跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃美榛
研究生(外文):Mei-Chen Huang
論文名稱:沃斯回火延性鑄鐵電弧沉積(TiCrCuAlSi)N多元氮化物陶瓷硬膜之特性探討
論文名稱(外文):Exploration on Characteristics of ADI arc-deposited with (TiCrCuAlSi)N multi-nitride ceramic hard films
指導教授:許正勳許正勳引用關係
指導教授(外文):Cheng-Hsun Hsu
口試委員:許正勳
口試委員(外文):Cheng-Hsun Hsu
口試日期:2024-07-23
學位類別:碩士
校院名稱:大同大學
系所名稱:機械與材料工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:102
中文關鍵詞:耐磨耗耐蝕性沃斯回火延性鑄鐵陰極電弧沉積(TiCrCuAlSi)N陶瓷硬膜附著性
外文關鍵詞:(TiCrCuAlSi)N ceramic filmCathodic arc depositionAdhesionAustempered ductile ironCorrosion resistancewear resistance.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以FCD450球墨鑄鐵為基材,進行沃斯回火處理得到沃斯回火延性鑄鐵 (ADI),再使用陰極電弧沉積 (Cathodic arc deposition,CAD)技術披覆 (TiCrCuAlSi)N多元氮化陶瓷硬膜,變化鍍膜製程偏壓參數作為本實驗變因,用以得到不同元素含量比之陶瓷硬膜,偏壓值分別使用(-50V、-100V、-150V),以探討不同元素組成比之薄膜對ADI特性之影響。
實驗結果顯示: (1)在附著性方面,利用Rockwell-C硬度壓痕器來判定,其中偏壓為-50V的膜層剝落情形較嚴重,有明顯的片狀剝落發生;隨著偏壓值上升至-150V具有最佳的附著性(HF2)。(2)在耐腐蝕性方面,經過極化試驗得知,與鍍膜前的試片相比,ADI披覆(TiCrCuAlSi)N多元氮化物膜層處理者,其耐蝕性亦有明顯的改善,其中又以偏壓值為-150V者為較佳。(3)在耐磨耗性方面,經過磨耗試驗得知,隨著負偏壓值的提升,耐磨耗性也隨之上升,其中又以偏壓值為-150V者為較佳。
In this study, the FCD450 ductile cast iron was used as the material, and the austempering treat-ment was carried out to obtain the austempered ductile cast iron (ADI). Then the cathodic arc dep-osition (CAD) technique was used to coat the (TiCrCuAlSi)N multi-elemental nitride ceramic hard film, and the bias parameter of the coating process was changed as the variable in the present experiments, so that the ceramic hard film with different elemental content ratios could be ob-tained, and the bias values were (-50V, -100V, -150V) to investigate the effect of the films with dif-ferent elemental composition ratios on the corrosion resistance of ADI. The bias values of ceramic hard films with different elemental content ratios were used to investigate the effect of films with different elemental composition ratios on characteristics of ADI.
The experimental results showed that: (1) In terms of adhesion, the Rockwell-C hardness indenter was used to determine that the film layer coated with -50V bias was more serious, with obvious flakes peeling off, and that the best adhesion was achieved when the bias value was in-creased to -150V. (2) In terms of corrosion resistance, the polarization test showed that compared with the uncoated specimen, the corrosion resistance of ADI coated (TiCrCuAlSi)N nitride film layer is significantly improved, with the bias value of -150V being the best.(3) In terms of wear resistance, according to the wear test, as the bias voltage increases, the wear resistance also increases, with the bias value of -150V being the best.
