跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭安雄
研究生(外文):CHENG, AH-HSIUNG
論文名稱:二維層狀過渡金屬硫化物修飾氧化亞銅/氧化鋅奈米柱非酵素葡萄糖感測器
論文名稱(外文):Non-enzymatic Glucose Sensor based on Cu2O Surface Modification of ZnO Nanorods/MoS2 composites
指導教授:陳錫釗
指導教授(外文):CHEN, HSI-CHAO
口試委員:陳昇暉廖博輝
口試委員(外文):CHEN, SHENG-HUILIAO, BO-HUI
口試日期:2024-07-10
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:137
中文關鍵詞:氧化亞銅二硫化鉬異質結構氧化鋅奈米柱非酵素型葡萄糖感測器
外文關鍵詞:Cu2OMoS2heterostructureZnO nanorodsnon-enzymatic glucose sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功製備二維層狀過渡金屬硫化物修飾氧化亞銅/氧化鋅奈米柱複合電極於Ex-ITO(耐高溫)玻璃上,利用兩段式加熱成長二硫化鉬具有製程簡化、反應快、成本低與接觸面積大等優點,將其應用於非酵素型葡萄糖感測器中。製程主要分為三個部分:第一部份為在Ex-ITO玻璃上濺鍍晶種層並成長氧化鋅奈米柱,藉由退火調整表面平整度並探討水熱法製程時間2小時至4小時之對應柱長;第二部分為預鍍金屬硫化法沉積二硫化鉬於氧化鋅奈米柱上,透過磁控濺鍍系統分別以濺鍍時間1、3、5、10秒成長鉬薄膜,並根據硫熔點113℃進行兩段式加熱得到片狀二硫化鉬;第三部分為利用電化學沉積氧化亞銅於二硫化鉬/氧化鋅奈米柱形成異質結構,材料間協同效應使氧化亞銅形成奈米顆粒並沉積於電極表面,調整電鍍時間控制其覆蓋比例提高表面積;最後是量測方面,透過冷場發射掃描式電子顯微鏡(FE-SEM)觀測不同結構之表面形貌,光柵光譜儀(UV-vis)與拉曼光譜儀(Raman shift)觀察薄膜沉積狀況與材料特徵峰值,以X光繞射儀(XRD)配合高解析度穿透式電子顯微鏡(HRTEM)觀察材料之結晶方向與橫截面型貌,利用X射線光電子能譜儀(XPS)測定其元素構成與表面化學能譜,最後透過電化學儀檢測各種感測器特性。
實驗結果顯示,氧化鋅奈米柱在水熱法中的最佳成長時間為2小時,二硫化鉬濺鍍時間為3秒,硫化溫度為640度,氧化亞銅電鍍時間為90秒之複合電極,在0.1 M濃度之NaOH中逐步提升葡萄糖濃度(0-200mg/dL)進行電化學循環伏安法(Cyclic Voltammetry, CV),對比於未加入MoS2之複合電極,其靈敏度自396提升至680.4 ,R2(擬合優越度)值分別為0.985、0.993。透過計時電流法(chronoamperometry)可得到兩個線性區間,分別518.3 (0-5.556 mM)以及233.9 (5.556 mM-11.11mM),其R2值分別為0.993與0.987。

This study successfully fabricated two-dimensional layered transition metal sulfide-modified Cu2O/ZnO nanorod composite electrodes on Ex-ITO (high-temperature resistant) glass. By using a two-step heating process, MoS2 was grown, simplifying the process and offering advantages such as rapid reaction, low cost, and large contact area. This composite was applied to non-enzymatic glucose sensors. The fabrication process mainly consisted of three parts: 1. Sputtering a seed layer on Ex-ITO glass and growing ZnO nanorods, with annealing to adjust surface smoothness and investigating the effect of hydrothermal process times ranging from 2 to 4 hours on the corresponding rod length. 2. Depositing MoS2 on ZnO nanorods using a pre-deposition sulfide method. A magnetron sputtering system was used to grow Mo thin films with sputtering times of 1, 3, 5, and 10 seconds, and a two-step heating process based on sulfur's melting point of 113℃ was applied to obtain sheet-like MoS2. 3. Electrochemically depositing Cu2O on the MoS2/ZnO nanorods to form a heterostructure. The synergistic effect among the materials led to the formation of Cu2O nanoparticles deposited on the electrode surface. Adjusting the electroplating time controlled the coverage ratio and increased the surface area.
