Biomol Biomed 2023; 23: 209-224. 20230316. DOI: 10.17305/bjbms.2022.8085.
[16].Boyle PA and Cahn-Weiner D. Assessment and prediction of functional impairment in vascular dementia. Expert Rev Neurother 2004; 4: 109-114. DOI: 10.1586/14737175.4.1.109.
[17].O'Lone E, Connors M, Masson P, et al. Cognition in People With End-Stage Kidney Disease Treated With Hemodialysis: A Systematic Review and Meta-analysis. Am J Kidney Dis 2016; 67: 925-935. 20160223. DOI: 10.1053/j.ajkd.2015.12.028.
[18].Gaxatte C, Daroux M, Bloch J, et al. Troubles cognitifs et insuffisance rénale: quels liens ? Néphrologie & Thérapeutique 2011; 7: 10-17. DOI: https://doi.org/10.1016/j.nephro.2010.09.001.
[19].Chételat G, Desgranges B, Landeau B, et al. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer's disease. Brain 2008; 131: 60-71. 20071205. DOI: 10.1093/brain/awm288.
[20].Asllani I, Habeck C, Scarmeas N, et al. Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer's disease. J Cereb Blood Flow Metab 2008; 28: 725-736. 20071024. DOI: 10.1038/sj.jcbfm.9600570.
[21].Tosun D, Rosen H, Miller BL, et al. MRI patterns of atrophy and hypoperfusion associations across brain regions in frontotemporal dementia. Neuroimage 2012; 59: 2098-2109. 20111020. DOI: 10.1016/j.neuroimage.2011.10.031.
[22].Matsuda H. The role of neuroimaging in mild cognitive impairment. Neuropathology 2007; 27: 570-577. DOI: 10.1111/j.1440-1789.2007.00794.x.
[23].Schneider JS and Kortagere S. Current concepts in treating mild cognitive impairment in Parkinson's disease. Neuropharmacology 2022; 203: 108880. 20211110. DOI: 10.1016/j.neuropharm.2021.108880.
[24].Kotagal V, Langa KM, Plassman BL, et al. Factors associated with cognitive evaluations in the United States. Neurology 2015; 84: 64-71. 20141126. DOI: 10.1212/wnl.0000000000001096.
[25].Amjad H, Roth DL, Sheehan OC, et al. Underdiagnosis of Dementia: an Observational Study of Patterns in Diagnosis and Awareness in US Older Adults. J Gen Intern Med 2018; 33: 1131-1138. 20180305. DOI: 10.1007/s11606-018-4377-y.
[26].Breteler MM, van Amerongen NM, van Swieten JC, et al. Cognitive correlates of ventricular enlargement and cerebral white matter lesions on magnetic resonance imaging. The Rotterdam Study. Stroke 1994; 25: 1109-1115. DOI: 10.1161/01.str.25.6.1109.
[27].Bronge L. Magnetic resonance imaging in dementia. A study of brain white matter changes. Acta Radiol Suppl 2002: 1-32. DOI: 10.1034/j.1600-0455.43.s.428.1.x.
[28].Lockhart SN and DeCarli C. Structural imaging measures of brain aging. Neuropsychol Rev 2014; 24: 271-289. 20140822. DOI: 10.1007/s11065-014-9268-3.
[29].Harper L, Bouwman F, Burton EJ, et al. Patterns of atrophy in pathologically confirmed dementias: a voxelwise analysis. Journal of Neurology, Neurosurgery & Psychiatry 2017; 88: 908. DOI: 10.1136/jnnp-2016-314978.
[30].Oldan JD, Jewells VL, Pieper B, et al. Complete Evaluation of Dementia: PET and MRI Correlation and Diagnosis for the Neuroradiologist. AJNR Am J Neuroradiol 2021; 42: 998-1007. 20210429. DOI: 10.3174/ajnr.A7079.
[31].Harper L, Barkhof F, Fox NC, et al. Using visual rating to diagnose dementia: a critical evaluation of MRI atrophy scales. J Neurol Neurosurg Psychiatry 2015; 86: 1225-1233. 20150414. DOI: 10.1136/jnnp-2014-310090.
[32].Park M and Moon WJ. Structural MR Imaging in the Diagnosis of Alzheimer's Disease and Other Neurodegenerative Dementia: Current Imaging Approach and Future Perspectives. Korean J Radiol 2016; 17: 827-845. 20161031. DOI: 10.3348/kjr.2016.17.6.827.
[33].Scheltens P, Pasquier F, Weerts JGE, et al. Qualitative assessment of cerebral atrophy on MRI: Inter-and-intra-observer reproducibility in dementia and normal aging. European Neurology 1997; 37.
[34].George EK and Reddy PH. Can Healthy Diets, Regular Exercise, and Better Lifestyle Delay the Progression of Dementia in Elderly Individuals? J Alzheimers Dis 2019; 72: S37-s58. DOI: 10.3233/jad-190232.
[35].Hou YC, Chueh TI, Lu KC, et al. The Ratio of Plasma Amyloid-beta 1-42 over Serum Albumin Can Be a Novel Biomarker Signature for Diagnosing End-Stage Renal Disease-Associated Cognitive Impairment. J Alzheimers Dis 2024; 97: 1393-1405. DOI: 10.3233/JAD-230747.
[36].Hou YC, Huang CL, Lu CL, et al. The Role of Plasma Neurofilament Light Protein for Assessing Cognitive Impairment in Patients With End-Stage Renal Disease. Front Aging Neurosci 2021; 13: 657794. 20210528. DOI: 10.3389/fnagi.2021.657794.
[37].GE HealthCare, https://www.gehealthcare.com/.