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 前言 1
1.1研究動機 1
1.2研究目的 2
第二章 文獻回顧 3
2.1球墨鑄鐵 3
2.2沃斯回火球墨鑄鐵 3
2.2.1沃斯回火熱處理[8-10] 4
2.3表面處理 5
2.4物理氣相沉積法 (Physical vapor deposition, PVD) 6
2.5化學氣相沉積法 (Chemical Vapor Deposition, CVD) [17] 9
2.6電鍍 (Electroplating) [18,19] 9
2.7陰極電弧沉積法 (Cathodic arc deposition, CAD) 10
2.8真空電弧 13
2.9離子轟擊 (Ion bombardment) 14
2.10薄膜成核成長理論 16
2.11薄膜微結構型態 19
2.12微滴 (Microparticle) [34,35] 20
2.13本研究相關鍍膜 21
2.13.1多層膜 (Multilayer) 21
2.13.2中介層 22
2.13.3氮化鈦膜層 23
2.13.4氮化鉻膜層 23
2.13.5氮化鋁鉻 (AlCrN)、氮化鈦鉻 (TiCrN)膜層 24
2.14薄膜附著性檢測 24
2.15奈米壓痕硬度檢測 25
2.16 HV維氏硬度檢測 28
2.17薄膜磨耗試驗 29
2.18薄膜腐蝕行為 33
第三章 實驗方法與步驟 39
3.1實驗設計及流程 39
3.2基材準備 40
3.3鍍膜前處理 41
3.4 CAD鍍膜製程 41
3.5薄膜結構、組成成分與形貌分析 45
3.5.1 OM微觀結構 45
3.5.2 EPMA分析 46
3.5.3 XRD 結構分析 47
3.5.4 FE-SEM橫截面觀察 48
3.5.5 SEM表面形貌觀察 49
3.5.6表面粗糙度量測 50
3.6鍍膜特性分析 53
3.6.1奈米壓痕薄膜硬度試驗 53
3.6.2附著性檢測 54
3.6.3 HV維氏硬度試驗 55
3.6.4磨耗試驗 56
3.6.5鹽霧試驗 57
3.6.6極化試驗 58
3.6.7水接觸角分析 59
第四章 結果與討論 60
4.1 薄膜結構、組成成分與形貌分析 60
4.1.1薄膜成分分析 60
4.1.2 XRD結構分析 61
4.1.3 OM微觀結構 62
4.1.4橫截面觀察 64
4.1.5表面粗糙度分析 67
4.1.6表面形貌觀察 69
4.2 鍍膜特性分析 71
4.2.1 HV維氏硬度試驗 71
4.2.2奈米壓痕硬度分析 72
4.2.3附著性檢測 74
4.2.4磨耗試驗 76
4.2.5極化試驗 79
4.2.6實務耐候性試驗(鹽霧試驗) 82
4.2.7水接觸角試驗 84
第五章 結論 86
參考文獻 89
【1】X. Wang, Y. Du, C. Liu, Z. Hu, P. Li, Z. Gao, H. Guo, B. Jiang, ”Relationship among process parameters, microstructure, and mechanical properties of austempered ductile iron (ADI)”, Materials Science and Engineering: A, Volume 857, 1 November 2022, 144063.
【2】C. Liu, Y. Du, X. Wang, Q. Zheng, X. Zhu, D. Zhang, D. Liu, C. Yang, B. Jiang, ” Comparison of the tribological behavior of quench-tempered ductile iron and austempered ductile iron with similar hardness”, Wear, Volumes 520–521, 15 May 2023, 204668.
【3】V. Sharun, B. A. Ronald,” Traditional machining of Austempered ductile iron (ADI): A review”, Materials Today: Proceedings, Volume 72, Part 4, 2023, pp. 2027-2031.
【4】F. Kühn, J. Brimmers, T. Bergs,” Process design for gear shaping of austempered ductile iron (ADI) components”, Procedia CIRP, Volume 99, 2021, pp. 214-219.
【5】P. Chaengkham, P. Srichandr,” Continuously cast ductile iron: Processing, structures, and properties”, Journal of Materials Processing Technology 211 (2011) 1372–1378.
【6】J. A. G. D. Sousa & W. F. Sales & A. R. Machado,”A review on the machining of cast irons” Int J Adv Manuf Technol (2018) 94:4073–4092.
【7】M. Baydogan, S. I. Akray,”Successive Boronizing and Austempering for GGG-40 Grade Ductile Iron.”, Journal of Iron and Steel Research, International Volume 16, Issue 2, March 2009, pp. 50-54.
【8】G. Thilak , P. Chandramohan, V.S. Saravanan,” Influence of alloying elements and its effect on austempering of compacted graphite iron – A review”, Materials Today: Proceedings, Available online 20 September 2023.
【9】E. Wang, Q. He, C. Gu, Y. Wang, H. Chen, Y. Che, R.D.K. Misra, N. Gong, H. Wu, G. Niu,” Effect of austempering temperature on microstructure evolution, mechanical properties and wear resistance of carbon-free nano-bainite steel”, Journal of Materials Research and Technology, Volume 26, September–October 2023, pp. 6703-6718.
【10】C. H. N. Mesa, M. G. Botero, M. M. Mejía, O. R. Diez, R. A. Sierra,” Wear resistance of austempered grey iron under dry and wet conditions”, Journal of Materials Research and Technology, Volume 21, November–December 2022, pp. 4174-4183.
