跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 07:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃奕霖
研究生(外文):HWANG, YI-LIN
論文名稱:合成1H吡咯[2,3-b]吡啶衍生物作為激酶抑制劑
論文名稱(外文):Synthesis of 1H-Pyrrolo[2,3-b]pyridine Derivatives as Kinase Inhibitors
指導教授:李學耘
指導教授(外文):LEE, HSUEH-YUN
口試委員:李學耘許凱程皇甫維君
口試委員(外文):LEE, HSUEH-YUNHSU, KAI-CHENGHUANGFU, WEI-CHUN
口試日期:2024-06-18
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:124
中文關鍵詞:激酶抑制劑1H吡咯[2,3-b]吡啶
外文關鍵詞:Kinase inhibitor1H-Pyrrolo[2,3-b]pyridine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
癌症是至今為止最致命的疾病之一,每年有超過1000萬人死於癌症。因此,攻剋癌症已是刻不容緩的任務。 隨著過去幾十年化學和生物學的進步,癌症治療的選擇越來越多,而針對蛋白激酶是最有前景的方法之一。蛋白激酶在人體的生物學功能中發揮重要作用,包括腫瘤細胞的發育。據文獻指出,絲裂原活化蛋白激酶 (MAP4K4) 與癌症息息相關,例如神經母細胞瘤、大腸直腸癌、前列腺癌和胰腺癌。即便研究清楚指出癌症與MAP4K4的過度表現有關,現行的MAP4K4抑制劑的數量並不多,因而啟發我們進行新穎MAP4K4的設計與合成。 本研究利用基於小片段結構虛擬篩選(Fragment-based virtual screening),發現了一系列具有 3-(1,2,3,6-四氫吡啶-4-基)-7-氮雜吲哚共同結構的 MAP4K4 抑制劑。我們進行了結構活性關係的研究(SAR),總共合成了 16 個化合物並完成了體外激酶活性的測定。化合物 10 的激酶 IC50值為 15.8 nM,被發現是所合成化合物中最有效的。這項研究的結果確立了新穎的結構片段作為MAP4K4的抑制劑,帶來良好的結果,並且需要進一步的生物學評估來確定它們作為抗癌製劑。
Cancer is one of the deadliest diseases to date, more than 10 million people die of cancer each year. Therefore, tackling cancer is an imperative task. As advances in chemistry and biology have been made in the past few decades, there have been an increasing amount of treatment options, and targeting protein kinases is one of the promising methods. Protein kinases play a significant role in the biological functions of the human body, including the development of tumor cells. Mitogen-activated protein kinase kinase kinase kinase (MAP4K4) is reported to correlate with a handful of cancers, such as glioblastoma, colorectal cancer, prostate cancer, and pancreatic cancer. Despite the clear correlations between cancer and MAP4K4 overexpression, there is a lack of known inhibitors to date, which intrigued us to develop novel MAP4K4 inhibitors. This study utilizes fragment-based-virtual screening and discovered a series of MAP4K4 inhibitors possessing common structures of 3-(1,2,3,6-tetrahydropyridin-4-yl)-7-azaindoles. A structure-activity relationship (SAR) study was performed, a total of 16 compounds were synthesized and in-vitro kinase assays were completed. Compound 10 possesses a kinase IC50 value of 15.8 nM and was found to be the most potent compound of all. This study established a novel scaffold of MAP4K4 inhibitors, as well as delivered promising results. and will require further biological evaluations to establish them as anti-cancer agents.
Table of Contents
Table of Contents i
Table of Figures ii
Table of Tables iii
Table of Schemes iv
中文摘要 v
Abstract vi
1. Introduction 1
2. Kinase and Kinase inhibitors 3
2.1 Kinases and their relationship with cancer 3
2.2 Development of kinase inhibitors 4
2.3 Why new kinase inhibitors are needed? 5
3. MAP4K4 6
4. Rationale 7
5. Results and Discussion 13
5.1 Chemistry 13
5.2 Biological evaluation 19
6. Conclusion 23
7. Experimental 24
8. References 46
Appendix 53

Table of Figures
Figure 1. Structures of reported MAP4K4 inhibitors 7
Figure 2. The structure of F389-0746 9
Figure 3. The design of compounds 2-16 10
Figure 4. Indole-containing drugs 10
Figure 5. The three binding modes of 7-azaindole 11
Figure 6. FDA approved drugs that contain 7-azaindole 12
Figure 7. The retrosynthetic analysis of compound 23 13
Figure 8. The electrophilic aromatic substitution of azaindole 14

Table of Tables
Table 1. Biological evaluation of synthesized compounds 21

Table of Schemes
Scheme 1. Synthesis of compound 1 15
Scheme 2. Synthesis of compounds 4, 7-9 and 11 16
Scheme 3. Synthesis of compounds 5-6 and 10 16
Scheme 4. Synthesis of compound 2 17
Scheme 5. Synthesis of compound 3 17
Scheme 6. Synthesis of compounds 12 and 13 18
Scheme 7. Synthesis of compounds 14 and 15 19
Scheme 8. Synthesis of compound 16 19




(1)https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm.
