跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐瑛婷
研究生(外文):Ying-Ting Hsu
論文名稱:表現強效鎮痛作用並減少副作用之新型鴉片受體促效劑
論文名稱(外文):Novel Opioid Receptors Agonists Presented Robust Analgesic Effect with Reduced Side Effects
指導教授:莊健盈葉修華
指導教授(外文):Jian-Ying ChuangShiu-Hwa Yeh
口試委員:莊健盈葉修華高祖仁劉景平林惠菁
口試委員(外文):Jian-Ying ChuangShiu-Hwa YehTzu-Jen KaoJing-Ping LiouHui-Ching Lin
口試日期:2024-01-17
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:神經再生醫學博士學位學程
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:68
中文關鍵詞:鴉片類藥物陣痛效果副作用
外文關鍵詞:OpiodsAnalgesic EffectsSide Effects
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
數百年以來,鴉片類藥物一直被廣泛應用於全球各地,作為應對各種不同疼痛的臨床指引。然而,這些藥物仍然對使用者產生諸多困擾。最主要的原因在於它們不可忽視且多樣的副作用,以及由此引發的藥物濫用等問題。止痛效果和副作用的產生涉及到鴉片類藥物和鴉片受體之間複雜的交互作用。如何讓這類藥物保持強效的止痛能力,同時減少對人們的不良影響,是近年來科學家們正努力嘗試解決的問題。在這項研究中,我們首先針對一系列經過結構修改的化合物進行了體外實驗,觀察這些化合物與不同的鴉片受體之間的互動狀態。基於這些細胞層面的實驗結果,我們初步評估並挑選了一些具有影響神經信號傳遞能力的化合物,亦即作為優秀的鴉片受體促效劑所需的特性。隨後,我們將挑選的化合物推進到動物體內進行測試。在不同疼痛模型的動物實驗中,我們確認這些化合物能夠以比嗎啡低許多的劑量產生明顯的止痛效果。不僅如此,在測試了多種不同的副作用後,結果顯示幾乎所有副作用都有顯著的減少。除此之外,我們在實驗中也使用了不同基因型的小鼠,為這些化合物的止痛效果、副作用以及它們與鴉片受體之間的關聯,提供了更多的線索。總結而言,這些經結構修改的鴉片類藥物,藉由不同層面的研究和測試,其中部分化合物確實展現了傑出的止痛效果,同時減少了擾人的副作用。這項研究成果有望為優化鴉片類藥物的相關研究提供具價值性的參考依據。

For centuries, opioid medications have been widely utilized globally as a clinical guideline for addressing various forms of pain. However, these drugs continue to pose numerous challenges for users. The primary concern stems from their undeniable and diverse side effects, as well as the resultant issues of drug abuse. The genesis of analgesic effects and side effects involves a complex
interaction between opioid drugs and opioid receptors. The challenge faced by scientists in recent years is how to maintain the potent analgesic capabilities of these drugs while concurrently minimizing adverse effects on individuals. In this research endeavor, we initiated by in vitro experiments focusing on a series of structurally modified compounds. These experiments aimed to
observe the interaction states between these compounds and various opioid receptors. Based on the results at the cellular level, we conducted a preliminary assessment and selected compounds demonstrating the capacity to influence neural signal transmission, which is the qualities requisite for
excellent opioid receptor agonists. Subsequently, we progressed to in vivo testing of the chosen compounds in animal subjects. Across diverse animal experiments simulating different pain models, we affirmed that these compounds could elicit significant analgesic effects at substantially lower doses than morphine. Furthermore, upon testing various side effects, the results indicated a notable reduction in almost all adverse reactions. Additionally, we incorporated mice with different genotypes in our experiments, providing further insights into the analgesic effects of these compounds, their side effects, and their associations with opioid receptors. In summary, these structurally modified opioid medications, subjected to multifaceted research and testing, demonstrated outstanding analgesic effects while concurrently reducing disruptive side effects. The outcomes of this study hold promise in furnishing valuable reference points for optimizing research related to opioid medications.