[38].S. P, B. L, W. S, et al. The NA-MIC Kit: ITK, VTK, Pipelines, Grids and 3D Slicer as an Open Platform for the Medical Image Computing Community. 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006 2006: 698-701. DOI: doi: 10.1109/ISBI.2006.1625012.
[39].Jack CR, Jr., Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010; 9: 119-128. DOI: 10.1016/s1474-4422(09)70299-6.
[40].Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001; 58: 1985-1992. DOI: 10.1001/archneur.58.12.1985.
[41].Filley CM and Fields RD. White matter and cognition: making the connection. J Neurophysiol 2016; 116: 2093-2104. 20160810. DOI: 10.1152/jn.00221.2016.
[42].Guo W and Shi J. White matter hyperintensities volume and cognition: A meta-analysis. Front Aging Neurosci 2022; 14: 949763. 20220901. DOI: 10.3389/fnagi.2022.949763.
[43].Monnig MA, Caprihan A, Yeo RA, et al. Diffusion tensor imaging of white matter networks in individuals with current and remitted alcohol use disorders and comorbid conditions. Psychol Addict Behav 2013; 27: 455-465. 20120220. DOI: 10.1037/a0027168.
[44].Wang J, Zhou Y, He Y, et al. Impact of different white matter hyperintensities patterns on cognition: A cross-sectional and longitudinal study. Neuroimage Clin 2022; 34: 102978. 20220301. DOI: 10.1016/j.nicl.2022.102978.
[45].Sexton CE, Kalu UG, Filippini N, et al. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease. Neurobiology of Aging 2011; 32: 2322.e2325-2322.e2318. DOI: https://doi.org/10.1016/j.neurobiolaging.2010.05.019.
[46].Leifheit-Nestler M and Haffner D. How FGF23 shapes multiple organs in chronic kidney disease. Mol Cell Pediatr 2021; 8: 12. 20210918. DOI: 10.1186/s40348-021-00123-x.
[47].McGrath ER, Himali JJ, Levy D, et al. Circulating fibroblast growth factor 23 levels and incident dementia: The Framingham heart study. PLoS One 2019; 14: e0213321. 20190304. DOI: 10.1371/journal.pone.0213321.
[48].Yamada S, Tsuruya K, Taniguchi M, et al. Association Between Serum Phosphate Levels and Stroke Risk in Patients Undergoing Hemodialysis: The Q-Cohort Study. Stroke 2016; 47: 2189-2196. 20160809. DOI: 10.1161/strokeaha.116.013195.
[49].Sobański M, Zacharzewska-Gondek A, Waliszewska-Prosół M, et al. A Review of Neuroimaging in Rare Neurodegenerative Diseases. Dement Geriatr Cogn Disord 2020; 49: 544-556. 20210128. DOI: 10.1159/000512543.
[50].Bottino CM, Castro CC, Gomes RL, et al. Volumetric MRI measurements can differentiate Alzheimer's disease, mild cognitive impairment, and normal aging. Int Psychogeriatr 2002; 14: 59-72. DOI: 10.1017/s1041610202008281.
[51].Ma C, Tian F, Ma M-g, et al. Preferentially Disrupted Core Hubs Within the Default-Mode Network in Patients With End-Stage Renal Disease: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurol Sec Applied Neuroimaging 2020; 11.
[52].Park BS, Kim SE, Lee HJ, et al. Alterations in Structural and Functional Connectivities in Patients with End-Stage Renal Disease. J Clin Neurol 2020; 16: 390-400. DOI: 10.3988/jcn.2020.16.3.390.
[53].Smit AB, Syed NI, Schaap D, et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 2001; 411: 261-268. DOI: 10.1038/35077000.



電子全文 電子全文(網際網路公開日期:20241201)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 輕度認知障礙及輕度失智症者在雙重任務下之步態分析
2. 新型小分子LCC-21至透過抑制幹細胞和轉移特徵來抑制大腸直腸癌惡性腫瘤的臨床前評估
3. 探討HDAC8抑制在青光眼視網膜損傷中對穆勒細胞介導神經發炎之作用
4. 高良薑抑制體脂肪堆積之研究
5. 緩激肽對膠質母細胞瘤之細胞上皮間質轉化的觸發效果
6. 膠原蛋白腫瘤微環境促進膀胱癌進展之機制探討
7. 轉糖鏈球菌atlA 操縱組在感染性心內膜炎中細 菌自體溶解素成熟及細胞外DNA 依賴性生物膜形成所扮演的角色
8. Cinchonidine,一種主要的金雞納生物鹼,對硫酸吲哚酚引發內皮損傷的細胞保護作用及其分子機制探討:p53訊息傳遞路徑在其中的關鍵性角色
9. 新穎缺血性腦損傷的神經保護策略:以小鼠模型為研究對象,針對急性衰老和急性高血糖的治療方針
10. The intersection of Sleep Disorders, Cerebrovascular Disorders, and Cognitive Function: Exploring the Mechanisms and Management of Vascular Dementia
11. Enalapril及Ketotifen上調肋膜間皮中的glyoxalase-1減輕高血糖加重的肋膜間皮纖維化
12. 探討EK系列抗氧化物抑制小神經膠細胞活化機制與改善腦內損傷之療效
13. 探討platonin與yohimbine影響血管平滑肌細胞對於治療動脈粥狀硬化疾病之機轉研究
14. R715胜肽能抑制緩激肽誘導膠質母細胞瘤細胞的移行作用
15. Metformin一種降血糖biguanide衍生物在離體及活體實驗中對抗血小板所引起的動脈栓塞所扮演的新角色