跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何欣諼
研究生(外文):HO, HSIN-HSUAN
論文名稱:探討新穎EGFR/c-MET雙標靶抑制劑TC-N19誘導大腸直腸癌細胞死亡之分子機轉
論文名稱(外文):Investigating the Molecular Mechanism of the Novel EGFR/c-MET Dual Inhibitor TC-N19-Induced Cell Death in Colorectal Cancer Cells
指導教授:楊培銘楊培銘引用關係
指導教授(外文):YANG, PEI-MING
口試委員:楊培銘黃翠琴蔡淵欽
口試委員(外文):YANG, PEI-MINGHUANG, TSUI-CHINTSAI, YUAN-CHIN
口試日期:2024-07-10
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:癌症生物學與藥物研發研究所碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:49
中文關鍵詞:大腸直腸癌自噬鐵自噬鐵死亡
外文關鍵詞:CRCautophagyferroptosisferritinophgay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
結腸直腸癌是全球前三大常見癌症,所以迫切需要開發新的治療手段。TC-N19 (以下簡稱N19)是一種新型表皮生長因子受體及間質表皮轉化因子的雙重抑制劑。儘管先前的研究已經證明了N19對於多種癌症的抗癌功效,例如:前列腺癌、非小細胞肺癌、膠質母細胞瘤和胰臟導管腺癌,但其對結腸直腸癌的影響還尚未被探討過。在本研究中,我們使用了美國國家癌症研究所NCI-60的癌細胞篩選,發現結腸直腸癌對N19治療表現出最高的敏感性。隨後,我們在四種結腸直癌細胞系(HCT116、HT29、RKO和DLD-1)中驗證了N19的體外抗癌的能力,它與其他癌細胞類型中的效果一致。N19在結腸直腸癌細胞中抑制了表皮生長因子受體及間質表皮轉化因子蛋白的表達。而細胞可能通過意外細胞死亡或調節細胞死亡而死亡。意外細胞死亡是一個生物學上不受控制的過程,而調節細胞死亡涉及緊密結構的信號級聯和分子定義的效應機制,如:凋亡、壞死性凋亡、自噬依賴性細胞死亡、鐵死亡等。通過使用一系列調節細胞死亡的抑制劑,我們發現N19主要誘導結腸直腸癌細胞中的自噬依賴性細胞死亡和鐵死亡。將進一步進行研究以闡明N19在結腸直腸癌細胞中的抗癌活性的潛在分子機制和角色。
Colorectal cancer (CRC) stands as the third most prevalent cancer worldwide. The development of novel therapeutic interventions is urgently needed. TC-N19 (hereafter designated as N19) is a novel epidermal growth factor receptor (EGFR)/c-MET dual inhibitor. While previous studies have demonstrated N19's anticancer efficacy in several cancers such as prostate cancer, non-small cell lung cancer (NSCLC), glioblastoma (GBM), and pancreatic ductal adenocarcinoma (PDAC), its impact on CRC remains unexplored. In this study, we employed the National Cancer Institute (NCI)-60 cancer cell panel screening and revealed that colon cancer exhibits the highest sensitivity to N19 treatment. Subsequently, we validated the in vitro anticancer potential of N19 across four CRC cell lines (HCT116, HT29, RKO, and DLD-1). Consistent with its effects in other cancer cell types, N19 demonstrated the inhibition of EGFR and c-MET protein expression in CRC cells. Cells may die by either accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms such as apoptosis, necroptosis, autophagy-dependent cell death, ferroptosis, and so on. Employing a spectrum of RCD inhibitors, we found that N19 predominantly induced autophagy-dependent cell death and ferroptosis in CRC cells. Further investigation will be undertaken to elucidate the underlying molecular mechanisms and their roles in the anticancer activity of N19 in CRC cells.
