|
(1)https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm. (2)https://www.mohw.gov.tw/cp-16-70314-1.html. (3)https://www.cancer.gov/about-cancer/understanding/what-is-cancer. (4)Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, A. Assessment of the Evolution of Cancer Treatment Therapies. Cancers 2011, 3 (3), 3279–3330. https://doi.org/10.3390/cancers3033279. (5)Strebhardt, K.; Ullrich, A. Paul Ehrlich’s Magic Bullet Concept: 100 Years of Progress. Nat. Rev. Cancer 2008, 8 (6), 473–480. https://doi.org/10.1038/nrc2394. (6)Mann, M.; Jensen, O. N. Proteomic Analysis of Post-Translational Modifications. Nat. Biotechnol. 2003, 21 (3), 255–261. https://doi.org/10.1038/nbt0303-255. (7)Fabbro, D.; Cowan-Jacob, S. W.; Moebitz, H. Ten Things You Should Know about Protein Kinases: IUPHAR Review 14. Br. J. Pharmacol. 2015, 172 (11), 2675–2700. https://doi.org/10.1111/bph.13096. (8)Lahiry, P.; Torkamani, A.; Schork, N. J.; Hegele, R. A. Kinase Mutations in Human Disease: Interpreting Genotype–Phenotype Relationships. Nat. Rev. Genet. 2010, 11 (1), 60–74. https://doi.org/10.1038/nrg2707. (9)Kannaiyan, R.; Mahadevan, D. A Comprehensive Review of Protein Kinase Inhibitors for Cancer Therapy. Expert Rev. Anticancer Ther. 2018, 18 (12), 1249–1270. https://doi.org/10.1080/14737140.2018.1527688. (10)Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The Protein Kinase Complement of the Human Genome. Science 2002, 298 (5600), 1912–1934. https://doi.org/10.1126/science.1075762. (11)Guo, M.-F.; Meng, J.; Li, Y.-H.; Yu, J.-Z.; Liu, C.-Y.; Feng, L.; Yang, W.-F.; Li, J.-L.; Feng, Q.-J.; Xiao, B.-G.; Ma, C.-G. The Inhibition of Rho Kinase Blocks Cell Migration and Accumulation Possibly by Challenging Inflammatory Cytokines and Chemokines on Astrocytes. J. Neurol. Sci. 2014, 343 (1), 69–75. https://doi.org/10.1016/j.jns.2014.05.034. (12)Youl, E.; Bardy, G.; Magous, R.; Cros, G.; Sejalon, F.; Virsolvy, A.; Richard, S.; Quignard, J.; Gross, R.; Petit, P.; Bataille, D.; Oiry, C. Quercetin Potentiates Insulin Secretion and Protects INS-1 Pancreatic β-Cells against Oxidative Damage via the ERK1/2 Pathway. Br. J. Pharmacol. 2010, 161 (4), 799–814. https://doi.org/10.1111/j.1476-5381.2010.00910.x. (13)Gruson, D.; Ginion, A.; Decroly, N.; Lause, P.; Vanoverschelde, J.-L.; Ketelslegers, J.-M.; Bertrand, L.; Thissen, J.-P. Urocortin-Induced Cardiomyocytes Hypertrophy Is Associated with Regulation of the GSK-3β Pathway. Heart Vessels 2012, 27 (2), 202–207. https://doi.org/10.1007/s00380-011-0141-5. (14)Blume-Jensen, P.; Hunter, T. Oncogenic Kinase Signalling. Nature 2001, 411 (6835), 355–365. https://doi.org/10.1038/35077225. (15)Non-Small Cell Lung Cancer Treatment (PDQ®) - NCI. https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq (accessed 2024-04-12). (16)Hidaka, H.; Inagaki, M.; Kawamoto, S.; Sasaki, Y. Isoquinolinesulfonamides, Novel and Potent Inhibitors of Cyclic Nucleotide Dependent Protein Kinase and Protein Kinase C. Biochemistry 