|
[1]Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Magliano, D. J. "IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045." Diabetes research and clinical practice, vol. 183, pp. 109-119, 2022. [2]World Health Organization. "Global status report on alcohol and health 2018." World Health Organization, 2019. [3]Reddy, V. S., Agarwal, B., Ye, Z., Zhang, C., Roy, K., Chinnappan, A., Ghosh, R. "Recent advancement in biofluid-based glucose sensors using invasive, minimally invasive, and non-invasive technologies: A review." Nanomaterials, vol. 12, no. 7, pp. 1082-1084, 2022. [4]"糖尿病," 慢性疾病防治組, 2016. [5]World Health Organization., "Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation," World Hearth Org, 2006. [6]Negi, Anjli, and Varun Jaiswal. "A first attempt to develop a diabetes prediction method based on different global datasets." 2016 fourth international conference on parallel, distributed and grid computing (PDGC). IEEE, pp. 237-241, 2016. [7]Collazo, Maria. "Mayo clinic on managing diabetes." Orient Paperbacks, 2008. [8]B. Tripathy, H. B. Chandalia, and A. K. Das, "RSSDI textbook of diabetes mellitus," JP Medical Ltd, 2012. [9]W. J. Craig and A. R. Mangels, "Position of the American Dietetic Association: vegetarian diets," Journal of the American dietetic association, vol. 109, pp. 1266-1282, 2009. [10]黎雨青, 李奕德, and 陳順天, "潛伏性成人自體免疫糖尿病," 家庭醫學與基層醫療, vol. 24, pp. 327-330, 2009. [11]Khan, R., Radoi, A., Rashid, S., Hayat, A., Vasilescu, A., Andreescu, S. "Two-dimensional nanostructures for electrochemical biosensor." Sensors, vol. 21, no. 10, pp. 3369-3372, 2021. [12]Zhang, C., Zhang, Z., Yang, Q., Chen, W. "Graphene‐based electrochemical glucose sensors: Fabrication and sensing properties." Electroanalysis, vol. 30, no. 11, pp. 2504-2524, 2018. [13]Chhowalla, Manish, Zhongfan Liu, Hua Zhang. "Two-dimensional transition metal dichalcogenide (TMD) nanosheets." Chemical Society Reviews, vol. 44, no. 9, pp. 2584-2586, 2015. [14]Bandodkar, A. J., Jia, W., Yardımcı, C., Wang, X., Ramirez, J., Wang, J. "Tattoo-based noninvasive glucose monitoring: a proof-of-concept study." Analytical chemistry, vol. 87, no. 1, pp. 394-398, 2015. [15]Newman, Jeffrey D., Anthony PF Turner. "Home blood glucose biosensors: a commercial perspective." Biosensors and bioelectronics, vol. 20, no. 12, pp. 2435-2453, 2005. [16]D'Orazio, Paul. "Biosensors in clinical chemistry." Clinica chimica acta, vol. 334, no. 1-2, pp. 41-69, 2003. [17]Fierro, Jose Luis G. "Metal oxides: chemistry and applications. " CRC press, 2005. [18]黃炳照、莊睦賢, "電化學感測器," 化工技術 第七卷第二期, 1999. [19]格魯德, "化學傳感器," 科學出版社, 2008. [20]D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical biosensors: recommended definitions and classification," Biosensors and Bioelectronics, vol. 16, pp. 121-131, 2001. [21]Hassan, M. H., Vyas, C., Grieve, B., Bartolo, P. "Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing." Sensors, vol. 21, no. 14, pp. 4672-4674, 2021. [22]Yoo, Eun-Hyung, Soo-Youn Lee. "Glucose biosensors: an overview of use in clinical practice." Sensors, vol. 10, no. 5, pp. 4558-4579, 2010. [23]Clark Jr, Leland C., Champ Lyons. "Electrode systems for continuous monitoring in cardiovascular surgery." Annals of the New York Academy of sciences, vol. 102, no. 1, pp. 29-45, 1962. [24]Newman, Jeffrey D., Anthony PF Turner. "Home blood glucose biosensors: a commercial perspective." Biosensors and bioelectronics, vol. 20, no. 12, pp. 