Abstract vi
中文摘要 vii
Abbreviation viii
Introduction 1
1.1 Colorectal cancer (CRC) 1
1.2 The novel EGFR/c-MET dual inhibitor TC-N19 6
1.3 Mechanism of cell death 7
Motivation 16
Materials and Methods 17
2.1 Reagents, Chemicals, and Antibodies 17
2.2 National Cancer Institute (NCI)-60 screening methodology 18
2.3 Cell Culture 18
2.4 Cell Viability Assay 19
2.5 Protein Expression Analysis 19
2.6 Lipid Peroxidation Assay 20
2.7 Cellular Thermal Shift Assay (CETSA) 20
2.8 Band Depletion Assay 21
2.9 RNA Sequencing (RNA-Seq) Analysis 21
2.10 Statistical Analysis 22
Results 23
3.1 N19 exhibits anticancer activity in CRC cells 23
3.2 N19 inhibits the expression of EGFR and c-MET. 28
3.3 N19 partially triggers caspase-dependent cell death in CRC cells 30
3.4 N19 induces autophagy-dependent cell death in CRC cells. 32
3.5 N19 induces ferroptosis in CRC cells 35
3.6 RNA sequencing analysis reveals the potential mechanism for the anticancer activity of N19 38
Discussion 41
Conclusion 43
Reference 44

Figure 1. CRC stage using the TNM system according to AJCC. 4
Figure 2. The carcinogenic process and mechanisms of CRC. 5
Figure 3. Apoptosis regulatory pathway. 9
Figure 4. Autophagy regulatory pathway. 12
Figure 5. Ferroptosis regulatory pathway. 15
Figure 6. NCI-60 cancer cell screening for N19. 26
Figure 7. N19 exhibits anticancer activity in CRC cells. 27
Figure 8. N19 inhibits the expression of EGFR and c-MET. 29
Figure 9. N19 partially triggers caspase-dependent cell death in CRC cells. 31
Figure 10. N19 induces autophagy-dependent cell death in CRC cells. 33
Figure 11. N19 induces autophagy-dependent cell death in DLD-1 cells. 34
Figure 12. N19-induced ferroptosis also induces autophagy-dependent ferroptosis. 36
Figure 13. KEGG pathway enrichment analysis in N19-treated CRC cells. 39
Figure 14. N19 upregulates genes related to cholesterol biosynthesis in CRC cells. 40

Table 1. Quantification of growth inhibitory and lethal effects of N19 in NCI-60 screening. 24
Table 2. A comparison of the IC50 values and treatment duration of N19 in different cancer cell types. 25

1.Siegel, R.L., et al., Cancer statistics, 2023. CA Cancer J Clin, 2023. 73(1): p. 17-48.
2.Patel, S.G., et al., The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol Hepatol, 2022. 7(3): p. 262-274.
3.Ye, S.-B., et al., High-throughput proteomics profiling-derived signature associated with chemotherapy response and survival for stage II/III colorectal cancer. npj Precision Oncology, 2023. 7(1): p. 50.
4.Colorectal Cancer Early Detection, Diagnosis, and Staging. [cited 2020 June 29].
5.De Palma, F.D.E., et al., The Molecular Hallmarks of the Serrated Pathway in Colorectal Cancer. Cancers, 2019. 11(7): p. 1017.
6.Zhuang, Y.-y., et al., miR-5000-3p confers oxaliplatin resistance by targeting ubiquitin-specific peptidase 49 in colorectal cancer. Cell Death Discovery, 2021. 7(1): p. 129.
7.Ebrahimzadeh, S., et al., Colorectal cancer treatment using bacteria: focus on molecular mechanisms. BMC Microbiol, 2021. 21(1): p. 218.
8.Xie, Y.-H., Y.-X. Chen, and J.-Y. Fang, Comprehensive review of targeted therapy for colorectal cancer. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 22.
9.Winder, T. and H.J. Lenz, Vascular endothelial growth factor and epidermal growth factor signaling pathways as therapeutic targets for colorectal cancer. Gastroenterology, 2010. 138(6): p. 2163-76.
10.Yau, T.O., Precision treatment in colorectal cancer: Now and the future. JGH Open, 2019. 3(5): p. 361-369.
11.Shek, D., et al., Immune-Checkpoint Inhibitors for Metastatic Colorectal Cancer: A Systematic Review of Clinical Outcomes. Cancers, 2021. 13(17): p. 4345.