【11】K. L. Choy,” Chemical vapour deposition of coatings”, Progress in Materials Science, Volume 48, Issue 2, 2003, pp. 57-170.
【12】Z. Cheng, W. Yang, D. X. Wenting, S. J. Chen,” In situ formation of micro arc oxidation ceramic coating on refractory high entropy alloy”, International Journal of Refractory Metals and Hard Materials, Volume 120, April 2024, 106563.
【13】D. M. Sanders, André Anders,” Review of cathodic arc deposition technology at the start of the new millennium”, Surface and Coatings Technology, Volumes 133–134, November 2000, pp. 78-90
【14】G.Biava, I. B. de Araujo Fernandes Siqueira , R. F. Vaz, G. B de Souza, H. C. M. Jambo, A. Szogyenyi, A. G. M. Pukasiewicz,
”Evaluation of high temperature corrosion resistance of CrN, AlCrN, and TiAlN arc evaporation PVD coatings deposited on Waspaloy”, Surface and Coatings Technology, Volume 438, 25 May 2022, 128398.
【15】R. J. Rodrı́guez, J. A. Garcı́a, A. Medrano, M. Rico, R. Sánchez, R . Martı́nez, C. Labrugère, M. Lahaye, A. Guette,” Tribological behaviour of hard coatings deposited by arc-evaporation PVD”, Vacuum, Volume 67, Issues 3–4, 26 September 2002, pp. 559-566.
【16】T. Ikeda, H. Satoh, “Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method”, Thin Solid Films, 195 (1991), pp.99-110.
【17】M. Ohring, “Chapter 6 - Chemical Vapor Deposition”, Materials Science of Thin Films (Second Edition), Deposition and Structure, 2002, pp. 277-355.
【18】N. Kanani, “Chapter 2 - Materials that can be Electroplated”, Electroplating Basic Principles, Processes and Practice 2004, pp. 21-53.
【19】S. Zhu, Y. Zhang, L. Xin, K. H. Oo, M. Zheng, S. Ma, J. Guo, Y. Chen, “Near-complete recycling of real mix electroplating sludge as valuable metals via Fe/Cr co-crystallization and stepwise extraction route”, Journal of Environmental Management, Volume 358, May 2024, 120821.
【20】K. Zhang, W. Lang, H. Du, Z. Huang, B. Gao, X. Wang, “Study on microspot splitting characteristics in cathode spot motion of vacuum arc”, Vacuum, Volume 213, July 2023, 112151.
【21】H. Zhao, Z. Zheng, H. Zhou, L. Chang, K. Tsoutas, L. Yang, S. KH . Alavi, Y. Liu, B. Akhavan, M. M. Bilek, Z. Liu, “Cathodic arc deposition of high entropy alloy thin films with controllable microstructure”, Surfaces and Interfaces, Volume 37, April 2023, 102692.
【22】H. Randhawa, “Cathodic arc plasma deposition technology”, Thin Solid Films, Volume 167, Issues 1–2, 15 December 1988, pp. 175-186.
【23】J. Koskinen, “4.02 - Cathodic-Arc and Thermal-Evaporation Deposition”, Comprehensive Materials Processing, Volume 4, 2014, pp. 3-55.
【24】P.J Martin, A Bendavid, “Review of the filtered vacuum arc process and materials deposition”, Thin Solid Films, Volume 394, Issues 1–2, 15 August 2001, pp. 1-14.
【25】R.L. Boxman, S. Goldsmith, “Macroparticle contamination in cathodic arc coatings: generation, transport and control”, Surface and Coatings Technology, Volume 52, Issue 1, 15 March 1992, pp. 39-50.
【26】Qu. Shuai-Jie, H. Shu-Qi, G. Chao-Qian, D. Ming-jiang, L. Song-sheng, S. Qian, S. Yi-Fan, W. Chun-Bei, Y. Zhao, N. M. Chekan, “Chromium arc plasma characterization, structure and properties of CrN coatings prepared by vacuum arc evaporation”, Vacuum, Volume 209, March 2023, 111796.
【27】D. M. Mattox,” Chapter 8 - Arc Vapor Deposition”, Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), 2010, pp. 287-300.
【28】C. Zubin, S. Xiaoguo, L. Yun,” Ion bombardment induced surface microstructural modification of aluminum alloy”, Vacuum, Volume 215, September 2023, 112266.
【29】D. M. Mattox, Noyes, Park Ridge NJ, " Handbook of physical vapor deposition (PVD) processing", 1998, pp. 368-378.