Regarding measurement, different structural surface morphologies were observed using field emission scanning electron microscopy (FE-SEM). UV-visible spectroscopy and Raman spectroscopy were used to observe the film deposition status and material characteristic peaks. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) were used to observe the crystalline orientation and cross-sectional morphology of the materials. X-ray photoelectron spectroscopy (XPS) was employed to determine the elemental composition and surface chemical spectra. Finally, various sensor characteristics were detected using an electrochemical analyzer.
The experimental results showed that the optimal growth time for ZnO nanorods in the hydrothermal method was 2 hours, the sputtering time for MoS2 was 3 seconds, the sulfidation temperature was 640℃, and the electroplating time for Cu2O was 90 seconds. The composite electrode was tested in 0.1 M NaOH with gradually increasing glucose concentrations (0-200 mg/dL) using cyclic voltammetry (CV). Compared to the composite electrode without MoS2, its sensitivity increased from 396 to 680.4 , and the R2 (goodness of fit) values were 0.985 and 0.993, respectively. Chronoamperometry revealed two linear ranges, 518.3 (0-5.556 mM) and 233.9 (5.556 mM-11.11 mM), with R2 values of 0.993 and 0.987, respectively.


摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 研究動機 6
1-3 研究方法 8
第二章 文獻回顧 9
2-1 感測器簡介 9
2-2 葡萄糖生物感測器 10
2-3-1 酵素型葡萄糖感測器 11
2-3-2 非酵素型葡萄糖感測器 13
2-3 二維材料 16
2-3-1 二維材料簡介 16
2-3-2 二硫化鉬(Molybdenum Disulfide, MoS2) 21
2-3-3 製備MoS2 24
2-3-4 基於MoS2的非酵素型葡萄糖感測器 30
2-4 氧化鋅奈米柱 32
2-4-1氧化鋅簡介 32
2-4-2氧化鋅合成方式 33
2-5 氧化亞銅 36
第三章 實驗方法與步驟 38
3-1 實驗藥品及耗材 38
3-2 實驗架構及流程圖 39
3-3 實驗步驟及方法 41
3-3-1 基板選擇與處理 41
3-3-2 製備氧化鋅晶種層 42
3-3-3 熱退火處理 44
3-3-4 水熱法合成氧化鋅奈米柱 45
3-3-5 利用濺鍍系統沉積鉬金屬 46
3-3-6 利用熱蒸氣硫化成長二硫化鉬 48
3-3-7 電鍍沉積氧化亞銅 50
3-3-8 奈米碳管固定劑調配與感測器製作 53
3-4 分析儀器介紹 54
3-4-1 光學顯微鏡 (Optical Microscopy, OM) 54
3-4-2 冷場發射掃描式電子顯微鏡(FE-SEM) 55
3-4-3 X光繞射儀(X-ray diffraction, XRD) 56
3-4-4 拉曼光譜儀(Raman spectrometer) 58
3-4-5 多功能聚焦離子束系統 (Focused Ion Beam, FIB) 60
3-4-6 高解析度穿透式電子顯微鏡(HRTEM) 61
3-4-7 X射線光電子能譜儀(X-ray photoelectron spectroscopy) 62
3-4-7 光柵光譜儀(UV/Visible Spectrophotometer) 63
3-4-8 電化學分析儀(Electric chemistry analyzer) 65
第四章 結果與討論 67
4-1 氧化鋅晶種層與氧化鋅奈米柱之製備 67
4-1-1 光柵光譜儀分析氧化鋅晶種層與氧化鋅奈米柱 67
4-1-2 Raman 光譜分析 70
4-1-3 氧化鋅奈米柱之SEM表面形貌 72
4-1-4 X光繞射儀(X-ray diffraction, XRD) 76
4-2 鉬金屬硫化形成二硫化鉬(MoS2)/氧化鋅奈米柱(ZnO NRs) 78
4-2-1 以光學顯微鏡觀察二硫化鉬薄膜 78
4-2-2 UV–vis 分析二硫化鉬/氧化鋅奈米柱 79
4-2-3 Raman 光譜分析 81
4-2-4 二硫化鉬/氧化鋅奈米柱之SEM表面形貌 83
4-2-5 X光繞射儀(X-ray diffraction, XRD) 87
