[1]“衛生福利部 111 年國人死因統計結果”, [Online].Available: https://www.mohw.gov.tw/cp-16-79055-1.html
[2]“WHO reveals leading causes of death and disability worldwide: 2000-2019”, [Online].Available: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[3]“心電圖(EKG)檢查與注意事項” https://www.taic.mohw.gov.tw/?aid=509&pid=0&page_name=detail&type=0&iid=2340
[4] “缺血性心臟病的診斷與治療”https://www.vhwc.gov.tw/PageView/RowViewDetail?WebRowsID=26bdc81a-aa43-4157-84d4-e93e54589e86&UnitID=9560bc3c-9b11-43a8-9cd7-89c676199787&CompanyID=e8e0488e-54a0-44bf-b10c-d029c423f6e7
[5]林佳禾。「用於心電訊號之壓縮快捷式降噪自編碼器晶片設計」。碩士論文,國立雲林科技大學電子工程系,2023。https://hdl.handle.net/11296/5e936j。[6]M. Z. U. Rahman, R. A. Shaik and D. V. R. K. Reddy, “Efficient and simplified adaptive noise cancelers for ECG sensor based remote health monitoring,” IEEE Sensors J., vol. 12, no. 3, pp. 566-573, Mar. 2012.
[7]Girisha Garg, Vijander Singh, J.R.P. Gupta and A.P.Mittal, “Optimal Algorithm for ECG Denoising using Discrete Wavelet Transforms,” 2010 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, Dec. 2010.
[8]Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P. A., “Extracting and composing robust features with denoising autoencoders,” Proc. 25th Int. Conf. Mach. Learn., pp. 1096-1103, Jul. 2008.
[9]Xiong, P., Wang, H., Liu, M. and Liu, X. “Denoising Autoencoder for Eletrocardiogram Signal Enhancement,” Journal of Medical Imaging and Health Informatics, vol. 5, pp.1804-1810, 2015.
[10]H.T. Chiang, Y.Y. Hsieh, S.W. Fu, K.H. Hung, Y. Tsao and S.Y. Chien, “Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders,” IEEE Access, vol. 7, pp. 60806-60813, 2019.
[11]S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, pp. 1735-1780, 1997.
[12]E. Dasan and I. Panneerselvam, “A novel dimensionality reduction approach for ECG signal via convolutional denoising autoencoder with LSTM,” Biomedical Signal Processing and Control, vol. 63, 2021.
[13]Jhang, Y. S., Wang, S. T., Sheu, M. H., Wang, S. H. and Lai, S. C., “Integration Design of Portable ECG Signal Acquisition with Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System,” IEEE Access, vol. 10, pp. 57555-57564, 2022.
[14]K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 770-778, 2016.
[15]Jhang, Y. S., Wang, S. T., Sheu, M. H., Wang, S. H. and Lai, S. C., “Channel-Wise Average Pooling and 1D Pixel-Shuffle Denoising Autoencoder for Electrode Motion Artifact Removal in ECG,” Applied Sciences, vol. 12, no. 14:6957, 2022.
[16]W. Shi et al., “Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 1874–1883, Sep. 2016.
[17]Vaswani, Ashish, et al., “Attention is all you need,” Advances in Neural Information Processing Systems 30(NeurIPS 2017), pp. 5998-6008, 2017.
[18]Doya, Kenji. "Bifurcations in the learning of recurrent neural networks," IEEE International Symposium on Circuits and Systems (ISCAS), vol. 6, pp. 2777-2780, 1992.
[19]Chen, M., Li, Y., Zhang, L., Liu, L., Han, B., Shi, W., & Wei, S., “Elimination of Random Mixed Noise in ECG using Convolutional Denoising Autoencoder with Transformer Encoder,” IEEE Journal of Biomedical and Health Informatics, vol. 28, no. 4, pp. 1993-2004, April 2024.
[20]L. F. Dong, Y. Z. Gan, X. L. Mao, Y. bin Yang, and C. Shen, “Learning Deep Representations Using Convolutional Auto-encoders with Symmetric Skip Connections,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2018-April, pp. 3006–3010, Nov. 2016.
[21]G. B. Moody, R. G. Mark and A. L. Goldberger, “Physionet: A Web-based resource for the study of physiologic signals”, IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 70-75, 2001.
[22]M. George, M. Warren and M. Roger, “A noise stress test for arrhythmia detectors”, Comput. Cardiol., pp. 381-384, Nov. 1984.