【30】P. Asanithi, S. Chaiyakun, P. Limsuwan,” GrowthofSilver Nanoparticles by DC Magnetron Sputtering”, Journal of Nanomaterials Volume 2012, Article ID 963609.

【31】D. M. Mattox,” Chapter 10 - Atomistic Film Growth and Some Growth-Related Film Properties”, Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), 2010, pp. 333-398.
【32】E. Alfonso, J. Olaya, G. Cubillos,” Thin Film Growth Through Sputtering”, Crystallization - Science and Technology, September 2012.
【33】E. Kusano,” Structure-Zone Modeling of Sputter-Deposited Thin Films: A Brief Review”, Received November 15, 2019; accepted November 27, 2019.
【34】S. Grigoriev, A. Vereschak, V. Zelenkov, N. Sitnikov, J. Bublikov, F. Milovich, N. Andreev, C. Sotova, “Investigation of the influence of the features of the deposition process on the structural features of microparticles in PVD coatings”, Vacuum, Volume 202, August 2022, 111144.
【35】A. Vereschaka, F. Milovich, N. Andreev, C. Sotova, I. Alexandrov, A. Muranov, M. Mikhailov, A. Tatarkanov,” Investigation of the structure and phase composition of the microdroplets formed during the deposition of PVD coatings”, Surface and Coatings Technology, Volume 441, 15 July 2022, 128574.
【36】S.E. Shakib, A. Babakhani, M. K. Torbati,” Nanomechanical assessment of tribological behavior of TiN/TiCN multi-layer hard coatings deposited by physical vapor deposition”, Journal of Materials Research and Technology, Volume 25, July–August 2023, pp. 1344-1354.
【37】H. J. Park, Y. S. Kim, Y. H. Lee, S. H. Hong, K. S. Kim, Y. K. Park, K. B. Kim,” Design of nano-scale multilayered nitride hard coatings deposited by arc ion plating process: Microstructural and mechanical characterization”, Journal of Materials Research and Technology, Volume 15, November–December 2021, pp. 572-581.
【38】E. Harry, M. Ignat, Y. Pauleau, A. Rouzaud, P. Juliet,” Mechanical behaviour of hard PVD multilayered coatings”, Surface and Coatings Technology, Volume 125, Issues 1–3, March 2000, pp. 185-189.
【39】D. Özkan, M. A. Yılmaz, M. Szala, C. Türküz, D. Chocyk, C. Tunç, O. Göz, M. Walczak, K. Pasierbiewicz, M. B. Yağcı,” Effects of ceramic-based CrN, TiN, and AlCrN interlayers on wear and friction behaviors of AlTiSiN+TiSiN PVD coatings”, Ceramics International, Volume 47, Issue 14, 15 July 2021, pp. 20077-20089.
【40】K.N. Stafford,” Tribological properties of coatings—expectations, performance and the design dilemma”, Surface and Coatings Technology, Volume 81, Issue 1, May 1996, pp. 106-117.
【41】W. Ensinger, "Low energy ion assist during deposition — an effective tool for controlling thin film microstructure", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 127-128,1997, pp. 796-808.
【42】Z. Bin, X. Junhua, L. Guiyun, J. Hongbo, Y. Lihua,” Microstructures, mechanical properties and corrosion resistance of TiN/AlN multilayer films”, Ceramics International, Volume 48, Issue 8, 15 April 2022, pp. 11629-11635.
【43】J. Buchinger, L. Löfler, J. Ast, A. Wagner, Z. Chen, J. Michler, Z.L. Zhang, P.H. Mayrhofer, D. Holec, M. Bartosik,”Materials and Design”, 194(2020)10885.
【44】H. Cheng-Hsun, L. Chun-Ying, C. Kai-Lin, L. Jia-Hong,” Effects of CrN/EN and CrO/EN duplex coatings on corrosion resistance of ADI23”, Thin Solid Films, Volume 517, Issue 17, 1 July 2009, pp. 5248-5252.
【45】L. Chunling, W. Liguo, S. Lunlin, C. Xueqian, Z. Guangan, Y. Yuan, L. Wensheng, Z. Shuzhen, H. Haitao,” Mechanical and high-temperature tribological properties of CrAlN/TiSiN multilayer coating deposited by PVD”, Ceramics International, Volume 47, Issue 20, 15 October 2021, pp. 29285-29294.
【46】C. Yin-Yu, Y. Yu-Ju, W. Shi-Yao,” Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings”, Surface and Coatings Technology, Volume 389, 15 May 2020, 125637.