(2)https://www.mohw.gov.tw/cp-16-70314-1.html.
(3)https://www.cancer.gov/about-cancer/understanding/what-is-cancer.
(4)Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, A. Assessment of the Evolution of Cancer Treatment Therapies. Cancers 2011, 3 (3), 3279–3330. https://doi.org/10.3390/cancers3033279.
(5)Strebhardt, K.; Ullrich, A. Paul Ehrlich’s Magic Bullet Concept: 100 Years of Progress. Nat. Rev. Cancer 2008, 8 (6), 473–480. https://doi.org/10.1038/nrc2394.
(6)Mann, M.; Jensen, O. N. Proteomic Analysis of Post-Translational Modifications. Nat. Biotechnol. 2003, 21 (3), 255–261. https://doi.org/10.1038/nbt0303-255.
(7)Fabbro, D.; Cowan-Jacob, S. W.; Moebitz, H. Ten Things You Should Know about Protein Kinases: IUPHAR Review 14. Br. J. Pharmacol. 2015, 172 (11), 2675–2700. https://doi.org/10.1111/bph.13096.
(8)Lahiry, P.; Torkamani, A.; Schork, N. J.; Hegele, R. A. Kinase Mutations in Human Disease: Interpreting Genotype–Phenotype Relationships. Nat. Rev. Genet. 2010, 11 (1), 60–74. https://doi.org/10.1038/nrg2707.
(9)Kannaiyan, R.; Mahadevan, D. A Comprehensive Review of Protein Kinase Inhibitors for Cancer Therapy. Expert Rev. Anticancer Ther. 2018, 18 (12), 1249–1270. https://doi.org/10.1080/14737140.2018.1527688.
(10)Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The Protein Kinase Complement of the Human Genome. Science 2002, 298 (5600), 1912–1934. https://doi.org/10.1126/science.1075762.
(11)Guo, M.-F.; Meng, J.; Li, Y.-H.; Yu, J.-Z.; Liu, C.-Y.; Feng, L.; Yang, W.-F.; Li, J.-L.; Feng, Q.-J.; Xiao, B.-G.; Ma, C.-G. The Inhibition of Rho Kinase Blocks Cell Migration and Accumulation Possibly by Challenging Inflammatory Cytokines and Chemokines on Astrocytes. J. Neurol. Sci. 2014, 343 (1), 69–75. https://doi.org/10.1016/j.jns.2014.05.034.
(12)Youl, E.; Bardy, G.; Magous, R.; Cros, G.; Sejalon, F.; Virsolvy, A.; Richard, S.; Quignard, J.; Gross, R.; Petit, P.; Bataille, D.; Oiry, C. Quercetin Potentiates Insulin Secretion and Protects INS-1 Pancreatic β-Cells against Oxidative Damage via the ERK1/2 Pathway. Br. J. Pharmacol. 2010, 161 (4), 799–814. https://doi.org/10.1111/j.1476-5381.2010.00910.x.
(13)Gruson, D.; Ginion, A.; Decroly, N.; Lause, P.; Vanoverschelde, J.-L.; Ketelslegers, J.-M.; Bertrand, L.; Thissen, J.-P. Urocortin-Induced Cardiomyocytes Hypertrophy Is Associated with Regulation of the GSK-3β Pathway. Heart Vessels 2012, 27 (2), 202–207. https://doi.org/10.1007/s00380-011-0141-5.
(14)Blume-Jensen, P.; Hunter, T. Oncogenic Kinase Signalling. Nature 2001, 411 (6835), 355–365. https://doi.org/10.1038/35077225.
(15)Non-Small Cell Lung Cancer Treatment (PDQ®) - NCI. https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq (accessed 2024-04-12).