1984, 23 (21), 5036–5041. https://doi.org/10.1021/bi00316a032. (17)Chen, M.; Liu, A.; Ouyang, Y.; Huang, Y.; Chao, X.; Pi, R. Fasudil and Its Analogs: A New Powerful Weapon in the Long War against Central Nervous System Disorders? Expert Opin. Investig. Drugs 2013, 22 (4), 537–550. https://doi.org/10.1517/13543784.2013.778242. (18)Sehgal, S. N.; Baker, H.; Vézina, C. Rapamycin (AY-22,989), a New Antifungal Antibiotic. II. Fermentation, Isolation and Characterization. J. Antibiot. (Tokyo) 1975, 28 (10), 727–732. https://doi.org/10.7164/antibiotics.28.727. (19)Dumont, F. J.; Su, Q. Mechanism of Action of the Immunosuppressant Rapamycin. Life Sci. 1996, 58 (5), 373–395. https://doi.org/10.1016/0024-3205(95)02233-3. (20)Cohen, M. H.; Williams, G.; Johnson, J. R.; Duan, J.; Gobburu, J.; Rahman, A.; Benson, K.; Leighton, J.; Kim, S. K.; Wood, R.; Rothmann, M.; Chen, G.; U, K. M.; Staten, A. M.; Pazdur, R. Approval Summary for Imatinib Mesylate Capsules in the Treatment of Chronic Myelogenous Leukemia. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2002, 8 (5), 935–942. (21)Roskoski, R. Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors: A 2023 Update. Pharmacol. Res. 2023, 187, 106552. https://doi.org/10.1016/j.phrs.2022.106552. (22)Cohen, P. Protein Kinases--the Major Drug Targets of the Twenty-First Century? Nat. Rev. Drug Discov. 2002, 1 (4), 309–315. https://doi.org/10.1038/nrd773. (23)Yang, Y.; Li, S.; Wang, Y.; Zhao, Y.; Li, Q. Protein Tyrosine Kinase Inhibitor Resistance in Malignant Tumors: Molecular Mechanisms and Future Perspective. Signal Transduct. Target. Ther. 2022, 7 (1), 329. https://doi.org/10.1038/s41392-022-01168-8. (24)Wang, F.; Li, C.; Wu, Q.; Lu, H. EGFR Exon 20 Insertion Mutations in Non-Small Cell Lung Cancer. Transl. Cancer Res. 2020, 9 (4), 2982–2991. https://doi.org/10.21037/tcr.2020.03.10. (25)Low, J. L.; Lim, S. M.; Lee, J. B.; Cho, B. C.; Soo, R. A. Advances in the Management of Non-Small-Cell Lung Cancer Harbouring EGFR Exon 20 Insertion Mutations. Ther. Adv. Med. Oncol. 2023, 15, 17588359221146131. https://doi.org/10.1177/17588359221146131. (26)Prolo, L. M.; Li, A.; Owen, S. F.; Parker, J. J.; Foshay, K.; Nitta, R. T.; Morgens, D. W.; Bolin, S.; Wilson, C. M.; Vega L, J. C. M.; Luo, E. J.; Nwagbo, G.; Waziri, A.; Li, G.; Reimer, R. J.; Bassik, M. C.; Grant, G. A. Targeted Genomic CRISPR-Cas9 Screen Identifies MAP4K4 as Essential for Glioblastoma Invasion. Sci. Rep. 2019, 9 (1), 14020. https://doi.org/10.1038/s41598-019-50160-w. (27)Hao, J.-M.; Chen, J.-Z.; Sui, H.-M.; Si-Ma, X.-Q.; Li, G.-Q.; Liu, C.; Li, J.-L.; Ding, Y.-Q.; Li, J.-M. A Five-Gene Signature as a Potential Predictor of Metastasis and Survival in Colorectal Cancer. J. Pathol. 