【47】L. Magalhães, J. Seabra,” Artificial indentations for the study of contact fatigue of austempered ductile iron (ADI) discs”, Wear, Volume 258, Issues 11–12, June 2005, pp. 1755-1763.
【48】S. L. K. Konuru, V. Umasankar, A. Sarma,” A comparison of qualitative and quantitative adhesion analysis for a composite thin film system”, Materials Today: Proceedings, Volume 46, Part 2, 2021, pp. 1243-1246.
【49】B. Lenz, H. Hasselbruch, A. Mehner,” Automated evaluation of Rockwell adhesion tests for PVD coatings using convolutional neural networks”, Surface and Coatings Technology, Volume 385, 15 March 2020, 125365.
【50】N. Vidakis, A. Antoniadis, N. Bilalis,” The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds”, Journal of Materials Processing Technology, Volumes 143–144, 20 December 2003, pp. 481-485.
【51】Y. Wang, L. Shang, P. Zhang, X. Yan, K. Zhang, S. Dou, J. Zhao, Y. Li,”Measurement of viscoelastic properties for polymers by nanoindentation”, Polymer Testing, Volume 83, March 2020, 106353.
【52】C. Miller, M. Zou,” Repetitive nanoindenter scratch testing of polydopamine/polytetrafluoroethylene-based thin coatings”, Surface and Coatings Technology, Volume 451, 15 December 2022, 129042.
【53】W. C. Oliver, G. M. Pharr,” An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, Volume 7, pages 1564–1583, (1992).
【54】C. Hui, F. Zuohua, C. Deliang, P. Hui, L. Wei, M. Zheng, F. Zhongtian,” A unified sharp indentation method for obtaining stress-strain relations, strength and Vickers hardness of ductile metallic materials”, Materials Today Communications, Volume 33, December 2022, 104652.
【55】L. Zexian, Y. Feng,” Automated measurement of Vickers hardness using image segmentation with neural networks”, Measurement, Volume 186, December 2021, 110200.
【56】A. Abdelbary,” 1 - Polymer tribology”, Wear of Polymers and Composites, 2014, pp. 1-36.
【57】R. A. Al-Samarai, Haftirman, K. R. Ahmad, Y. Al-Douri,” Effect of Load and Sliding Speed on Wear and Friction of Aluminum– Silicon Casting Alloy”, International Journal of Scientific and Research Publications, Volume 2, Issue 3, March 2012.
【58】K. Holmberg, A. Matthews,” Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering”, Elsevier Science, 2009, pp. 41-75.
【59】J. O. Bird, P. J. Chivers,” 28 – Friction”, Newnes Engineering and Physical Science Pocket Book, 1993, pp. 235-237.
【60】P. Wang, H. Liang, L. Jiang, L. Qian,” Effect of nanoscale surface roughness on sliding friction and wear in mixed lubrication”, Wear, Volumes 530–531, 15 October 2023, 204995.
【61】N. P. Suh, H. C. Sin,” The genesis of friction”, Wear, Volume 69, Issue 1, 1 June 1981, pp. 91-114.
【62】H. Wei-Yu、S. Chia-Huang、C. Chi-Lung、W. Da-Yung,” The study of mechanical properties of Cr-based hard coatings by cathodic arc deposition process”, MingDao University, 2007, pp. 30-36.
【63】L. D. Nguyen, D. Q. Nguyen, C. D. Pham,” A Study on the Effect of Gas Ratio N2/C2H2 on Some Properties of Hard Thin Films TiAlCN on SKD61 Steel”, Proceedings of the 3rd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2022) pp. 229-236.
【64】S. Papavinasam,” 3 - Electrochemical polarization techniques for corrosion monitoring”, Techniques for Corrosion Monitoring (Second Edition), Woodhead Publishing Series in Metals and Surface Engineering, 2021, pp. 45-77.
【65】F. Mansfeld,” Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves”, Corrosion Science, Volume 47, Issue 12, December 2005, pp. 3178-3186.
【66】W. Yuemiao, Y. Yanhong, Q. Jinglong, C. Limin, C. Chuanyong,” Effect of oxide layer on the electrochemical corrosion behavior of a Ni-based superalloy in 3.5 wt% NaCl”, International Journal of Electrochemical Science, Volume 18, Issue 10, October 2023, 100310.