(16)Hidaka, H.; Inagaki, M.; Kawamoto, S.; Sasaki, Y. Isoquinolinesulfonamides, Novel and Potent Inhibitors of Cyclic Nucleotide Dependent Protein Kinase and Protein Kinase C. Biochemistry 1984, 23 (21), 5036–5041. https://doi.org/10.1021/bi00316a032.
(17)Chen, M.; Liu, A.; Ouyang, Y.; Huang, Y.; Chao, X.; Pi, R. Fasudil and Its Analogs: A New Powerful Weapon in the Long War against Central Nervous System Disorders? Expert Opin. Investig. Drugs 2013, 22 (4), 537–550. https://doi.org/10.1517/13543784.2013.778242.
(18)Sehgal, S. N.; Baker, H.; Vézina, C. Rapamycin (AY-22,989), a New Antifungal Antibiotic. II. Fermentation, Isolation and Characterization. J. Antibiot. (Tokyo) 1975, 28 (10), 727–732. https://doi.org/10.7164/antibiotics.28.727.
(19)Dumont, F. J.; Su, Q. Mechanism of Action of the Immunosuppressant Rapamycin. Life Sci. 1996, 58 (5), 373–395. https://doi.org/10.1016/0024-3205(95)02233-3.
(20)Cohen, M. H.; Williams, G.; Johnson, J. R.; Duan, J.; Gobburu, J.; Rahman, A.; Benson, K.; Leighton, J.; Kim, S. K.; Wood, R.; Rothmann, M.; Chen, G.; U, K. M.; Staten, A. M.; Pazdur, R. Approval Summary for Imatinib Mesylate Capsules in the Treatment of Chronic Myelogenous Leukemia. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2002, 8 (5), 935–942.
(21)Roskoski, R. Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors: A 2023 Update. Pharmacol. Res. 2023, 187, 106552. https://doi.org/10.1016/j.phrs.2022.106552.
(22)Cohen, P. Protein Kinases--the Major Drug Targets of the Twenty-First Century? Nat. Rev. Drug Discov. 2002, 1 (4), 309–315. https://doi.org/10.1038/nrd773.
(23)Yang, Y.; Li, S.; Wang, Y.; Zhao, Y.; Li, Q. Protein Tyrosine Kinase Inhibitor Resistance in Malignant Tumors: Molecular Mechanisms and Future Perspective. Signal Transduct. Target. Ther. 2022, 7 (1), 329. https://doi.org/10.1038/s41392-022-01168-8.
(24)Wang, F.; Li, C.; Wu, Q.; Lu, H. EGFR Exon 20 Insertion Mutations in Non-Small Cell Lung Cancer. Transl. Cancer Res. 2020, 9 (4), 2982–2991. https://doi.org/10.21037/tcr.2020.03.10.
(25)Low, J. L.; Lim, S. M.; Lee, J. B.; Cho, B. C.; Soo, R. A. Advances in the Management of Non-Small-Cell Lung Cancer Harbouring EGFR Exon 20 Insertion Mutations. Ther. Adv. Med. Oncol. 2023, 15, 17588359221146131. https://doi.org/10.1177/17588359221146131.
(26)Prolo, L. M.; Li, A.; Owen, S. F.; Parker, J. J.; Foshay, K.; Nitta, R. T.; Morgens, D. W.; Bolin, S.; Wilson, C. M.; Vega L, J. C. M.; Luo, E. J.; Nwagbo, G.; Waziri, A.; Li, G.; Reimer, R. J.; Bassik, M. C.; Grant, G. A. Targeted Genomic CRISPR-Cas9 Screen Identifies MAP4K4 as Essential for Glioblastoma Invasion. Sci. Rep. 2019, 9 (1), 14020. https://doi.org/10.1038/s41598-019-50160-w.
(27)Hao, J.-M.; Chen, J.-Z.; Sui, H.-M.; Si-Ma, X.-Q.; Li, G.-Q.; Liu, C.; Li, J.-L.; Ding, Y.-Q.; Li, J.-M. A Five-Gene Signature as a Potential Predictor of Metastasis and Survival in Colorectal Cancer. J. Pathol. 2010, 220 (4), 475–489. https://doi.org/10.1002/path.2668.