2010, 220 (4), 475–489. https://doi.org/10.1002/path.2668. (28)Garcia-Garcia, S.; Rodrigo-Faus, M.; Fonseca, N.; Manzano, S.; Győrffy, B.; Ocaña, A.; Bragado, P.; Porras, A.; Gutierrez-Uzquiza, A. HGK Promotes Metastatic Dissemination in Prostate Cancer. Sci. Rep. 2021, 11 (1), 12287. https://doi.org/10.1038/s41598-021-91292-2. (29)Singh, S. K.; Kumar, S.; Viswakarma, N.; Principe, D. R.; Das, S.; Sondarva, G.; Nair, R. S.; Srivastava, P.; Sinha, S. C.; Grippo, P. J.; Thatcher, G. R. J.; Rana, B.; Rana, A. MAP4K4 Promotes Pancreatic Tumorigenesis via Phosphorylation and Activation of Mixed Lineage Kinase 3. Oncogene 2021, 40 (43), 6153–6165. https://doi.org/10.1038/s41388-021-02007-w. (30)Ammirati, M.; Bagley, S. W.; Bhattacharya, S. K.; Buckbinder, L.; Carlo, A. A.; Conrad, R.; Cortes, C.; Dow, R. L.; Dowling, M. S.; El-Kattan, A.; Ford, K.; Guimarães, C. R. W.; Hepworth, D.; Jiao, W.; LaPerle, J.; Liu, S.; Londregan, A.; Loria, P. M.; Mathiowetz, A. M.; Munchhof, M.; Orr, S. T. M.; Petersen, D. N.; Price, D. A.; Skoura, A.; Smith, A. C.; Wang, J. Discovery of an in Vivo Tool to Establish Proof-of-Concept for MAP4K4-Based Antidiabetic Treatment. ACS Med. Chem. Lett. 2015, 6 (11), 1128–1133. https://doi.org/10.1021/acsmedchemlett.5b00215. (31)Ndubaku, C. O.; Crawford, T. D.; Chen, H.; Boggs, J. W.; Drobnick, J.; Harris, S. F.; Jesudason, R.; McNamara, E.; Nonomiya, J.; Sambrone, A.; Schmidt, S.; Smyczek, T.; Vitorino, P.; Wang, L.; Wu, P.; Yeung, S.; Chen, J.; Chen, K.; Ding, C. Z.; Wang, T.; Xu, Z.; Gould, S. E.; Murray, L. J.; Ye, W. Structure-Based Design of GNE-495, a Potent and Selective MAP4K4 Inhibitor with Efficacy in Retinal Angiogenesis. ACS Med. Chem. Lett. 2015, 6 (8), 913–918. https://doi.org/10.1021/acsmedchemlett.5b00174. (32)Vitorino, P.; Yeung, S.; Crow, A.; Bakke, J.; Smyczek, T.; West, K.; McNamara, E.; Eastham-Anderson, J.; Gould, S.; Harris, S. F.; Ndubaku, C.; Ye, W. MAP4K4 Regulates Integrin-FERM Binding to Control Endothelial Cell Motility. Nature 2015, 519 (7544), 425–430. https://doi.org/10.1038/nature14323. (33)Dow, R. L.; Ammirati, M.; Bagley, S. W.; Bhattacharya, S. K.; Buckbinder, L.; Cortes, C.; El-Kattan, A. F.; Ford, K.; Freeman, G. B.; Guimarães, C. R. W.; Liu, S.; Niosi, M.; Skoura, A.; Tess, D. 2-Aminopyridine-Based Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Inhibitors: Assessment of Mechanism-Based Safety. J. Med. Chem. 2018, 61 (7), 3114–3125. https://doi.org/10.1021/acs.jmedchem.8b00152. (34)Baig, M. H.; Ahmad, K.; Roy, S.; Ashraf, J. M.; Adil, M.; Siddiqui, M. H.; Khan, S.; Kamal, M. A.; Provazník, I.; Choi, I. Computer Aided Drug Design: Success and Limitations. Curr. Pharm. Des. 2016, 22 (5), 572–581. https://doi.org/10.2174/1381612822666151125000550. (35)Kirsch, P.; Hartman, A. M.; Hirsch, A. K. H.; Empting, M. Concepts and Core Principles of Fragment-Based Drug Design. Molecules 2019, 24 (23), 4309. https://doi.org/10.3390/molecules24234309. (36)Erlanson, D. A.; Fesik, S. W.; Hubbard, R. E.; Jahnke, W.; Jhoti, H. Twenty Years on: The Impact of Fragments on Drug Discovery. Nat. Rev. Drug Discov. 