跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/21 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃竣清
研究生(外文):HUANG,JYUN-CING
論文名稱:不同金屬線組結構對電磁脈衝的散射
論文名稱(外文):EM Scattering from Various Structures of Metal Wire Sets
指導教授:何銘子何銘子引用關係
指導教授(外文):HO,MING-TSU
口試委員:郭智宏林永欽何銘子
口試委員(外文):GUO,JHIH-HONGLIN,YUNG-CHINHO,MING-TSU
口試日期:2024-04-20
學位類別:碩士
校院名稱:吳鳳科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:51
中文關鍵詞:Poynting 向量特性方法金屬線組電磁場分佈感應電流
外文關鍵詞:Poynting vectormethod of characteristicsmetal wire setdistribution of EM fieldsinduced currents
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在藉由特性方法進行二維數值模擬不同金屬線組結構對電磁脈衝散射的情形,觀察全場的電場與磁場分佈、金屬線表面上的感應電流、金屬線周圍的磁場向量圖與Poynting向量圖、以及反射電場的時間函數圖與其對應的頻譜函數圖,進而探討在固定金屬線寬的條件下,金屬線間的間隔大小與金屬線數對電磁場反射的影響。數值模型中的金屬線為完全導體、長度為無限、厚度為零,金屬線寬固定為0.1 mm,金屬線數為3或4,金屬線間間隔分別為0.1、0.2、0.3 mm。數值模擬結果顯示合理的趨勢,觀察比較反射電場得到金屬線數為4且間隔為0.3 mm的金屬線組結構所產生的反射電場具有最強的主負反射峰與隨之而起的主正反射峰也最強,但在時間上均為最延遲;金屬線數為3且間隔為0.1 mm的金屬線組結構所產生的次反射峰為最明顯且強度最強。
The objective of this thesis is two-fold as follows. One part is to simulate the EM scattering from various structures of metal wire sets in two dimensions through the application of the method of characteristics. The other is to observe the followings: the distributions of both electric and magnetic fields, the induced currents on the surfaces of metal wires, the vector plots of magnetic fields and Poynting vectors around metal wires, and the time-domain plots of the reflected electric fields along with its corresponding frequency-domain spectral plots. Also under survey, given constant width of metal wire, are the effects of the number of metal wires and the separations between wires on the reflected EM fields. In the numerical model, all metal wires are identical, made of PEC materials, infinite in length, and zero in thickness. Furthermore, metal wire is 0.1 mm in width; the number of metal wires can be three or four; the separation between wires can be 0.1, 0.2, or 0.3 mm. The computational results show reasonable trends; the primary negative and positive peaks of the reflected EM fields from the structure with four metal wires and separated by 0.4 mm are the strongest and delayed the most. Structure with three metal wires and separated by 0.1 mm produces the most significant secondary reflected peaks.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
第一章 緒言 1
1.1數值方法 1
1.2金屬線組 3
第二章 數值Maxwell方程式 .4
2.1 MAXWELL方程式 4
2.2 矩陣形式的MAXWELL方程式 8
2.3 變數分離的MAXWELL方程式 10
2.4 在曲線坐標系的MAXWELL方程式 12
2.5 TE模式的數值入射電磁脈衝 15
2.6 數值的MAXWELL方程式 17
2.7邊界條件與感應電流 18
第三章 數值模型 21
3.1 數值模型、入射電磁脈衝與金屬線組 22
3.2 入射電磁脈衝的頻譜圖 24
3.3 命名感應電流 26
第四章 數值模擬結果 28
4.1 各電場的時間函數圖 28
4.2 反射電場與透射電場 30
4.3 金屬線組前電磁場的時間函數圖 34
4.4 電磁場分佈圖 37
4.5 磁場向量圖與POYNTING向量圖 42
4.6 感應電流 44
第五章 結論 49
文獻 50

[1]Roger F. Harrington (1968) Field Computation by Moment Methods, IEEE Press 1993, ISBN 0780310144.
[2]C. A. Brebbia and R. Magureanu, "The boundary element method for electromagnetic problems," Engineering Analysis 4(4), 178-185, December 1987.
[3]J.N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, 2006. ISBN 9780071267618.
[4]Daryl L. Logan, A first course in the finite element method, Cengage Learning, 2011, ISBN 978-0495668251.
[5]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Transactions on Antennas and Propagation (AP-14) 302-307, 1966.
[6]David B. Davidson, Computational Electromagnetics for RF and Microwave Engineering, Second Edition, Cambridge University Press, 2010.
[7]Mingtsu Ho, “Application of Computational Fluid Dynamics Algorithms to the Solutions of Maxwell’s Equations”, A Dissertation submitted to the faculty of Mississippi State University, Starkville, Mississippi, USA, 1997.
[8]H. Park, J. Kwon, S. Kwak and S. Ahn “Effect of air-gap between metal strips and a ferrite plate on magnetic shielding,” INTERMAG 2015 - IEEE International Magnetics Conference, May 2015.
[9]Marcela Pokusová “Continuous Casting of Thin Aluminum Strips Using the Electromagnetic Levitation,” Aluminium Alloys - Recent Trends in Processing, Characterization, Mechanical Behavior and Applications, IntechOpen, 2017.
[10]C-Y Tsai and C Tzuang, “Applying electric-magnetic-electric (EME) composite metal strips to reduce the size of patch antennas,” Microwave Conference, 2001. APMC 2001.
[11]S V Pushpakaran, M Mani, M Pezholil, A Chndroth and V Kesavath, "Enhanced radiation from an electrically small antenna using subwavelength metal strip grating," J. Phys. Commun. 2 (2018).
[12]L-C Chou, K-L Wong and C-H Kuo “A small-size internal dual-band metal-strip antenna for 2.4/5 GHz WLAN operation in the laptop computer,” 2008 IEEE Antennas and Propagation Society International Symposium, July 2008.
[13]D. L. Whitfield and M. Janus, “Three-dimensional Unsteady Euler Equations Solution Using Flux Vector Splitting,” AIAA Paper No. 84-1552, June 1984.
[14]W. Briley, S. Neerarambam, and D. Whitfield. "Implicit Lower-Upper /Approximate-Factorization Algorithms for Viscous Incompressible Flows", 12th Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences, A95-36593, San Diego, CA, U.S.A., 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top