2435-2453, 2005. [25]Matthews, D. R., Bown, E., Watson, A., Holman, R. R., Steemson, J., Hughes, S., Scott, D. "Pen-sized digital 30-second blood glucose meter." The Lancet, vol. 329, no. 8536, pp. 778-779, 1987. [26]Ipekci, H. H., Kazak, O., Tor, A., Uzunoglu, A. "Tuning active sites of N-doped porous carbon catalysts derived from vinasse for high-performance electrochemical sensing." Particulate Science and Technology, vol. 41, no. 1, pp. 93-104, 2023. [27]Salimi, A., Sharifi, E., Noorbakhsh, A., Soltanian, S. "Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity." Biosensors and Bioelectronics, vol. 22, no. 12, pp. 3146-3153, 2007. [28]Kang, X., Mai, Z., Zou, X., Cai, P., Mo, J. "A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes." Analytical biochemistry, vol. 369, no. 1, pp. 71-79, 2007. [29]Jiang, D., Chu, Z., Peng, J., Luo, J., Mao, Y., Yang, P., Jin, W. "One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection." Electrochimica Acta, vol. 270, pp. 147-155, 2018. [30]Thatikayala, D., Ponnamma, D., Sadasivuni, K. K., Cabibihan, J. J., Al-Ali, A. K., Malik, R. A., Min, B. "Progress of advanced nanomaterials in the non-enzymatic electrochemical sensing of glucose and H2O2." Biosensors, vol. 10, no. 11, pp. 151-153, 2020. [31]Wei, M., Qiao, Y., Zhao, H., Liang, J., Li, T., Luo, Y., Sun, X. "Electrochemical non-enzymatic glucose sensors: recent progress and perspectives." Chemical communications, vol. 56, no. 93, pp. 14553-14569, 2020. [32]Lee, Chung Won, Jun Min Suh, and Ho Won Jang. "Chemical sensors based on two-dimensional (2D) materials for selective detection of ions and molecules in liquid." Frontiers in Chemistry, vol. 7, pp. 708-711, 2019. [33]Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., Kim, K. S. "Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications." Chemical reviews, vol. 112, no. 11, pp. 6156-6214, 2012. [34]Moses, P. G., Mortensen, J. J., Lundqvist, B. I., Nørskov, J. K. "Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2." The Journal of chemical physics, vol. 130, no. 10, pp 39-44, 2009. [35]Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., de Heer, W. A. "Electronic confinement and coherence in patterned epitaxial graphene." Science, vol. 312, no. 7, pp. 1191-1196, 2006. [36]Parlak, O., İncel, A., Uzun, L., Turner, A. P., Tiwari, A. "Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors." Biosensors and Bioelectronics, vol. 89, pp. 545-550, 2017. [37]Su, S., Zhang, C., Yuwen, L., Liu, X., Wang, L., Fan, C., Wang, L. "Uniform Au@ Pt core–shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction." Nanoscale, vol. 8, no. 1, pp. 602-608, 2016. [38]Kim, W., Javey, A., Vermesh, O., Wang, Q., Li, Y., Dai, H. "Hysteresis caused by water molecules in carbon nanotube field-effect transistors." Nano Letters, vol. 3, no. 2, pp. 193-198, 2003. [39]Su, M., Liang, Z., Zhao, C., Liu, P., Yue, S., Xie, W. "Preparation of high quality Cu2O crystal and its opto-electronic properties." Materials Letters, vol. 170, pp. 80-84, 2016. [40]Kumar, R. R., Yu, W. C., Murugesan, T., Chen, P. C., Ranjan, A., Lu, M. Y., Lin, H. N. "Formation of large-scale MoS2/Cu2O/ZnO heterostructure arrays by in situ photodeposition and application for ppb-level NO2 gas sensing." Journal of Alloys and Compounds, vol. 952, pp. 169984-169987, 2013. [41]González, Carlos Márquez. "Electrical characterization of reliability in advanced silicon-on-insulator structures for