跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 18:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:饒凡綾
研究生(外文):JAO, FAN-LING
論文名稱:胸腺嘧啶基衍生物作為組蛋白去乙醯酶雙效抑制劑用於癌症治療
論文名稱(外文):Thymidine-based derivatives as dual HDAC inhibitor used in cancer treatment
指導教授:劉景平劉景平引用關係
指導教授(外文):LIOU, JING-PING
口試委員:劉宜旻陳國棟劉景平
口試委員(外文):LIU, YI-MINCHEN, KUO-TUNGLIOU, JING-PING
口試日期:2024-07-11
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:115
中文關鍵詞:組蛋白去乙醯酶雙效抑制劑抗癌
外文關鍵詞:HDACdual inhibitorAnti cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
目錄………………………………………………..………..……I
附表目錄………………………….………….........………..……II
附圖目錄………………………………………….………..……..III
附路徑目錄... .……………………………………....……………VI
中文摘要………………………………………………..……......VII
Abstract………………………………………………..……........VIII
壹、緒論…………………………………………..………..……1
貳、實驗目的與設計……………………………..………..……45
參、化學合成……………………………………..………..……48
肆、實驗部分……………………………………..……….……..63
伍、參考文獻……………………………………..………..……66
附表目錄
表一 國內民國111年十大死因…………………………………………………………......3
表二 HDAC抑制劑聯合療法……………………………………………………………….44
表三 化合物17實驗條件……………………………………………………………………51
表四 化合物18實驗條件……………………………………………………………………54
表五 化合物19實驗條件……………………………………………………………………55
表六 化合物20b-c實驗條件………………………………………………………………...56
表七 化合物29實驗條件……………………………………………………………………59
表八 化合物30實驗條件……………………………………………………………………61
表九 化合物20 UPLC 純度及滯留時間總表………………………………………………91
附圖目錄
圖一 2000年癌症標記…………………………………………………………………2
圖二 2011年新增癌症標記……………………………………………………………2
圖三 臨床試驗組蛋白去乙醯化酶抑制劑……………………………………………4
圖四 Nucleosome結構…………………………………………………………………5
圖五 Chromatin結構…………………………………………………………………..5
圖六 表觀遺傳調控……………………………………………………………………6
圖七 HDAC基因遺傳調控……………………………………………………………7
圖八 藥物表觀遺傳調控………………………………………………………………7
圖九 (HAT) 和 (HDAC)調節…………………………………………………………8
圖十 各種組蛋白去乙醯酶結構域特徵………………………………………………10
圖十一 Class I、II、III、IV HDACs位置………………………………………………11
圖十二 Class III HDACs SIRTs家族在細胞中的分佈…………………………11
圖十三 HDAC亞型的位置、胺基酸含量………………………………………………12
圖十四 HDAC1內腔…………………………………………………………………….13
圖十五 HDAC2內腔……………………………………………………………………14
圖十六 HDAC3 : [Ins(1,4,5,6)P 4]複合物的結構………………………………15
圖十七 HDAC3:SMRT-DAD 複合物的結構…………………………………………..15
圖十八 HDAC3 在疾病中的應用………………………………………………………16
圖十九 HDAC4 四聚體的整體結構……………………………………………………17
圖二十 HDAC4 富含麩醯胺酸結構域的結構和化學特性……………………………17
圖二十一 HDAC4 表達和活性的調節模式總結…………………………………………18
圖二十二 HDAC5的調節………………………………………………………………….19
圖二十三 HDAC6 CD2結構結合位置處……………………………………………20
圖二十四 TSA 結合HDAC 7的整體結構………………………………………………21
圖二十五 TSA結合HDAC 7結構活性位置………………………………………………21
圖二十六 HDAC7 控制內皮完整性………………………………………………………22
圖二十七 HDAC8不對稱單體帶狀圖…………………………………………………….23
圖二十八 HDAC8單體帶狀圖……………………………………………………………23
圖二十九 HDAC8 活性位置的分子表面特性與結構……………………………………24
圖三十 HDAC8 的配體和SAHA晶體結構……………………………………………25
圖三十一 HDAC8 在不同疾病中的意義…………………………………………………26
圖三十二 HDAC9 癌症的潛在標靶和作用蛋白…………………………………………27
圖三十三 HDAC9 慢性疾病發展的影響…………………………………………………27
圖三十四 HDAC10結構域及催化位置……………………………………………………28
圖三十五 HDAC10疾病及相關途徑………………………………………………………29
圖三十六 Gly-[Lys-decanoyl]-Phe三肽對接至HDAC 11的同源模型……30
圖三十七 HDAC抑制劑用於不同癌症…………………………………………………….31
圖三十八 HDAC 抑制劑抗癌作用機轉……………………………………………………32