Table of Contents
摘要................................... i
ABSTRACT .............................. ii
致謝................................... iii
1. INTRODUCTION ......................... 1
1.1. Opioids and Their Medical Applications ..........................................1
1.2. The Side Effects and Epidemic of Opioids............2
1.3. The Mechanism of Opioid Receptors Signaling .................6
1.4. Opioid Receptors and Biased Agonism .........................8
1.5. Innovations in Analgesic Drugs.........10
2. MATERIALS AND METHODS ...................14
2.1. Biology ...............................14
2.2. Animal ................................16
2.3. Statistical Analysis...................19
3. Results..................................19
3.1. Candidate compound screening and opioid receptor pathway modulation validation ...............................20
3.2. Antinociceptive Effects of Compound a25 in Mice Compare to Morphine. .............................................22
3.3. Comparing Pain Relief: Compound a25 vs. Morphine in Inflammatory Model........................................23
3.4. Assessment of the Constipating Potential and Antinociceptive Tolerance Induced by Morphine and Compound a25.........24
3.5. Comparing the Rewarding responses to morphine and Compound a25 in mice. ......................................26
3.6. Compound a25 Derivative Screening for Opioid Receptor Pathway Modulation .....................................27
3.7. The Analgesic Effect of Compound b14 in Mice ..............................................29
3.8. Assessing Constipation and Pain Relief Tolerance Following Compound b14 Treatment........................31
3.9. Evaluation of Reward Effects and Naloxone-Precipitated Withdrawal in Compound b14 .......................32
4. Conclusion and Discussion..................34
4.1. Exploring Other Pain Models .............34
4.2. Exploring a Broader Spectrum of Opioid Side Effects Using Advanced Observation Techniques ...........35
4.3. In vivo Calcium Imaging for Mechanisms of Analgesic and Side Effects.................................................37
4.4. The Relationship Between Different Side Effects and Various Opioid Receptors.....................................38
TABLES ................................................. 40
Table 1. Results of FLIPR® Ca2+ assay for BPR1M97, Compounds 1 and a11 – a29......................................40
Table 2. Inhibition of cAMP on human MOR, NOPR, and DOR with Compound a25......................................42
Table 3. Recruitment of β-arrestin-2 on human MOR, NOPR, and DOR of Compound a25. ................................43
Table 4. Plasma, brain, and intestine concentration profiles of Compound a25 .........................................44
Table 5. The cAMP assay results for compounds b2, b4-b25 in MOR and NOPR.....................................45
Table 6. Mouse tail-flick test results at a dosage of 12 mg/kg in rapid thermal stimulation.................................47
Table 7. β-Arrestin-2 recruitment on human MOR and NOPR by Compound b14...........................................48
Table 8. Concentration Profiles of Compound b14 in Plasma, Brain, and Intestine......................................49
Table 9. The comparative table of all analgesic and side effect test results for compounds a25 and b14. ..............50
FIGURES....................................... 51
Figure 1. The timeline and workflow overview for designing a lead compound using an AI-driven approach......................51
Figure 2. The effects of Compound a25 on inhibiting cAMP levels in MOR, NOPR, and DOR, co-administered with their respective antagonists.....................................52
Figure 3. Compound a25 and morphine exhibit immediate thermal antinociceptive effects. .................................53
Figure 4. Compound a25 Alleviates Sensory Allodynia in Pain Caused by Inflammation. ....................................55
Figure 5. Comparative Analysis of Constipation and Antinociceptive Tolerance Induced by Compound a25 and Morphine...............57
Figure 6. Assessment of the Rewarding Effects of Morphine and Compound a25................................................58
Figure 7. Inhibition of cAMP by Compound b14 on MOP and NOP receptors in the presence and absence of corresponding antagonists.....................................59
Figure 8. Acute thermal antinociceptive effects of Compound b14 in WT and hMOR+/mMOR-/- mice. ...............60
Figure 9. Constipatory effect of Compound b14 with reduced potency and lack of tolerance in WT mice............61
Figure 10. Reduced reward and withdrawal effects of Compound b14 compared to morphine. ............................62
ABBREVIATIONS ................................. 63
REFERENCE...................................... 65

1. Pathan, H. and J. Williams, Basic opioid pharmacology: an update. Br J Pain, 2012. 6(1): p. 11-6.
2. Trescot, A.M., et al., Opioid pharmacology. Pain Physician, 2008. 11(2 Suppl): p. S133-53.
3. Jones, C.M.P., et al., Opioid analgesia for acute low back pain and neck pain (the OPAL trial): a randomised placebo-controlled trial. Lancet, 2023. 402(10398): p. 304-312.