2016, 15 (9), 605–619. https://doi.org/10.1038/nrd.2016.109. (37)de Souza Neto, L. R.; Moreira-Filho, J. T.; Neves, B. J.; Maidana, R. L. B. R.; Guimarães, A. C. R.; Furnham, N.; Andrade, C. H.; Silva, F. P. J. In Silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Front. Chem. 2020, 8. https://doi.org/10.3389/fchem.2020.00093. (38)Chang, C.-D.; Chao, M.-W.; Lee, H.-Y.; Liu, Y.-T.; Tu, H.-J.; Lien, S.-T.; Lin, T. E.; Sung, T.-Y.; Yen, S.-C.; Huang, S.-H.; Hsu, K.-C.; Pan, S.-L. In Silico Identification and Biological Evaluation of a Selective MAP4K4 Inhibitor against Pancreatic Cancer. J. Enzyme Inhib. Med. Chem. 38 (1), 2166039. https://doi.org/10.1080/14756366.2023.2166039. (39)Iijima, D.; Sugama, H.; Takahashi, Y.; Hirai, M.; Togashi, Y.; Xie, J.; Shen, J.; Ke, Y.; Akatsuka, H.; Kawaguchi, T.; Takedomi, K.; Kashima, A.; Nishio, M.; Inui, Y.; Yoneda, H.; Xia, G.; Iijima, T. Discovery of SPH3127: A Novel, Highly Potent, and Orally Active Direct Renin Inhibitor. J. Med. Chem. 2022, 65 (16), 10882–10897. https://doi.org/10.1021/acs.jmedchem.2c00834. (40)Irie, T.; Sawa, M. 7-Azaindole: A Versatile Scaffold for Developing Kinase Inhibitors. Chem. Pharm. Bull. (Tokyo) 2018, 66 (1), 29–36. https://doi.org/10.1248/cpb.c17-00380. (41)Fang, G.; Chen, H.; Cheng, Z.; Tang, Z.; Wan, Y. Azaindole Derivatives as Potential Kinase Inhibitors and Their SARs Elucidation. Eur. J. Med. Chem. 2023, 258, 115621. https://doi.org/10.1016/j.ejmech.2023.115621. (42)Kim, G.; McKee, A. E.; Ning, Y.-M.; Hazarika, M.; Theoret, M.; Johnson, J. R.; Xu, Q. C.; Tang, S.; Sridhara, R.; Jiang, X.; He, K.; Roscoe, D.; McGuinn, W. D.; Helms, W. S.; Russell, A. M.; Miksinski, S. P.; Zirkelbach, J. F.; Earp, J.; Liu, Q.; Ibrahim, A.; Justice, R.; Pazdur, R. FDA Approval Summary: Vemurafenib for Treatment of Unresectable or Metastatic Melanoma with the BRAFV600E Mutation. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20 (19), 4994–5000. https://doi.org/10.1158/1078-0432.CCR-14-0776. (43)Lamb, Y. N. Pexidartinib: First Approval. Drugs 2019, 79 (16), 1805–1812. https://doi.org/10.1007/s40265-019-01210-0. (44)Miyaura, N.; Yamada, K.; Suzuki, A. A New Stereospecific Cross-Coupling by the Palladium-Catalyzed Reaction of 1-Alkenylboranes with 1-Alkenyl or 1-Alkynyl Halides. Tetrahedron Lett. 1979, 20 (36), 3437–3440. https://doi.org/10.1016/S0040-4039(01)95429-2. (45)Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H. Mechanism of the Palladium-Catalyzed Homocoupling of Arylboronic Acids: Key Involvement of a Palladium Peroxo Complex. J. Am. Chem. Soc. 2006, 128 (21), 6829–6836. https://doi.org/10.1021/ja0569959. (46)Düfert, M. A.; Billingsley, K. L.; Buchwald, S. L. Suzuki-Miyaura Cross-Coupling of Unprotected, Nitrogen-Rich Heterocycles: Substrate Scope and Mechanistic Investigation. J. Am. Chem. Soc. 2013, 135 (34), 12877–12885. https://doi.org/10.1021/ja4064469. (47)Wu, G.; Spevak, W.; Shi, S.; Cho, H.; Ibrahim, P. N.; Zhang, C.; Shi, S.; Zhou, Y.; Artis, D. R.; Zhang, J. Pyrrolo [2,3-B] Pyridines as Kinase Modulators. WO2008079909A1, July 3, 2008.
|