跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宥兆
研究生(外文):CHEN,YU-CHAO
論文名稱:應用於太陽能電池之最佳抗反射與鈍化金字塔紋理結構之研究
論文名稱(外文):The Study of Optimal Anti-Reflection and Passivation Pyramid Texture Structures for Solar Cell Applications
指導教授:陳世志陳世志引用關係
指導教授(外文):CHEN,SHIH-CHIH
口試委員:張守進曾憲正
口試委員(外文):CHANG,SHOOU-JINNTSENG,HSIEN-CHENG
口試日期:2024-01-25
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:87
中文關鍵詞:抗反射層正金字塔結構電漿增強化學氣相沉積
外文關鍵詞:Antireflection layerUpright pyramids structurePlasma enhanced chemical vapor deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用n-type矽基板,利用1 %氫氧化鉀之鹼性蝕刻方法,對矽基板表面進行紋理化以形成正金字塔結構,此正金字塔結構有較容易沉積抗反射層及鈍化層之特性,並藉由使用電漿增強化學氣相沉積(PECVD)技術,於平面及正金字塔結構上沉積二氧化矽及氮化矽之單雙層抗反射層,並以中心波長650 nm設計抗反射層厚度。平面抗反射層厚度為四分之一波長,則二氧化矽厚度為107 nm,氮化矽厚度為80 nm,而金字塔抗反射層厚度因光的第一次反射及第二次反射之間相位差180度,故二氧化矽厚度理論上為129 nm,氮化矽厚度為90.8 nm。因氮化矽抗反射層厚度在正金字塔比平面多10 %厚度,故金字塔之雙層抗反射層厚度則先計算出平面之雙層抗反射層SiO2/Si3N4(34 nm/66 nm)厚度,再根據各增加厚度的方式去設計,後續再利用熱氧法方式預先在結構上生長一層約10 nm之二氧化矽鈍化層,最後再觀察反射率之變化。
經實驗得知在中心波長650 nm時,於平面之單層抗反射層結構下,二氧化矽厚度為107 nm,其平均反射率為14.46 %,最低反射率為7.78 %,氮化矽厚度為80 nm,其平均反射率為9.63 %,最低反射率為0.15 %。而在金字塔之單層抗反射層結構下,二氧化矽厚度為129 nm,其平均反射率為2.78 %,最低反射率為1.28 %,氮化矽厚度為90.8 nm,其平均反射率為3.9 %,最低反射率為0.45 %,至於
金字塔之雙層抗反射層以各增加15 %厚度為最佳厚度,其平均反射率為2.28 %,最低反射率為0.37 %。
因二氧化矽與矽之間的晶格較匹配,且鈍化效果較佳,故本實驗預先在金字塔結構上,利用熱氧法在結構表面生長一層約10 nm之二氧化矽鈍化層,可有效修補晶格缺陷,並改善短波長範圍之反射率。其中以金字塔之單層氮化矽抗反射層(Si3N4/SiO2,90.8 nm/10 nm)為最佳厚度,其平均反射率可進一步降低至3.45 %,最低反射率0.36 %,而金字塔之雙層抗反射層以各增加15 %厚度為最佳厚度,其平均反射率也進一步降低至2.32 %,最低反射率0.36 %。

This study utilizes an n-type silicon substrate and employs a 1% potassium hydroxide alkaline etching method to texture the surface of the silicon substrate, forming a positive pyramid structure. This pyramid structure exhibits characteristics that facilitate the deposition of anti-reflection layers and passivation layers. Plasma-enhanced chemical vapor deposition (PECVD) technology is then utilized to deposit single and double layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) on both planar and pyramid structures. The anti-reflection layer thickness is designed for a central wavelength of 650 nm.For the planar anti-reflection layer, with a thickness of one-quarter wavelength, the silicon dioxide thickness is 107 nm, and the silicon nitride thickness is 80 nm. For the pyramid anti-reflection layer, due to a phase difference of 180 degrees between the first and second reflections of light, the theoretical silicon dioxide thickness is 129 nm, and the silicon nitride thickness is 90.8 nm.Since the silicon nitride anti-reflection layer on the pyramid is 10% thicker than that on the planar surface, the double-layer anti-reflection layer thickness on the pyramid is first calculated based on the planar double-layer anti-reflection layer SiO2/Si3N4 (34 nm/66 nm). Subsequently, the additional thickness is designed accordingly. A silicon dioxide passivation layer of approximately 10 nm is grown on the structure using a thermal oxidation method, and the variations in reflectance are then observed.