sub-22nm technologies. " Universidad de Granada, 2017. [42]Geim, Andre K., Irina V. Grigorieva. "Van der Waals heterostructures." Nature, vol. 499, no. 7459, pp. 419-425, 2013. [43]Krishna, R., Titus, E., Salimian, M., Okhay, O., Rajendran, S., Rajkumar, A., Gracio, J. "Hydrogen storage for energy application." Hydrogen storage. IntechOpen, 2012. [44]Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N. "Superior thermal conductivity of single-layer graphene." Nano letters, vol. 8, no. 3, pp. 902-907, 2008. [45]Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., Zhang, H. "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets." Nature chemistry, vol. 5, no. 4, pp. 263-275, 2013. [46]Kang, Seoung-Hun, Young-Kyun Kwon. "Strain effects on phase transitions in transition metal dichalcogenides." Current Applied Physics, vol. 19, no. 6, pp. 690-696, 2019. [47]Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A. "Single-layer MoS2 transistors." Nature nanotechnology, vol. 6, no. 3, pp. 147-150, 2011. [48]Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., Strano, M. S. "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides." Nature nanotechnology, vol. 7, no. 11, pp. 699-712, 2012. [49]Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. "Atomically thin MoS 2: a new direct-gap semiconductor." Physical review letters, vol. 105, no. 13, pp. 136805-136808, 2010. [50]Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M., Chhowalla, M. "Coherent atomic and electronic heterostructures of single-layer MoS2." ACS nano, vol. 6, no. 8, pp. 7311-7317, 2012. [51] Enyashin, A. N., Yadgarov, L., Houben, L., Popov, I., Weidenbach, M., Tenne, R., Seifert, G. "New route for stabilization of 1T-WS2 and MoS2 phases." The Journal of Physical Chemistry C, vol. 115, no. 50, pp. 24586-24591, 2011. [52]Cai, L., He, J., Liu, Q., Yao, T., Chen, L., Yan, W., Wei, S. "Vacancy-induced ferromagnetism of MoS2 nanosheets." Journal of the American Chemical Society, vol. 137, no. 7, pp. 2622-2627, 2015. [53]Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., Wang, F. "Emerging photoluminescence in monolayer MoS2." Nano letters, vol. 10, no. 4, pp. 1271-1275, 2010. [54]Alivisatos, A. Paul. "Semiconductor clusters, nanocrystals, and quantum dots." Science, vol. 271, no. 5251, pp. 933-937, 1966. [55]Rg, Parr, W. Yang. "Density-functional theory of atoms and molecules," 1989. [56]Zhang, C., Tang, S., Deng, M., Du, Y. "Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage." Chinese Physics B, vol. 27, no. 6, pp. 66103-66105, 2018. [57]Van Der Zande, A. M., P. Y. Huang. "D. a. Chenet, TC Berkelbach, Y. You, G.-H. Lee, TF Heinz, DR Reichman, D. a. Muller, and JC Hone." Nat. Mater, vol. 12, pp. 554-556, 2013. [58]Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M., Lou, J. "Large area vapor phase growth and characterization of MoS2 atomic layers on SiO2 substrate." Advanced Materials, vol. 1111, no. 5072, 2011. [59]Laskar, M. R., Ma, L., Kannappan, S., Sung Park, P., Krishnamoorthy, S., Nath, D. N., Rajan, S. "Large area single crystal (0001) oriented MoS2." Applied Physics Letters, vol. 102, no. 25, 2013. [60]Lee, Y., Lee, J., Bark, H., Oh, I. K., Ryu, G. H., Lee, Z., Lee, C. "Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor." Nanoscale, vol. 6, no. 5, pp. 2821-2826, 2014. [61]Orofeo, C. M., Suzuki, S., Sekine, Y., Hibino, H. "Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films." Applied