12.Chen, T.C., et al., Structure-based hybridization, synthesis and biological evaluation of novel tetracyclic heterocyclic azathioxanthone analogues as potential antitumor agents. Eur J Med Chem, 2015. 103: p. 615-27.
13.Wu, D.W., et al., TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells. Cell Death Dis, 2016. 7(6): p. e2290.
14.Wu, A.T.H., et al., A Preclinical Investigation of GBM-N019 as a Potential Inhibitor of Glioblastoma via Exosomal mTOR/CDK6/STAT3 Signaling. Cells, 2021. 10(9).
15.Khedkar, H.N., et al., In-Silico Evaluation of Genetic Alterations in Ovarian Carcinoma and Therapeutic Efficacy of NSC777201, as a Novel Multi-Target Agent for TTK, NEK2, and CDK1. Int J Mol Sci, 2021. 22(11).
16.Madamsetty, V.S., et al., Design and Evaluation of PEGylated Liposomal Formulation of a Novel Multikinase Inhibitor for Enhanced Chemosensitivity and Inhibition of Metastatic Pancreatic Ductal Adenocarcinoma. Bioconjug Chem, 2019. 30(10): p. 2703-2713.
17.Park, W., et al., Diversity and complexity of cell death: a historical review. Experimental & Molecular Medicine, 2023. 55(8): p. 1573-1594.
18.Yuan, J. and D. Ofengeim, A guide to cell death pathways. Nature Reviews Molecular Cell Biology, 2023.
19.Moujalled, D., A. Strasser, and J.R. Liddell, Molecular mechanisms of cell death in neurological diseases. Cell Death & Differentiation, 2021. 28(7): p. 2029-2044.
20.Tang, D., et al., The molecular machinery of regulated cell death. Cell Research, 2019. 29(5): p. 347-364.
21.Yan, G., M. Elbadawi, and T. Efferth, Multiple cell death modalities and their key features (Review). World Acad Sci J, 2020. 2(2): p. 39-48.
22.Vitale, I., et al., Apoptotic cell death in disease—Current understanding of the NCCD 2023. Cell Death & Differentiation, 2023. 30(5): p. 1097-1154.
23.Obeng, E., Apoptosis (programmed cell death) and its signals - A review. Braz J Biol, 2021. 81(4): p. 1133-1143.
24.Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
25.Bhosale, P., et al., Flavonoid-induced apoptotic cell death in human cancer cells and its mechanisms. Journal of Biomedical Translational Research, 2020. 21: p. 50-58.
26.Wani, A.K., et al., Targeting Apoptotic Pathway of Cancer Cells with Phytochemicals and Plant-Based Nanomaterials. Biomolecules, 2023. 13(2).
27.Wu, Y.T., et al., Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 2010. 285(14): p. 10850-61.
28.Mizushima, N., et al., Autophagy fights disease through cellular self-digestion. Nature, 2008. 451(7182): p. 1069-1075.
29.Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-73.
30.Zeng, X.Y., et al., Interaction mechanisms between autophagy and ferroptosis: Potential role in colorectal cancer. World J Gastrointest Oncol, 2023. 15(7): p. 1135-1148.
31.Sui, X., et al., RETRACTED ARTICLE: JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Scientific Reports, 2014. 4(1): p. 4694.
32.Onorati, A.V., et al., Targeting autophagy in cancer. Cancer, 2018. 124(16): p. 3307-3318.
33.Zhang, X.J., et al., Why should autophagic flux be assessed? Acta Pharmacol Sin, 2013. 34(5): p. 595-9.
34.Wang, C.-W. and D.J. Klionsky, The Molecular Mechanism of Autophagy. Molecular Medicine, 2003. 9(3): p. 65-76.
35.Yun, C.W. and S.H. Lee, The Roles of Autophagy in Cancer. Int J Mol Sci, 2018. 19(11).
36.Li, F., et al., Autophagy modulation in bladder cancer development and treatment (Review). Oncol Rep, 2019. 42(5): p. 1647-1655.