Experimental results indicate that at a central wavelength of 650 nm, for a single-layer anti-reflection structure on the planar surface, the silicon dioxide thickness is 107 nm, with an average reflectance of 14.46% and a minimum reflectance of 7.78%. The silicon nitride thickness is 80 nm, with an average reflectance of 9.63% and a minimum reflectance of 0.15%.In contrast, for a single-layer anti-reflection structure on the pyramid surface, the silicon dioxide thickness is 129 nm, with an average reflectance of 2.78% and a minimum reflectance of 1.28%. The silicon nitride thickness is 90.8 nm, with an average reflectance of 3.9% and a minimum reflectance of 0.45%. As for the double-layer anti-reflection structure on the pyramid, an optimal thickness increase of 15% for each layer results in an average reflectance of 2.28% and a minimum reflectance of 0.37%.
Due to the better lattice matching and superior passivation effects between silicon dioxide and silicon, in this experiment, a silicon dioxide passivation layer of approximately 10 nm is grown on the surface of the pyramid structure using a thermal oxidation method. This process effectively repairs lattice defects and improves the reflectance in the short-wavelength range. The optimal thickness is found to be a single-layer silicon nitride anti-reflection layer on the pyramid (Si3N4/SiO2, 90.8 nm/10 nm), with an average reflectance further reduced to 3.45% and a minimum reflectance of 0.36%. For the double-layer anti-reflection structure on the pyramid, an optimal thickness increase of 15% for each layer results in a further reduction in average reflectance to 2.32% and a minimum reflectance of 0.36%.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第1章、緒論 1
1-1前言 1
1-2太陽能電池材料 3
1-3太陽能電池種類 3
1-4太陽能電池現況與未來市場之趨勢 4
1-5抗反射薄膜研究 9
1-6太陽能光譜 11
1-7研究動機 14
第2章、基礎理論及文獻回顧 15
2-1太陽能電池基礎理論 15
2-1-1 太陽能電池光電轉換效率之原理 15
2-1-2 太陽能電池之等效電路 18
2-1-3 太陽能電池之效率影響因素 20
2-1-4 薄膜穿透及反射基礎理論 22
2-1-5 高效率太陽能電池 25
2-2基礎理論 30
2-2-1 表面粗糙化 30
2-2-2 酸蝕刻技術 30
2-2-3 金屬輔助化學蝕刻 31
2-3 抗反射原理 32
2-4正金字塔、倒金字塔與奈米線結構之比較 35
2-5 鈍化層之研究 37
第3章、實驗步驟及設備簡介 38
3-1實驗簡介 38
3-2基板規格 38
3-3矽基板清洗 38
3-4正金字塔製備方法及實驗步驟 40
3-5單層抗反射層製備之實驗步驟 41
3-6雙層抗反射層製備之實驗步驟 42
3-7物性分析量測設備 43
3-7-1光學薄膜厚度量測儀(N&K analyzer) 43
3-7-2紫外光-可見光分光光譜儀(UV-Visible Spectroscope) 45
3-7-3鍍金機 46
3-7-4場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 47
3-7-5電漿增強化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition, PECVD) 48
第4章、實驗結果與討論 50
4-1實驗架構 50
4-2正金字塔結構與反射率分析 51
4-4正金字塔結構下之抗反射層反射率分析 56
4-5二氧化矽表面鈍化之抗反射層反射率分析 64
第5章、結論與未來研究方向 69
5-1結論 69
5-2未來研究方向 70
參考文獻 71
[1]Mitchell, John FB. "The “greenhouse” effect and climate change." Reviews of Geophysics 27.1 (1989): 115-139.