Physics Letters, vol. 105, no. 8, 2014. [62]Choudhary, N., Park, J., Hwang, J. Y., Choi, W. "Growth of large-scale and thickness-modulated MoS2 nanosheets." ACS applied materials & interfaces, vol. 6, no. 23, pp. 21215-21222, 2014. [63]Lin, Y. C., Zhang, W., Huang, J. K., Liu, K. K., Lee, Y. H., Liang, C. T., Li, L. J. "Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization." Nanoscale, vol. 4, no. 20, pp. 6637-6641, 2012. [64]Wang, H., Yu, L., Lee, Y. H., Shi, Y., Hsu, A., Chin, M. L., Palacios, T. "Integrated circuits based on bilayer MoS2 transistors." Nano letters, vol. 12, no. 9, pp. 4674-4680, 2012. [65]Lin, M. W., Liu, L., Lan, Q., Tan, X., Dhindsa, K. S., Zeng, P., Zhou, Z. "Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte." Journal of Physics D: Applied Physics, vol. 45, no. 34, pp. 345102-345106, 2012. [66]Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., Lou, J. "Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers." Nature materials, vol. 12, no .8, pp. 754-759, 2013. [67]Lee, Y. H., Zhang, X. Q., Zhang, W., Chang, M. T., Lin, C. T., Chang, K. D., Lin, T. W. "Synthesis of large-area MoS2 atomic layers with chemical vapor deposition." Advanced Materials, vol. 1202, no. 5458, 2012. [68]Wu, W., De, D., Chang, S. C., Wang, Y., Peng, H., Bao, J., Pei, S. S. "High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains." Applied Physics Letters, vol 102, no. 14, 2013. [69]Li, H., Yin, Z., He, Q., Li, H., Huang, X., Lu, G., Zhang, H. "Fabrication of single‐and multilayer MoS2 film‐based field‐effect transistors for sensing NO at room temperature." small, vol. 8, no. 1, pp. 63-67, 2012. [70]Guo, S., Arab, A., Krylyuk, S., Davydov, A. V., Zaghloul, M. E. "Fabrication and characterization of humidity sensors based on CVD grown MoS 2 thin film." 2017 IEEE 17th international conference on nanotechnology (IEEE-NANO). IEEE, 2017. [71]Karim, S. S., Sudais, A., Shah, M. S., Farrukh, S., Ali, S., Ahmed, M., Fan, X. "A contemplating review on different synthesis methods of 2D-Molybdenum disulfide (MoS2) nanosheets." Fuel, vol. 351, pp. 128923-128926, 2023. [72]Liu, Song, Xuefeng Guo. "Carbon nanomaterials field-effect-transistor-based biosensors." NPG Asia Materials, vol. 4, no. 8, pp. 23-29, 2012. [73]Huang, J. H., Chen, H. H., Liu, P. S., Lu, L. S., Wu, C. T., Chou, C. T., Hou, T. H. "Large-area few-layer MoS2 deposited by sputtering." Materials Research Express, vol. 3, no. 6, pp. 65007-65009, 2016. [74]Kang, K., Xie, S., Huang, L., Han, Y., Huang, P. Y., Mak, K. F., Park, J. "High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity." Nature, vol. 520, no. 7549, pp. 656-660, 2015. [75]Zhang, X., Huang, X., Xue, M., Ye, X., Lei, W., Tang, H., Li, C. "Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres." Materials Letters, vol. 148, pp. 67-70, 2015. [76]Ahmad, K., Shinde, M. A., Song, G., Kim, H. "Fabrication of MoS2/rGO/AgNWs on PET substrate for flexible electrochromic devices." Synthetic Metals, vol. 287, pp. 117074-117078, 2022. [77]Pramanik, M., Jana, B., Ghatak, A., Das, K. "Improvement in efficiency of MoS2 nanoflower based ethylene gas sensor on transition metal doping: an experimental and theoretical investigation." Materials Chemistry and Physics, vol. 314, pp. 128892-128896, 2024. [78]Zhai, Y. J., Li, J. H., Chu, X. Y., Xu, M. Z., Jin, F. J., Li, X., Wang, X. H. "MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection." Journal of Alloys and