圖三十九 HDAC 活化多種致癌途徑………………………………………………………33
圖四十 HDAC抑制劑典型特徵………………………………………………………….34
圖四十一 HDAC抑制劑選擇性關係………………………………………………………35
圖四十二 HDAC Hydroxamic acid抑制劑…………………………………………………38
圖四十三 HDAC Cyclic peptide抑制劑……………………………………………………39
圖四十四 HDAC Benzamides抑制劑………………………………………………………41
圖四十五 HDAC Short-chain fatty acids抑制劑……………………………………42
圖四十六 組合藥物協同抗腫瘤生物效應………………………………………………….43
圖四十七 Capecitabine作用機轉…………………………………………………………...46
圖四十八 化合物合理化設計 ……………………………………………………………...47
圖四十九 化合物20合成……………………………………………………………...........47
圖五十 化合物17 NMR-2D圖譜1………………………………………………………52
圖五十一 化合物17 NMR-2D圖譜2………………………………………………………53
圖五十二 化合物29反應追蹤……………………………………………………………..59
圖五十三 化合物30NMR圖譜…………………………………………………………….60
圖五十四 化合物31 MS 圖譜……………………………………………………………...62
圖五十五 化合物20a UPLC 純度………………………………………………………….85
圖五十六 化合物20b UPLC 純度………………………………………………………….86
圖五十七 化合物20c UPLC 純度………………………………………………………….87
圖五十八 化合物20d UPLC 純度………………………………………………………….88
圖五十九 化合物20e UPLC 純度………………………………………………………….89
圖六十 化合物20f UPLC 純度………………………………………………………….90
圖六十一 化合物17之氫核磁共振圖……………………………………………………92
圖六十二 化合物18之氫核磁共振圖……………………………………………………..93
圖六十三 化合物19之氫核磁共振圖……………………………………………………..94
圖六十四 化合物20a之氫核磁共振圖…………………………………………………….95
圖六十五 化合物20b之氫核磁共振圖…………………………………………………….96
圖六十六 化合物20c之氫核磁共振圖…………………………………………………….97
圖六十七 化合物21之氫核磁共振圖……………………………………………………..98
圖六十八 化合物22之氫核磁共振圖……………………………………………………..99
圖六十九 化合物23之氫核磁共振圖……………………………………………………..100
圖七十 化合物20d之氫核磁共振圖……………………………………………………101
圖七十一 化合物20e之氫核磁共振圖…………………………………………………….102
圖七十二 化合物20f之氫核磁共振圖…………………………………………………….103
圖七十三 化合物20a之碳核磁共振圖…………………………………………………….104
圖七十四 化合物20b之碳核磁共振圖…………………………………………………….105
圖七十五 化合物20c之碳核磁共振圖…………………………………………………….106
圖七十六 化合物20d之碳核磁共振圖…………………………………………………….107
圖七十七 化合物20e之碳核磁共振圖…………………………………………………….108
圖七十八 化合物20f之碳核磁共振圖…………………………………………………….109
圖七十九 化合物20a之質譜圖………………………………………………………….....110
圖八十 化合物20b之質譜圖……………………………………………………………111
圖八十一 化合物20c之質譜圖…………………………………………………………....112
圖八十二 化合物20d之質譜圖………………………………………………………….....113
圖八十三 化合物20e之質譜圖………………………………………………………….....114
圖八十四 化合物20f之質譜圖……………………………………………………………..115
附路徑目錄
路徑一 化合物20a-20c的合成………………………………………….48
路徑二 化合物20d-20e的合成………………………………………….49
路徑三 化合物26合成…………………………………………………..49
路徑四 化合物30合成………………………………………………….50
路徑五 化合物17合成………………………………………………….51
路徑六 化合物18合成………………………………………………….54
路徑七 化合物19-20a-c合成…………………………………………55
路徑八 化合物21-22合成………………………………………………56
路徑九 化合物20d-f合成……………………………………………….57
路徑十 化合物24-26合成………………………………………………58
路徑十一 化合物27-29合成………………………………………………58
路徑十二 化合物31合成………………………………………………….61




1. Hanahan D, Weinberg RA. The hallmarks of cancer, Cell, 2000, 100(1), 57-70
2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation, Cell, 2011,144(5),646-674
3. Senga SS, Grose RP. Hallmarks of cancer-the new testament, Open Biol, 2021,11(1)
4. https://www.mohw.gov.tw/cp-16-74869-1.html, 2024.05.20
5. He X, Hui Z, Xu L, et al. Medicinal chemistry updates of novel HDACs inhibitors (2020 to present). Eur J Med Chem, 2022, 227, 113946