[2]Horowitz, Cara A. "Paris agreement." International Legal Materials 55.4 (2016): 740-755.
[3]Maradin, D. (2021). Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy.
[4]經濟部能源局," 110年發電裝置容量概況",2021。
[5]Bagher, A. M., Vahid, M. M. A., & Mohsen, M. (2015). Types of solar cells and application. American Journal of optics and Photonics, 3(5), 94-113.
[6]Akbaba, M., & Alattawi, M. A. (1995). A new model for I–V characteristic of solar cell generators and its applications. Solar energy materials and solar cells, 37(2), 123-132.
[7]台灣科技媒體中心," (上篇)新世代太陽能電池-專家QA",2020。
[8]Bagher, Askari Mohammad, Mirzaei Mahmoud Abadi Vahid, and Mirhabibi Mohsen. "Types of solar cells and application." American Journal of optics and Photonics 3.5 (2015): 94-113.
[9]能源教育資源總中心," 新世代太陽能電池"。
[10]Science Development," 染料敏太陽能電池",2019。
[11]再生能源資訊網,"國際再生能源發展趨勢與政策",2021。
[12]聚恆科技股份有限公司,"台灣再生能源發展現況"。
[13]行政院,"全力衝刺太陽光電",2019。
[14]台灣電力公司,"台電公司2022年度電源規劃情形表",2022。
[15]邁克爾·J·伊科諾米德斯 (Economides) 和大衛·A·伍德 (David A. Wood)。“天然氣的狀況。” 天然氣科學與工程1.1-2(2009):1-13。
[16]經濟部能源局,"台電電廠現況",2021。
[17]國家發展委員會,"台灣2050淨零排放路徑"。
[18]全民節電主題網,"英國首相宣佈2030年會讓全國民眾有無限的風力發電能源可以使用",2020年。
[19]TrendForce,"2019年第三季全球太陽能模組需求暫時放緩,全年仍有望突破120GW",2019。
[20]Raut, H. K., Ganesh, V. A., Nair, A. S., & Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy & Environmental Science, 4(10), 3779-3804.
[21]Wright, Daniel N., Erik S. Marstein, and Arve Holt. "Double layer anti-reflective coatings for silicon solar cells." Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005.. IEEE, 2005.
[22]蕭立君(2004)。抗反射膜對 III-V 族太陽電池量子效率之影響。中原大學電子工程學系研究所:碩士論文。
[23]世界材料網,"太陽電池量測技術",2008。
[24]Tawfik, M., Tonnellier, X., & Sansom, C. (2018). Light source selection for a solar simulator for thermal applications: A review. Renewable and Sustainable Energy Reviews, 90, 802-813.
[25]呂明憲(2017)。應用於太陽能電池的步階型與漸變型抗反射結構之模擬。雲科大微電子與光電工程組:碩士學位論文。
[26]楊德仁(2008)。"太陽能電池材料"。
[27]Moore, J. E., Dongaonkar, S., Chavali, R. V. K., Alam, M. A., & Lundstrom, M. S. (2014). Correlation of built-in potential and I–V crossover in thin-film solar cells. IEEE Journal of Photovoltaics, 4(4), 1138-1148.
[28]吳長霖(2012)。研製ITO/SiO2雙層抗反射層應用於結晶矽太陽能電池。雲科大光電研究所:碩士學位論文。
[29]工業材料雜誌 – 太陽光電技術,"P型雙面鈍化射極與背面電池介紹",2016。
[30]Zhao, Jianhua, Aihua Wang, and Martin A. Green. "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates." Solar Energy Materials and Solar Cells 65.1-4 (2001): 429-435.
[31]Lammert, Michael D., and Richard J. Schwartz. "The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlight." IEEE Transactions on Electron Devices 24.4 (1977): 337-342.
[32]Franklin, Evan, et al. "Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell." Progress in Photovoltaics: research and applications 24.4 (2016): 411-427.
[33]Desa, MK Mat, et al. "Silicon back contact solar cell configuration: A pathway towards higher efficiency." Renewable and sustainable energy reviews 60 (2016): 1516-1532.