Compounds, vol. 672, pp. 600-608, 2016. [79]Li, Xueyuan, Xuezhong Du. "Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose." Sensors and Actuators B: Chemical, vol. 239, pp. 536-543, 2017. [80]Huang, J., Dong, Z., Li, Y., Li, J., Tang, W., Yang, H., Li, R. "MoS2 nanosheet functionalized with Cu nanoparticles and its application for glucose detection." Materials Research Bulletin, vol. 48, no. 11, pp. 4544-4547, 2013. [81]Fang, L., Wang, F., Chen, Z., Qiu, Y., Zhai, T., Hu, M., Huang, K. "Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic amperometric sensing of glucose." Talanta, vol. 167, pp. 593-599, 2017. [82]Zhao, Y. F., Yang, Z. Y., Zhang, Y. X., Jing, L., Guo, X., Ke, Z., Sun, K. N. "Cu2O decorated with cocatalyst MoS2 for solar hydrogen production with enhanced efficiency under visible light." The Journal of Physical Chemistry C, vol. 118, no. 26, pp. 14238-14245, 2014. [83]Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., Steiner, T. "Recent progress in processing and properties of ZnO." Superlattices and Microstructures, vol. 34, no. 1-2, pp. 3-32, 2003. [84]Escudero, R., R. Escamilla. "Ferromagnetic behavior of high-purity ZnO nanoparticles." Solid State Communications, vol. 151, no. 2, pp. 97-101, 2011. [85]Wagner, Rudooh S., W. Chadwick Ellis. "Vapor‐liquid‐solid mechanism of single crystal growth." Applied physics letters, vol. 4, no. 5, pp. 89-91, 1964. [86]Alvi, N. H., ul Hassan, W., Farooq, B., Nur, O., Willander, M. "Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor–liquid–solid (VLS) method." Materials Letters, vol. 106, pp. 158-163, 2013. [87]Najma, B., Kasi, A. K., Kasi, J. K., Akbar, A., Bokhari, S. M. A., Stroe, I. R. "ZnO/AAO photocatalytic membranes for efficient water disinfection: Synthesis, characterization and antibacterial assay." Applied Surface Science, vol. 448, pp. 104-114, 2018. [88]Srisuai, N., Boonruang, S., Horprathum, M., Sarapukdee, P., Denchitcharoen, S. "Growth of highly uniform size-distribution ZnO NR arrays on sputtered ZnO thin film via hydrothermal with PMMA template assisted." Materials Science in Semiconductor Processing, vol. 105, pp. 104736-104739, 2020. [89]Soleimanzadeh, R., Mousavi, M. S. S., Mehrfar, A., Esfahani, Z. K., Kolahdouz, M., Zhang, K. "Sequential microwave-assisted ultra-fast ZnO nanorod growth on optimized sol–gel seedlayers." Journal of Crystal Growth, vol. 426, pp. 228-233, 2015. [90] Rilda, Y., Puspita, F., Refinel, R., Armaini, A., Agustien, A., Pardi, H., Sofyan, N. "Biosynthesis of Ag-doped ZnO nanorods using template Bacillus sp. and polyethylene glycol via sol-gel-hydrothermal methods for antifungal application." South African Journal of Chemical Engineering, vol. 47, no. 1, pp. 91-97, 2024. [91]Li, W. J., Shi, E. W., Zhong, W. Z., Yin, Z. W. "Growth mechanism and growth habit of oxide crystals." Journal of crystal growth, vol. 203, no. 1-2, pp. 186-196, 1999. [92]Hou, T. F., Shanmugasundaram, A., Hassan, M. A., Johar, M. A., Ryu, S. W., Lee, D. W. "ZnO/Cu2O-decorated rGO: heterojunction photoelectrode with improved solar water splitting performance." international journal of hydrogen energy, vol. 44, no. 35, pp. 19177-19192, 2019. [93]Wei, C., Liu, Y., Liu, Q., Xiang, W. "Uniform and dense copper nanoparticles directly modified indium tin oxide electrode for non-enzymatic glucose sensing." Journal of Electroanalytical Chemistry, vol. 835, pp. 273-280, 