6. Fetahu IS, Taschner-Mandl S. Neuroblastoma and the epigenome. Cancer Metastasis Rev, 2021, 40(1), 173-189
7. Caputi FF, Candeletti S and Romualdi P (2017) Epigenetic Approaches in Neuroblastoma Disease Pathogenesis. Neuroblastoma - Current State and Recent Updates. InTech. Available at: http://dx.doi.org/10.5772/intechopen.69566.
8.https://www.researchgate.net/publication/346929431_Chromatin_and_transcriptome-based_integrative_approaches_to_profile_functional_long_noncoding_RNAs_-_A_computational_approach, 2024.05.20
9. Drake TM, Søreide K. Cancer epigenetics in solid organ tumours: A primer for surgical oncologists, Eur J Surg Oncol, 2019, 45(5), 736-746
10. Quina AS, Buschbeck M, Di Croce L. Chromatin structure and epigenetics. Biochem Pharmacol, 2006, 72(11)
11. Kim A, Mo K, Kwon H, et al. Epigenetic Regulation in Breast Cancer: Insights on Epidrugs, Epigenomes. 2023, 7(1), 6.
12. Shirbhate E, Singh V, Jahoriya V, et al. Dual inhibitors of HDAC and other epigenetic regulators: A novel strategy for cancer treatment. Eur J Med Chem, 2024, 263, 115938
13. Ren L, Yang Y, Li W, et al. Recent advances in epigenetic anticancer therapeutics and future perspectives. Front Genet, 2023, 13, 1085391
14. Perri F, Longo F, Giuliano M, et al. Epigenetic control of gene expression: Potential implications for cancer treatment. Crit Rev Oncol Hematol, 2017, 111, 166-172
15. Ren L, Yang Y, Li W, et al. Recent advances in epigenetic anticancer therapeutics and future perspectives. Front Genet, 2023, 13, 1085391
16. Parveen R, Harihar D, Chatterji BP. Recent histone deacetylase inhibitors in cancer therapy, Cancer, 2023, 129(21), 3372-3380.
17. Hai R, Yang D, Zheng F, et al. The emerging roles of HDACs and their therapeutic implications in cancer, Eur J Pharmacol, 2022, 931,175216
18. Mihaylova MM, Shaw RJ. Metabolic reprogramming by class I and II histone deacetylases, Trends Endocrinol Metab, 2013, 24(1), 48-57

19. Milazzo G, Mercatelli D, Di Muzio G, et al. Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability, Genes (Basel), 2020, 11(5), 556
20. Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Recent developments of HDAC inhibitors: Emerging indications and novel molecules, Br J Clin Pharmacol, 2021, 87(12), 4577-4597
21. Luo Y, Li H. Structure-Based Inhibitor Discovery of Class I Histone Deacetylases (HDACs), Int J Mol Sci, 2020, 21(22), 8828.
22. Bagchi RA, Weeks KL. Histone deacetylases in cardiovascular and metabolic diseases, J Mol Cell Cardiol, 2019,130, 151-159
23. Lambona C, Zwergel C, Fioravanti R, Valente S, Mai A. Histone deacetylase 10: A polyamine deacetylase from the crystal structure to the first inhibitors. Curr Opin Struct Biol, 2023,82, 102668
24. Park SY, Kim JS. A short guide to histone deacetylases including recent progress on class II enzymes, Exp Mol Med, 2020, 52(2), 204-212.