[34]Yousuf, Hasnain, et al. "A review on TOPCon solar cell technology." Current Photovoltaic Research 9.3 (2021): 75-83.
[35]世界材料網,"穿隧型異質接面太陽能電池鈍化接觸技術介紹",2019。
[36]Taguchi, Mikio, et al. "24.7% record efficiency HIT solar cell on thin silicon wafer." IEEE Journal of photovoltaics 4.1 (2013): 96-99.
[37]Srivastava, Ravi P., and Dahl‐Young Khang. "Structuring of Si into multiple scales by metal‐assisted chemical etching." Advanced Materials 33.47 (2021): 2005932.
[38]黃昭凱。「運用奈米粒子及奈米球微影技術提升矽晶太陽能電池光補獲的特性」。博士論文,國立交通大學應用化學系碩博士班,2012。
[39]Chen, Quansheng, et al. "Optical properties of a random inverted pyramid textured silicon surface studied by the ray tracing method." Solar Energy 186 (2019): 392-397.
[40]Glunz, S. W., & Feldmann, F. (2018). SiO2 surface passivation layers–a key technology for silicon solar cells. Solar Energy Materials and Solar Cells, 185, 260-269.
[41]Forouhi, A. R., and I. Bloomer. "Optical dispersion relations for amorphous semiconductors and amorphous dielectrics." Physical review B 34.10 (1986): 7018.
[42]Forouhi, A. R., and I. Bloomer. "Optical properties of crystalline semiconductors and dielectrics." Physical review B 38.3 (1988): 1865.
[43]Fang, Qiang, Yafang Peng, and H. K. Yu. "A study on application of N&K Analyzer in OLED failure analysis." 2008 International Conference on Electronic Packaging Technology & High Density Packaging. IEEE, 2008.
[44]Li, G. G., et al. "Optical characterization of silicon-on-insulator." MRS Online Proceedings Library (OPL) 446 (1996): 199.
[45]維基百科,"光譜儀"。
[46]國立台北科技大學 奈米光電磁材料技術研發中心,"UV / VIS紫外光 / 可見光分光光譜量測"。
[47]羅聖全,"科學基礎研究之重要利器-掃描式電子顯微鏡(SEM) ",2013。
[48]維基百科,"掃描電子顯微鏡"。
[49]勀傑科技,"如何使用掃描式電子顯微鏡(SEM)進行EDX元素分析",2020。
[50]維基百科,"能量色散X射線譜"。
[51]Goldstein, Joseph I., et al. Scanning electron microscopy and X-ray microanalysis. springer, 2017.
[52]中文百科全書,"電漿增強化學氣相沉積"。
[53]Chu, A. K., Wang, J. S., Tsai, Z. Y., & Lee, C. K. (2009). A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers. Solar energy materials and solar cells, 93(8), 1276-1280.
[54]Zhou, C., Li, T., Song, Y., Zhou, S., Wang, W., Zhao, L., ... & Li, Y. (2011). SiOx (C)/SiNx dual-layer anti-reflectance film coating for improved cell efficiency. Solar energy, 85(11), 3057-3063.
[55]Amra, C., Albrand, G., & Roche, P. (1986). Theory and application of antiscattering single layers: antiscattering antireflection coatings. Applied optics, 25(16), 2695-2702.
[56]Chen, Z., Sana, P., Salami, J., & Rohatgi, A. (1993). A novel and effective PECVD SiO/sub 2//SiN antireflection coating for Si solar cells. IEEE Transactions on Electron Devices, 40(6), 1161-1165.
[57]Chattopadhyay, S., Huang, Y. F., Jen, Y. J., Ganguly, A., Chen, K. H., & Chen, L. C. (2010). Anti-reflecting and photonic nanostructures. Materials Science and Engineering: R: Reports, 69(1-3), 1-35.
[58]Peng, Y. J., Huang, H. X., & Xie, H. (2017). Rapid fabrication of antireflective pyramid structure on polystyrene film used as protective layer of solar cell. Solar Energy Materials and Solar Cells, 171, 98-105.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top