4. Thapa, D., V. Rastogi, and V. Ahuja, Cancer pain management-current status. J Anaesthesiol Clin Pharmacol, 2011. 27(2): p. 162-8.
5. Horn, R. and J. Kramer, Postoperative Pain Control, in StatPearls. 2023: Treasure Island (FL).
6. Bonanni, R., et al., Chronic Pain in Musculoskeletal Diseases: Do You Know Your Enemy? J Clin Med, 2022. 11(9).
7. Gryczynski, J., et al., De-Implementing Opioids for Dental Extractions (DIODE): a multi-clinic, cluster-randomized trial of clinical decision support strategies in dentistry. Implement Sci, 2023. 18(1): p. 5.
8. Holdgate, A. and T. Pollock, Nonsteroidal anti-inflammatory drugs (NSAIDs) versus opioids for acute renal colic. Cochrane Database Syst Rev, 2005. 2004(2): p. CD004137.
9. Benyamin, R., et al., Opioid complications and side effects. Pain Physician, 2008. 11(2 Suppl): p. S105-20.
10. Young-McCaughan, S. and C. Miaskowski, Definition of and mechanism for opioid-induced sedation. Pain Manag Nurs, 2001. 2(3): p. 84-97.
11. Smith, H.S. and A. Laufer, Opioid induced nausea and vomiting. Eur J Pharmacol, 2014. 722: p. 67-78.
12. Sizar, O., R. Genova, and M. Gupta, Opioid-Induced Constipation, in StatPearls. 2023: Treasure Island (FL).
13. Kosten, T.R. and T.P. George, The neurobiology of opioid dependence: implications for treatment. Sci Pract Perspect, 2002. 1(1): p. 13-20.
14. Pattinson, K.T., Opioids and the control of respiration. Br J Anaesth, 2008. 100(6): p. 747-58.
15. Cashman, J.N. and S.J. Dolin, Respiratory and haemodynamic effects of acute postoperative pain management: evidence from published data. Br J Anaesth, 2004. 93(2): p. 212-23.
16. Skolnick, P., The Opioid Epidemic: Crisis and Solutions. Annu Rev Pharmacol Toxicol, 2018. 58: p. 143-159.
17. Jones, M.R., et al., A Brief History of the Opioid Epidemic and Strategies for Pain Medicine.Pain Ther, 2018. 7(1): p. 13-21.
18. Stoicea, N., et al., Current perspectives on the opioid crisis in the US healthcare system: A comprehensive literature review. Medicine (Baltimore), 2019. 98(20): p. e15425.
19. Shipton, E.A., E.E. Shipton, and A.J. Shipton, A Review of the Opioid Epidemic: What Do We Do About It? Pain Ther, 2018. 7(1): p. 23-36.
20. Al-Hasani, R. and M.R. Bruchas, Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, 2011. 115(6): p. 1363-81.
21. Reeves, K.C., et al., Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain.Front Mol Neurosci, 2022. 15: p. 919773.
22. Malafoglia, V., et al., The Interplay between Chronic Pain, Opioids, and the Immune System.Neuroscientist, 2022. 28(6): p. 613-627.66
23. Machelska, H. and M.O. Celik, Advances in Achieving Opioid Analgesia Without Side Effects.Front Pharmacol, 2018. 9: p. 1388.
24. Gunther, T., et al., Targeting multiple opioid receptors - improved analgesics with reduced side effects? Br J Pharmacol, 2018. 175(14): p. 2857-2868.
25. Coluzzi, F., et al., Current and Future Therapeutic Options in Pain Management: Multimechanistic Opioids Involving Both MOR and NOP Receptor Activation. CNS Drugs, 2022. 36(6): p. 617-632.
26. Kiguchi, N., et al., BU10038 as a safe opioid analgesic with fewer side-effects after systemic and intrathecal administration in primates. Br J Anaesth, 2019. 122(6): p. e146-e156.
27. Ding, H., et al., A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med, 2018. 10(456).
28. Drieu la Rochelle, A., et al., A bifunctional-biased mu-opioid agonist-neuropeptide FF receptor antagonist as analgesic with improved acute and chronic side effects. Pain, 2018. 159(9): p.