25 de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family, Biochem J, 2003, 370, 737-749.
26. Núñez-Álvarez Y, Suelves M. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J, 2022, 289(10), 2771-279
27. 2 Vong P, Ouled-Haddou H, Garçon L. Histone Deacetylases Function in the Control of Early Hematopoiesis and Erythropoiesis. Int J Mol Sci. 2022,23(17):9790
28. Song J, Yang B, Jia X, et al. Distinctive Roles of Sirtuins on Diabetes, Protective or Detrimental?, Front Endocrinol (Lausanne), 2018, 9, 724.
29. Karati D, Mukherjee S, Roy S. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator. Med Oncol, 2024, 41(4), 84.
30. Wambua MK, Nalawansha DA, Negmeldin AT, Pflum MK. Mutagenesis studies of the 14 Å internal cavity of histone deacetylase 1: insights toward the acetate-escape hypothesis and selective inhibitor design, J Med Chem, 2014, 57(3), 642-650.
31. Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors, Eur J Med Chem, 2018, 158,620-706
32. Abdallah DI, de Araujo ED, Patel NH, et al. Medicinal chemistry advances in targeting class I histone deacetylases, Explor Target Antitumor Ther, 2023, 4(4), 757-779
33. Krämer OH. HDAC2: a critical factor in health and disease. Trends Pharmacol Sci, 2009, 30(12), 647-655
34. Hu E, Chen Z, Fredrickson T, et al. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor, J Biol Chem, 2000, 275(20),15254-15264
35. Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy, J Med Chem, 2021, 64(13), 8827-8869
36. Watson PJ, Fairall L, Santos GM, Schwabe JW. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate, Nature, 2012, 481(7381), 335-340
37. Guo L, Han A, Bates DL, Cao J, Chen L. Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains, Proc Natl Acad Sci U S A, 2007, 104(11), 4297-4302
38. Wang Z, Qin G, Zhao TC. HDAC4: mechanism of regulation and biological functions. Epigenomics, 2014, 6(1), 139-150.
39. Kang H, Park YK, Lee JY, Bae M. Roles of Histone Deacetylase 4 in the Inflammatory and Metabolic Processes , Diabetes Metab J, 2024, 48(3), 340-353
40. Cuttini E, Goi C, Pellarin E, Vida R, Brancolini C. HDAC4 in cancer: A multitasking platform to drive not only epigenetic modifications, Front Mol Biosci, 2023, 10, 1116660.
41. Yang J, Gong C, Ke Q, et al. Insights Into the Function and Clinical Application of HDAC5 in Cancer Management, Front Oncol, 2021, 11, 661620.
42. Wang Y, Li W, Schulz VP, et al. Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency [published correction appears in Blood, 2022 , 139(10), 1600.
43. Asfaha Y, Schrenk C, Alves Avelar LA, et al. Recent advances in class IIa histone deacetylases research. Bioorg Med Chem, 2019,27(22),115087.
44. Pulya S, Amin SA, Adhikari N, Biswas S, Jha T, Ghosh B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol Res, 2021, 163, 105274
45. Curcio A, Rocca R, Alcaro S, Artese A. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals (Basel), 2024, 17(5), 620
46. Schuetz A, Min J, Allali-Hassani A, et al. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem, 2008, 283(17), 11355-11363
47. Liu C, Zheng D, Pu X, Li S. HDAC7: a promising target in cancer. Front Oncol, 2024, 14, 1327933.
48. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet, 2009, 10(1), 32-42
49. Vannini A, Volpari C, Filocamo G, et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A, 2004, 101(42), 15064-15069
50. Banerjee S, Adhikari N, Amin SA, Jha T. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur J Med Chem, 2019, 164, 214-240
51. Somoza JR, Skene RJ, Katz BA, et al. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 2004, 12(7), 1325-1334
52. Das T, Khatun S, Jha T, Gayen S. HDAC9 as a Privileged Target: Reviewing its Role in Different Diseases and Structure-activity Relationships (SARs) of its Inhibitors. Mini Rev Med Chem, 2024, 24(7), 767-784.