(28)Garcia-Garcia, S.; Rodrigo-Faus, M.; Fonseca, N.; Manzano, S.; Győrffy, B.; Ocaña, A.; Bragado, P.; Porras, A.; Gutierrez-Uzquiza, A. HGK Promotes Metastatic Dissemination in Prostate Cancer. Sci. Rep. 2021, 11 (1), 12287. https://doi.org/10.1038/s41598-021-91292-2.
(29)Singh, S. K.; Kumar, S.; Viswakarma, N.; Principe, D. R.; Das, S.; Sondarva, G.; Nair, R. S.; Srivastava, P.; Sinha, S. C.; Grippo, P. J.; Thatcher, G. R. J.; Rana, B.; Rana, A. MAP4K4 Promotes Pancreatic Tumorigenesis via Phosphorylation and Activation of Mixed Lineage Kinase 3. Oncogene 2021, 40 (43), 6153–6165. https://doi.org/10.1038/s41388-021-02007-w.
(30)Ammirati, M.; Bagley, S. W.; Bhattacharya, S. K.; Buckbinder, L.; Carlo, A. A.; Conrad, R.; Cortes, C.; Dow, R. L.; Dowling, M. S.; El-Kattan, A.; Ford, K.; Guimarães, C. R. W.; Hepworth, D.; Jiao, W.; LaPerle, J.; Liu, S.; Londregan, A.; Loria, P. M.; Mathiowetz, A. M.; Munchhof, M.; Orr, S. T. M.; Petersen, D. N.; Price, D. A.; Skoura, A.; Smith, A. C.; Wang, J. Discovery of an in Vivo Tool to Establish Proof-of-Concept for MAP4K4-Based Antidiabetic Treatment. ACS Med. Chem. Lett. 2015, 6 (11), 1128–1133. https://doi.org/10.1021/acsmedchemlett.5b00215.
(31)Ndubaku, C. O.; Crawford, T. D.; Chen, H.; Boggs, J. W.; Drobnick, J.; Harris, S. F.; Jesudason, R.; McNamara, E.; Nonomiya, J.; Sambrone, A.; Schmidt, S.; Smyczek, T.; Vitorino, P.; Wang, L.; Wu, P.; Yeung, S.; Chen, J.; Chen, K.; Ding, C. Z.; Wang, T.; Xu, Z.; Gould, S. E.; Murray, L. J.; Ye, W. Structure-Based Design of GNE-495, a Potent and Selective MAP4K4 Inhibitor with Efficacy in Retinal Angiogenesis. ACS Med. Chem. Lett. 2015, 6 (8), 913–918. https://doi.org/10.1021/acsmedchemlett.5b00174.
(32)Vitorino, P.; Yeung, S.; Crow, A.; Bakke, J.; Smyczek, T.; West, K.; McNamara, E.; Eastham-Anderson, J.; Gould, S.; Harris, S. F.; Ndubaku, C.; Ye, W. MAP4K4 Regulates Integrin-FERM Binding to Control Endothelial Cell Motility. Nature 2015, 519 (7544), 425–430. https://doi.org/10.1038/nature14323.
(33)Dow, R. L.; Ammirati, M.; Bagley, S. W.; Bhattacharya, S. K.; Buckbinder, L.; Cortes, C.; El-Kattan, A. F.; Ford, K.; Freeman, G. B.; Guimarães, C. R. W.; Liu, S.; Niosi, M.; Skoura, A.; Tess, D. 2-Aminopyridine-Based Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Inhibitors: Assessment of Mechanism-Based Safety. J. Med. Chem. 2018, 61 (7), 3114–3125. https://doi.org/10.1021/acs.jmedchem.8b00152.
(34)Baig, M. H.; Ahmad, K.; Roy, S.; Ashraf, J. M.; Adil, M.; Siddiqui, M. H.; Khan, S.; Kamal, M. A.; Provazník, I.; Choi, I. Computer Aided Drug Design: Success and Limitations. Curr. Pharm. Des. 2016, 22 (5), 572–581. https://doi.org/10.2174/1381612822666151125000550.
(35)Kirsch, P.; Hartman, A. M.; Hirsch, A. K. H.; Empting, M. Concepts and Core Principles of Fragment-Based Drug Design. Molecules 2019, 24 (23), 4309. https://doi.org/10.3390/molecules24234309.
(36)Erlanson, D. A.; Fesik, S. W.; Hubbard, R. E.; Jahnke, W.; Jhoti, H. Twenty Years on: The Impact of Fragments on Drug Discovery. Nat. Rev. Drug Discov. 2016, 15 (9), 605–619. https://doi.org/10.1038/nrd.2016.109.