1705-1718.
29. Lagard, C., et al., Bifunctional peptide-based opioid agonist/nociceptin antagonist ligand for dual treatment of nociceptive and neuropathic pain. Pain, 2017. 158(3): p. 505-515.
30. Chao, P.K., et al., 1-(2,4-Dibromophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one: A Novel Opioid Receptor Agonist with Less Accompanying Gastrointestinal Dysfunction than Morphine. Anesthesiology, 2017. 126(5): p. 952-966.
31. Chao, P.K., et al., BPR1M97, a dual mu opioid receptor/nociceptin-orphanin FQ peptide receptor agonist, produces potent antinociceptive effects with safer properties than morphine.Neuropharmacology, 2020. 166: p. 107678.
32. Yang, X., et al., Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem Rev, 2019. 119(18): p. 10520-10594.
33. Sadybekov, A.V. and V. Katritch, Computational approaches streamlining drug discovery.Nature, 2023. 616(7958): p. 673-685.
34. Tsou, L.K., et al., Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery. Sci Rep, 2020. 10(1): p. 16771.
35. Xu, X., et al., The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol, 2011. 29(8): p. 735-41.
36. Glossmann, H. and D.R. Ferry, Assay for calcium channels. Methods Enzymol, 1985. 109: p. 513-50.
37. Gilman, A.G., A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A, 1970. 67(1): p. 305-12.
38. Yin, H., et al., Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem, 2009. 284(18): p. 12328-38.
39. Schuller, A.G., et al., Retention of heroin and morphine-6 beta-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nat Neurosci, 1999. 2(2): p. 151-6.
40. Huang, Y.H., et al., Morphine produces potent antinociception, sedation, and hypothermia in humanized mice expressing human mu-opioid receptor splice variants. Pain, 2020. 161(6): p. 1177-1190.
41. Bannon, A.W. and A.B. Malmberg, Models of nociception: hot-plate, tail-flick, and formalin tests in rodents. Curr Protoc Neurosci, 2007. Chapter 8: p. Unit 8 9.
42. Kosersky, D.S., R.A. Harris, and L.S. Harris, Naloxone-precipitated jumping activity in mice following the acute administration of morphine. Eur J Pharmacol, 1974. 26(1): p. 122-4.67
43. Fitting, S., et al., Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV1 Tat Transgenic Mice. J Pharmacol Exp Ther, 2016. 356(1): p. 96-105.
44. Jasmin, L., et al., The cold plate as a test of nociceptive behaviors: description and application to the study of chronic neuropathic and inflammatory pain models. Pain, 1998. 75(2-3): p. 367-82.
45. Chaplan, S.R., et al., Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods, 1994. 53(1): p. 55-63.
46. Marona, H.R. and M.B. Lucchesi, Protocol to refine intestinal motility test in mice. Lab Anim, 2004. 38(3): p. 257-60.
47. Cunningham, C.L., C.M. Gremel, and P.A. Groblewski, Drug-induced conditioned place preference and aversion in mice. Nat Protoc, 2006. 1(4): p. 1662-70.
48. Onogi, T., et al., DAMGO, a mu-opioid receptor selective agonist, distinguishes between muand delta-opioid receptors around their first extracellular loops. FEBS Lett, 1995. 357(1): p. 93-7.
49. Dang, V.C. and J.T. Williams, Morphine-Induced mu-opioid receptor desensitization. Mol Pharmacol, 2005. 68(4): p. 1127-32.
50. Schroder, W., et al., Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br J Pharmacol, 2014. 171(16): p. 3777-800.
51. Chang, K.J., et al., A novel, potent and selective nonpeptidic delta opioid receptor agonist BW373U86. J Pharmacol Exp Ther, 1993. 267(2): p. 852-7.
52. Wang, D., et al., Inverse agonists and neutral antagonists at mu opioid receptor (MOR): possible role of basal receptor signaling in narcotic dependence. J Neurochem, 2001. 77(6): p. 1590-600.
53. Fischetti, C., et al., Pharmacological characterization of the nociceptin/orphanin FQ receptor non peptide antagonist Compound 24. Eur J Pharmacol, 2009. 614(1-3): p. 50-7.