53. Yang C, Croteau S, Hardy P. Histone deacetylase (HDAC) 9: versatile biological functions and emerging roles in human cancer. Cell Oncol (Dordr),2021, 44(5), 997-1017
54. Hu S, Cho EH, Lee JY. Histone Deacetylase 9: Its Role in the Pathogenesis of Diabetes and Other Chronic Diseases. Diabetes Metab J, 2020, 44(2),234-244
55. Lambona C, Zwergel C, Fioravanti R, Valente S, Mai A. Histone deacetylase 10: A polyamine deacetylase from the crystal structure to the first inhibitors. Curr Opin Struct Biol, 2023, 82, 102668
56. Christianson DW. Chemical Versatility in Catalysis and Inhibition of the Class IIb Histone Deacetylases. Acc Chem Res, 2024, 57(8), 1135-1148
57. Hai Y, Shinsky SA, Porter NJ, Christianson DW. Histone deacetylase 10 structure and molecular function as a polyamine deacetylase. Nat Commun, 2017, 8, 15368
58. Fischer DD, Cai R, Bhatia U, et al. Isolation and characterization of a novel class II histone deacetylase, HDAC10. J Biol Chem, 2002, 277(8), 6656-6666
59. Kao HY, Lee CH, Komarov A, Han CC, Evans RM. Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J Biol Chem, 2002,277(1), 187-193
60. Hai Y, Shinsky SA, Porter NJ, Christianson DW. Histone deacetylase 10 structure and molecular function as a polyamine deacetylase, Nat Commun. 2017, 8, 15368
61. Kutil Z, Novakova Z, Meleshin M, Mikesova J, Schutkowski M, Barinka C. Histone Deacetylase 11 Is a Fatty-Acid Deacylase. ACS Chem Biol, 2018, 13(3), 685-693
62. Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem, 2002, 277(28), 25748-25755
63. Núñez-Álvarez Y, Suelves M. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J, 2022, 289(10), 2771-2792
64. Raucci A, Castiello C, Mai A, Zwergel C, Valente S. Heterocycles-Containing HDAC Inhibitors Active in Cancer: An Overview of the Last Fifteen Years. ChemMedChem, 2024, 41(4), 84.
65. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone Deacetylase Inhibitors as Anticancer Drugs, Int J Mol Sci, 2017,18(7), 1414
66. Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1, Cancer Res, 2003,63(13), 3637-3645
67. Hai R, He L, Shu G, Yin G. Characterization of Histone Deacetylase Mechanisms in Cancer Development, Front Oncol, 2021,11,700947.
68. Passaro E, Papulino C, Chianese U, et al. HDAC6 Inhibition Extinguishes Autophagy in Cancer: Recent Insights, Cancers (Basel), 2021, 13(24), 6280
69. Wahi A, Jain P, Sinhari A, Jadhav HR. Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents, Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(2), 675-702
70. Sarkar R, Banerjee S, Amin SA, Adhikari N, Jha T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review, Eur J Med Chem, 2020, 192, 112171
71. Marks PA. Discovery and development of SAHA as an anticancer agent, Oncogene, 2007, 26(9), 1351-1356
72. Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies, J Clin Oncol, 2005, 23(17), 3971-3993
73. Wawruszak A, Borkiewicz L, Okon E, Kukula-Koch W, Afshan S, Halasa M. Vorinostat (SAHA) and Breast Cancer: An Overview, Cancers (Basel), 2021, 13(18), 4700.
74. Dokmanovic M, Marks PA. Prospects: histone deacetylase inhibitors. J Cell Biochem, 2005, 96(2), 293-304
75. Di Gennaro E, Bruzzese F, Caraglia M, Abruzzese A, Budillon A. Acetylation of proteins as novel target for antitumor therapy: review article. Amino Acids, 2004, 26(4), 435-441
76. Zhang L, Zhang J, Jiang Q, Zhang L, Song W. Zinc binding groups for histone deacetylase inhibitors, J Enzyme Inhib Med Chem, 2018, 33(1), 714-721
77. Ren L, Yang Y, Li W, et al. Recent advances in epigenetic anticancer therapeutics and future perspectives, Front Genet, 2023, 13, 1085391
78. Shanmugam G, Rakshit S, Sarkar K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol, 2022, 16, 101312
79.Zhang WX, Huang J, Tian XY, et al. A review of progress in o-aminobenzamide-based HDAC inhibitors with dual targeting capabilities for cancer therapy, Eur J Med Chem, 2023, 259, 115673
80. Yurek-George A, Cecil AR, Mo AH, et al. The first biologically active synthetic analogues of FK228, the depsipeptide histone deacetylase inhibitor, J Med Chem,2007, 50(23), 5720-5726
81.Banerjee S, Adhikari N, Amin SA, Jha T. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview, Eur J Med Chem, 2019, 164, 214-240
82. Shanmugam G, Rakshit S, Sarkar K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases, Transl Oncol, 2022, 16, 101312.