(37)de Souza Neto, L. R.; Moreira-Filho, J. T.; Neves, B. J.; Maidana, R. L. B. R.; Guimarães, A. C. R.; Furnham, N.; Andrade, C. H.; Silva, F. P. J. In Silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Front. Chem. 2020, 8. https://doi.org/10.3389/fchem.2020.00093.
(38)Chang, C.-D.; Chao, M.-W.; Lee, H.-Y.; Liu, Y.-T.; Tu, H.-J.; Lien, S.-T.; Lin, T. E.; Sung, T.-Y.; Yen, S.-C.; Huang, S.-H.; Hsu, K.-C.; Pan, S.-L. In Silico Identification and Biological Evaluation of a Selective MAP4K4 Inhibitor against Pancreatic Cancer. J. Enzyme Inhib. Med. Chem. 38 (1), 2166039. https://doi.org/10.1080/14756366.2023.2166039.
(39)Iijima, D.; Sugama, H.; Takahashi, Y.; Hirai, M.; Togashi, Y.; Xie, J.; Shen, J.; Ke, Y.; Akatsuka, H.; Kawaguchi, T.; Takedomi, K.; Kashima, A.; Nishio, M.; Inui, Y.; Yoneda, H.; Xia, G.; Iijima, T. Discovery of SPH3127: A Novel, Highly Potent, and Orally Active Direct Renin Inhibitor. J. Med. Chem. 2022, 65 (16), 10882–10897. https://doi.org/10.1021/acs.jmedchem.2c00834.
(40)Irie, T.; Sawa, M. 7-Azaindole: A Versatile Scaffold for Developing Kinase Inhibitors. Chem. Pharm. Bull. (Tokyo) 2018, 66 (1), 29–36. https://doi.org/10.1248/cpb.c17-00380.
(41)Fang, G.; Chen, H.; Cheng, Z.; Tang, Z.; Wan, Y. Azaindole Derivatives as Potential Kinase Inhibitors and Their SARs Elucidation. Eur. J. Med. Chem. 2023, 258, 115621. https://doi.org/10.1016/j.ejmech.2023.115621.
(42)Kim, G.; McKee, A. E.; Ning, Y.-M.; Hazarika, M.; Theoret, M.; Johnson, J. R.; Xu, Q. C.; Tang, S.; Sridhara, R.; Jiang, X.; He, K.; Roscoe, D.; McGuinn, W. D.; Helms, W. S.; Russell, A. M.; Miksinski, S. P.; Zirkelbach, J. F.; Earp, J.; Liu, Q.; Ibrahim, A.; Justice, R.; Pazdur, R. FDA Approval Summary: Vemurafenib for Treatment of Unresectable or Metastatic Melanoma with the BRAFV600E Mutation. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20 (19), 4994–5000. https://doi.org/10.1158/1078-0432.CCR-14-0776.
(43)Lamb, Y. N. Pexidartinib: First Approval. Drugs 2019, 79 (16), 1805–1812. https://doi.org/10.1007/s40265-019-01210-0.
(44)Miyaura, N.; Yamada, K.; Suzuki, A. A New Stereospecific Cross-Coupling by the Palladium-Catalyzed Reaction of 1-Alkenylboranes with 1-Alkenyl or 1-Alkynyl Halides. Tetrahedron Lett. 1979, 20 (36), 3437–3440. https://doi.org/10.1016/S0040-4039(01)95429-2.
(45)Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H. Mechanism of the Palladium-Catalyzed Homocoupling of Arylboronic Acids:  Key Involvement of a Palladium Peroxo Complex. J. Am. Chem. Soc. 2006, 128 (21), 6829–6836. https://doi.org/10.1021/ja0569959.
(46)Düfert, M. A.; Billingsley, K. L.; Buchwald, S. L. Suzuki-Miyaura Cross-Coupling of Unprotected, Nitrogen-Rich Heterocycles: Substrate Scope and Mechanistic Investigation. J. Am. Chem. Soc. 2013, 135 (34), 12877–12885. https://doi.org/10.1021/ja4064469.
(47)Wu, G.; Spevak, W.; Shi, S.; Cho, H.; Ibrahim, P. N.; Zhang, C.; Shi, S.; Zhou, Y.; Artis, D. R.; Zhang, J. Pyrrolo [2,3-B] Pyridines as Kinase Modulators. WO2008079909A1, July 3, 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top