【67】S.H. Ahn, J.H. Lee, J.G. Kim, J.G. Han,” Localized corrosion mechanisms of the multilayered coatings related to growth defects”, Surface and Coatings Technology, Volumes 177–178, 30 January 2004, pp. 638-644.
【68】J. Kruger, S. Begum,” Corrosion of Metals: Overview”, Reference Module in Materials Science and Materials Engineering,2016.
【69】Z. Xinxin, Z. Xiaorong, T. Hashimoto, L. Bing,” Localized corrosion in AA2024-T351 aluminium alloy: Transition from intergranular corrosion to crystallographic pitting”, Materials Characterization, Volume 130, August 2017, pp. 230-236.
【70】D. Hua-yun, H. Qun-kun, Y. Xi-wen, J. Jian-wen, W. Ying-hui, H. Li-feng, L. Hong, W. Qian, H. Hong-wei, W. Huan, L. Xiao-da,” Effect of Mo on intergranular corrosion behavior in super-austenitic stainless steel”, Corrosion Science, Volume 231, 1 May 2024, 111986.
【71】A.O. Olofinjana, R. Haque,” Analysis of failure in a nickel coated brass dolphin striker component”, Engineering Failure Analysis, Volume 72, February 2017, pp. 48-57.
【72】M. Schneider, K. Kremmer, C. Lämmel, K. Sempf, M. Herrmann,” Galvanic corrosion of metal/ceramic coupling”, Corrosion Science, Volume 80, March 2014, pp. 191-196.
【73】Y. Anagün, Ş. Işik, F. H. Çakir,” Surface roughness classification of electro discharge machined surfaces with deep ensemble learning”, Measurement, Volume 215, 30 June 2023, 112855.
【74】S. Zhang, B. Zhao, Y. Liu,” Coupling effect of plastic deformation and surface roughness on friction behaviors of rough line contact for ground metal surfaces”, Tribology International, Volume 193, May 2024, 109338.
【75】KEYENCE 公司網站,https://www.keyence.com.tw/ss/products/microscope/roughness/line/parameters.jsp.
【76】D.V.N. Prabhakar, M. Sreenivasa Kumar, A. Gopala Krishna,” A Novel Hybrid Transform approach with integration of Fast Fourier, Discrete Wavelet and Discrete Shearlet Transforms for prediction of surface roughness on machined surfaces”, Measurement, Volume 164, November 2020, 108011.
【77】M. Rosentritt, S. Schneider-Feyrer, L. Kurzendorfer,” Comparison of surface roughness parameters Ra/Sa and Rz/Sz with different measuring devices,” Journal of the Mechanical Behavior of Biomedical Materials, Volume 150, February 2024, 106349.
【78】Y. B. Hemmati, H. N. Asil, M. Falahchai, N. Safari,” Comparative effects of tungsten, diamond burs and laser for residual adhesive removal after orthodontic debonding on flexural strength, surface roughness and phase transformation of high-translucent zirconia: An in vitro study”, International Orthodontics, Volume 20, Issue 3, September 2022, 100665.
【79】M. Boujelbene,” Influence of the CO2 laser cutting process parameters on the Quadratic Mean Roughness Rq of the low carbon steel”, Procedia Manufacturing, Volume 20, 2018, pp. 259-264.
【80】Z. Dingwei, W. Zhenyu, Z. Yan, Y. Jingjun, M. Guanshui, H. Xiaojun, K. Peiling, W. Aiying,” Stimulated corrosion damage of Ti-Al-N multilayer coatings under interval salt spray and hot condition”, Corrosion Science, Volume 222, September 2023, 111431.
【81】Y.H. Cheng, T. Browne, B. Heckerman, C. Bowman, V. Gorokhovsky, E.I. Meletis, "Mechanical and tribological properties of TiN/Ti multilayer coating", Surface and Coatings Technology, Volume 205, Issue 1, 25 September 2010, pp. 146-151.
【82】L. Makkonen,” Young’s equation revisited”, Journal of Physics: Condensed Matter, Volume 28, March 2016, 135001 (4pp).
【83】E.W. Niu, L. Li, G.H. L, H. Chen, X.Z. Li, X.Z. Yang, S.Z. Yang,” Characterization of Ti–Zr–N films deposited by cathodic vacuum arc with different substrate bias”, Applied Surface Science, Volume 254, Issue 13, 30 April 2008, Pages 3909-3914.
【84】J.W. Song, L.W. Fan,” Understanding the effects of surface roughness on the temperature and pressure relevancy of water contact angles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 656, Part A, 5 January 2023, 130391.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top