83. Alzahrani M, Villa D. Management of relapsed/refractory mantle cell lymphoma. Leuk Lymphoma.
84. El Omari N, Lee LH, Bakrim S, et al. Molecular mechanistic pathways underlying the anticancer therapeutic efficiency of romidepsin, Biomed Pharmacother, 2023, 164, 114774.
85. Cao HY, Li L, Xue SL, Dai HP. Chidamide: Targeting epigenetic regulation in the treatment of hematological malignancy, Hematol Oncol, 2023, 41(3), 301-309
86. Ridwansyah H, Wijaya I, Bashari MH, Sundawa Kartamihardja AH, Hernowo BS. The role of chidamide in the treatment of B-cell non-Hodgkin lymphoma: An updated systematic review, Biomol Biomed, 2023, 23(5), 727-739.
87. Hess-Stumpp H, Bracker TU, Henderson D, Politz O. MS-275, a potent orally available inhibitor of histone deacetylases--the development of an anticancer agent. Int J Biochem Cell Biol, 2007, 39(7-8), 1388-1405.
88. Ocaña-Paredes B, Rivera-Orellana S, Ramírez-Sánchez D, et al. The pharmacoepigenetic paradigm in cancer treatment. Front Pharmacol, 2024, 15, 1381168.
89. Hontecillas-Prieto L, Flores-Campos R, Silver A, de Álava E, Hajji N, García-Domínguez DJ. Synergistic Enhancement of Cancer Therapy Using HDAC Inhibitors: Opportunity for Clinical Trials. Front Genet, 2020, 11, 578011
90. Vértessy BG, Tóth J. Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. Acc Chem Res, 2009, 42(1), 97-106.
91. Ishiba T, Hoffmann AC, Usher J, et al. Frequencies and expression levels of programmed death ligand 1 (PD-L1) in circulating tumor RNA (ctRNA) in various cancer types. Biochem Biophys Res Commun, 2018, 500(3), 621-625.
92. Chionh F, Lau D, Yeung Y, Price T, Tebbutt N. Oral versus intravenous fluoropyrimidines for colorectal cancer. Cochrane Database Syst Rev. 2017, 7(7), CD008398
93. Miura K, Kinouchi M, Ishida K, et al. 5-fu metabolism in cancer and orally-administrable 5-fu drugs. Cancers (Basel), 2010, 2(3), 1717-1730.
94. Wilson PM, Danenberg PV, Johnston PG, Lenz HJ, Ladner RD. Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol, 2014, 11(5), 82-298.
95. Yang GY, Thomas CR. Can the sequencing of concurrent capecitabine and radiation therapy improve the therapeutic ratio in rectal cancer?. Gastrointest Cancer Res. 2007, 1(2), 64-65.
96. Lamberti C, Sauerbruch T, Glasmacher A. Adjuvant capecitabine is at least as effective as fluorouracil plus leucovorin for survival in people with resected stage III colon cancer. Cancer Treat Rev, 2005, 31(8), 648-652.
97 .Gmeiner WH. Fluoropyrimidine Modulation of the Anti-Tumor Immune Response-Prospects for Improved Colorectal Cancer Treatment. Cancers (Basel). 2020, 12(6), 1641.
98. Schüller J, Cassidy J, Dumont E, et al. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother Pharmacol. 2000, 45(4), 291-297.
99. Aguado C, García-Paredes B, Sotelo MJ, Sastre J, Díaz-Rubio E. Should capecitabine replace 5-fluorouracil in the first-line treatment of metastatic colorectal cancer?. World J Gastroenterol. 2014, 20(20), 6092-6101.
100. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther. 2020, 206, 107447.

電子全文 電子全文(網際網路公開日期:20290801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top