2019. [94]Thongma, S., Boonkoom, T., Tantisantisom, K., Krisdanurak, N. "Influence of ZnO seed layer on the alignment of hydrothermal growth ZnO NR array and influence of surface area of metal contact on pn junction diode behavior." Materials Today: Proceedings, vol. 5, no. 7, pp. 15203-15207, 2018. [95]Sharmila, B., Monoj Kumar Singha, and Priyanka Dwivedi. "Impact of annealing on structural and optical properties of ZnO thin films." Microelectronics Journal, vol. 135, pp. 105759-105762, 2023. [96]Patterson, A. L. "The Scherrer formula for X-ray particle size determination." Physical review, vol. 56, no. 10, pp. 978-980, 1939. [97]N. Colthup, Introduction to infrared and Raman spectroscopy: Elsevier, 2012. [98]Petrovic, Steven. "Cyclic voltammetry of hexachloroiridate (IV): An alternative to the electrochemical study of the ferricyanide ion." The Chemical Educator, vol. 5, pp. 231-235, 2000. [99]Liu, J., She, J., Deng, S., Chen, J., Xu, N. "Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics." The Journal of Physical Chemistry C, vol. 112, no. 31, pp. 11685-11690, 2008. [100]Zhao, Y., Li, W., Pan, L., Zhai, D., Wang, Y., Li, L., Shi, Y. "ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor." Scientific reports, vol. 6, no. 1, pp. 32327-32330, 2016. [101]Chen, Shih-Wei, Jenn-Ming Wu. "Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method." Acta Materialia, vol. 59, no. 2, pp. 841-847, 2011. [102]Dumcenco, D., Ovchinnikov, D., Marinov, K., Lazic, P., Gibertini, M., Marzari, N., Kis, A. "Large-area epitaxial monolayer MoS2." ACS nano, vol. 9, no. 4, pp. 4611-4620, 2015. [103]Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., Ryu, S. "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010. [104]Ma, J., Ge, Y., Dai, P., Lu, C., Xu, X. "Highly stable and sensitive photoelectrochemical photodetectors based on a ZnO nanorod/monolayer MoS2 nanosheets heterostructure." Journal of Alloys and Compounds, vol. 976, pp. 173315-173319, 2024. [105]Ma, K., Sinha, A., Dang, X., Zhao, H. "Electrochemical preparation of gold nanoparticles-polypyrrole co-decorated 2D MoS2 nanocomposite sensor for sensitive detection of glucose." Journal of The Electrochemical Society, vol. 166, no. 2, pp. 147-150, 2019. [106]Li, X., Ren, K., Zhang, M., Sang, W., Sun, D., Hu, T., Ni, Z. "Cobalt functionalized MoS2/carbon nanotubes scaffold for enzyme-free glucose detection with extremely low detection limit." Sensors and Actuators B: Chemical, vol. 293, pp. 122-128, 2019. [107]Zhou, J., Zhao, Y., Bao, J., Huo, D., Fa, H., Shen, X., Hou, C. "One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor." Electrochimica Acta, vol. 250, pp. 152-158, 2017. [108]Shan, J., Li, J., Chu, X., Xu, M., Jin, F., Wang, X., Wang, X. "High sensitivity glucose detection at extremely low concentrations using a MoS 2-based field-effect transistor." RSC advances, vol. 8, no. 15, pp. 7942-7948, 2018. [109]Zhai, Y. J., Li, J. H., Chu, X. Y., Xu, M. Z., Jin, F. J., Li, X., Wang, X. H. "MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection." Journal of Alloys and Compounds, vol. 672, pp. 600-608, 2016. [110]Huang, J., He, Y., Jin, J., Li, Y., Dong, Z., Li, R. "A novel glucose sensor based on MoS2 nanosheet functionalized with Ni nanoparticles." Electrochimica Acta, vol. 136, pp. 41-46, 2014. [111]Anderson, K., Poulter, B., Dudgeon, J., Li, S. E., Ma, X. "A highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2." Sensors, vol. 17, no. 8, pp. 1807-1810, 2017.
|