54. Granier, S., et al., Structure of the delta-opioid receptor bound to naltrindole. Nature, 2012. 485(7398): p. 400-4.
55. Gregory, N.S., et al., An overview of animal models of pain: disease models and outcome measures. J Pain, 2013. 14(11): p. 1255-69.
56. Seltzer, Z., R. Dubner, and Y. Shir, A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain, 1990. 43(2): p. 205-218.
57. Krantz, M.J., R.B. Palmer, and M.C.P. Haigney, Cardiovascular Complications of Opioid Use: JACC State-of-the-Art Review. J Am Coll Cardiol, 2021. 77(2): p. 205-223.
58. Steijns, F., et al., Ambulatory Electrocardiographic Monitoring and Ectopic Beat Detection in Conscious Mice. Sensors (Basel), 2020. 20(14).
59. Boom, M., et al., Non-analgesic effects of opioids: opioid-induced respiratory depression. Curr Pharm Des, 2012. 18(37): p. 5994-6004.
60. Lim, R., et al., Measuring respiratory function in mice using unrestrained whole-body plethysmography. J Vis Exp, 2014(90): p. e51755.
61. Ballantyne, J.C., A.B. Loach, and D.B. Carr, Itching after epidural and spinal opiates. Pain, 1988. 33(2): p. 149-160.
62. Nojima, H. and E. Carstens, Quantitative assessment of directed hind limb scratching behavior as a rodent itch model. J Neurosci Methods, 2003. 126(2): p. 137-43.
63. Lauer, J., et al., Multi-animal pose estimation, identification and tracking with DeepLabCut.Nat Methods, 2022. 19(4): p. 496-504.68
64. Seward, E., C. Hammond, and G. Henderson, Mu-opioid-receptor-mediated inhibition of the N-type calcium-channel current. Proc Biol Sci, 1991. 244(1310): p. 129-35.
65. Iseppon, F., J.E. Linley, and J.N. Wood, Calcium imaging for analgesic drug discovery. Neurobiol Pain, 2022. 11: p. 100083.
66. Kuppusamy, R., et al., Benzo[b]thiophene-2-carboxamides as novel opioid receptor agonists with potent analgesic effect and reduced constipation. Eur J Med Chem, 2022. 243: p. 114728.
67. Hsu, Y.T., et al., A dual nociceptin and mu opioid receptor agonist exhibited robust antinociceptive effect with decreased side effects. Eur J Med Chem, 2023. 258: p. 115608
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. Paxillin在脊髓運動神經軸突引導中的作用
2. Investigation of the Induction of Prostate Cancer Mutagenesis and Development of A Novel Method for Early Detection of Prostate Cancer with Nanoimaging
3. Multi-omics integration with bioinformatics and meta-analysis approaches reveal the association between early-onset colorectal cancer and metabolic disorder
4. Comprehensive bioinformatics analysis of transcriptomics data for identifying biomarkers and therapeutic targets in cancer research
5. 開發促紅血球生成素產生的肝細胞受體 A2 型抗體及探討其治療胰臟癌之機轉
6. Multi-Omics Identification of Genetic Alterations in Head and Neck Squamous Cell Carcinoma and Therapeutic Efficacy of HNC018 as a Novel Multi-Target Agent for c-MET/STAT3/AKT Signaling Axis.
7. 探討非鴉片類藥癮門診治療模式與藥癮治療性社區之差異性
8. 以生物資訊方法學探究癌症與腦損傷之相關訊息傳遞路徑
9. PHY906與Capecitabine於肝癌的藥理與臨床二期綜合療法研究
10. HDAC6-LINC00461 途徑在神經膠質母細胞瘤中的調控機轉及致癌功能
11. 鴉片類藥物過量及成癮者之院內死亡相關因素探討
12. 新穎人源化小鼠模式用於鴉片類藥物的藥理研究
13. 藉由抑制第一型特異性蛋白及其下游路徑來克服膠質母細胞瘤對於帝盟多藥物的阻抗性
14. 台灣鴉片類替代維持療法實施後海洛因成癮者的存活與生活品質分析
15. 鴉片類藥物成癮者對美沙冬及丁基原啡因/納洛酮舌下錠維持治療選擇之現況及看法