37.Tang, D., et al., Ferroptosis: molecular mechanisms and health implications. Cell Res, 2021. 31(2): p. 107-125.
38.Bhardwaj, M., et al., Lysosomal lipid peroxidation regulates tumor immunity. J Clin Invest, 2023. 133(8).
39.Tang, D., et al., The molecular machinery of regulated cell death. Cell Res, 2019. 29(5): p. 347-364.
40.Chen, X., et al., Iron Metabolism in Ferroptosis. Front Cell Dev Biol, 2020. 8: p. 590226.
41.Du, Y. and Z. Guo, Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discovery, 2022. 8(1): p. 501.
42.Zhang, J.J., et al., Mechanisms and pharmacological applications of ferroptosis: a narrative review. Ann Transl Med, 2021. 9(19): p. 1503.
43.Liu, M.Z., et al., The critical role of ferritinophagy in human disease. Front Pharmacol, 2022. 13: p. 933732.
44.Shoemaker, R.H., The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Cancer, 2006. 6(10): p. 813-823.
45.Agostinho, M., et al., Human topoisomerase IIalpha: targeting to subchromosomal sites of activity during interphase and mitosis. Mol Biol Cell, 2004. 15(5): p. 2388-400.
46.Jensen, N.F., et al., Characterization of DNA topoisomerase I in three SN-38 resistant human colon cancer cell lines reveals a new pair of resistance-associated mutations. J Exp Clin Cancer Res, 2016. 35: p. 56.
47.Deprez, B., et al., Molecular Design in Practice: A Review of Selected Projects in a French Research Institute That Illustrates the Link between Chemical Biology and Medicinal Chemistry. Molecules, 2021. 26(19).
48.Azarova, A.M., et al., Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc Natl Acad Sci U S A, 2007. 104(26): p. 11014-9.
49.Li, X., et al., The Caspase Inhibitor Z-VAD-FMK Alleviates Endotoxic Shock via Inducing Macrophages Necroptosis and Promoting MDSCs-Mediated Inhibition of Macrophages Activation. Front Immunol, 2019. 10: p. 1824.
50.Mhaidat, N.M., M. Bouklihacene, and R.F. Thorne, 5-Fluorouracil-induced apoptosis in colorectal cancer cells is caspase-9-dependent and mediated by activation of protein kinase C-δ. Oncol Lett, 2014. 8(2): p. 699-704.
51.Gourdier, I., et al., Oxaliplatin-induced mitochondrial apoptotic response of colon carcinoma cells does not require nuclear DNA. Oncogene, 2004. 23(45): p. 7449-7457.
52.Pedre, B., et al., The mechanism of action of N-acetylcysteine (NAC): The emerging role of H(2)S and sulfane sulfur species. Pharmacol Ther, 2021. 228: p. 107916.
53.Skouta, R., et al., Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc, 2014. 136(12): p. 4551-6.
54.Lin, Z., et al., The lipid basis of cell death and autophagy. Autophagy, 2024. 20(3): p. 469-488.
55.Shapira, K.E., et al., Autophagy is induced and modulated by cholesterol depletion through transcription of autophagy-related genes and attenuation of flux. Cell Death Discovery, 2021. 7(1): p. 320.
56.Michel, M., et al., The Role of p53 Dysfunction in Colorectal Cancer and Its Implication for Therapy. Cancers (Basel), 2021. 13(10).
57.Kandioler, D., et al., TP53 Mutational Status and Prediction of Benefit from Adjuvant 5-Fluorouracil in Stage III Colon Cancer Patients. EBioMedicine, 2015. 2(8): p. 825-30.
58.Liu, J., et al., Insights on E1-like enzyme ATG7: functional regulation and relationships with aging-related diseases. Communications Biology, 2024. 7(1): p. 382.
59.Li, Y., et al., 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature, 2024. 626(7998): p. 411-418.
60.Sun, Q., et al., Cholesterol mediated ferroptosis suppression reveals essential roles of Coenzyme Q and squalene. Communications Biology, 2023. 6(1): p. 1108.


電子全文 電子全文(網際網路公開日期:20290724)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top