4-2-6 高解析度穿透式電子顯微鏡(HRTEM) 88
4-3 氧化亞銅(Cu2O)/二硫化鉬(MoS2)/氧化鋅奈米柱(ZnO NRs)複合電極 89
4-3-1 製備氧化亞銅於ITO玻璃 89
4-3-2 Raman 光譜分析 91
4-3-3 SEM分析氧化亞銅/二硫化鉬/氧化鋅奈米柱其表面形貌 92
4-3-4 X光繞射儀分析(X-ray diffraction, XRD) 95
4-3-5 高解析度穿透式電子顯微鏡(HRTEM) 96
4-3-6 X射線光電子能譜儀(X-ray photoelectron spectroscopy) 98
4-4 電化學儀量測非酵素葡萄糖感測器 101
4-4-1 循環伏安法(Cyclic Voltammetry, CV) 101
4-4-2 計時電流法(chronoamperometry, CA) 104
4-4-3 抗干擾與穩定性測試 106
4-4-4 葡萄糖感測器性能比對 108
第五章 結論 109
參考文獻 111


[1]Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Magliano, D. J. "IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045." Diabetes research and clinical practice, vol. 183, pp. 109-119, 2022.
[2]World Health Organization. "Global status report on alcohol and health 2018." World Health Organization, 2019.
[3]Reddy, V. S., Agarwal, B., Ye, Z., Zhang, C., Roy, K., Chinnappan, A., Ghosh, R. "Recent advancement in biofluid-based glucose sensors using invasive, minimally invasive, and non-invasive technologies: A review." Nanomaterials, vol. 12, no. 7, pp. 1082-1084, 2022.
[4]"糖尿病," 慢性疾病防治組, 2016.
[5]World Health Organization., "Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation," World Hearth Org, 2006.
[6]Negi, Anjli, and Varun Jaiswal. "A first attempt to develop a diabetes prediction method based on different global datasets." 2016 fourth international conference on parallel, distributed and grid computing (PDGC). IEEE, pp. 237-241, 2016.
[7]Collazo, Maria. "Mayo clinic on managing diabetes." Orient Paperbacks, 2008.
[8]B. Tripathy, H. B. Chandalia, and A. K. Das, "RSSDI textbook of diabetes mellitus," JP Medical Ltd, 2012.
[9]W. J. Craig and A. R. Mangels, "Position of the American Dietetic Association: vegetarian diets," Journal of the American dietetic association, vol. 109, pp. 1266-1282, 2009.
[10]黎雨青, 李奕德, and 陳順天, "潛伏性成人自體免疫糖尿病," 家庭醫學與基層醫療, vol. 24, pp. 327-330, 2009.
[11]Khan, R., Radoi, A., Rashid, S., Hayat, A., Vasilescu, A., Andreescu, S. "Two-dimensional nanostructures for electrochemical biosensor." Sensors, vol. 21, no. 10, pp. 3369-3372, 2021.
[12]Zhang, C., Zhang, Z., Yang, Q., Chen, W. "Graphene‐based electrochemical glucose sensors: Fabrication and sensing properties." Electroanalysis, vol. 30, no. 11, pp. 2504-2524, 2018.
[13]Chhowalla, Manish, Zhongfan Liu, Hua Zhang. "Two-dimensional transition metal dichalcogenide (TMD) nanosheets." Chemical Society Reviews, vol. 44, no. 9, pp. 2584-2586, 2015.
[14]Bandodkar, A. J., Jia, W., Yardımcı, C., Wang, X., Ramirez, J., Wang, J. "Tattoo-based noninvasive glucose monitoring: a proof-of-concept study." Analytical chemistry, vol. 87, no. 1, pp. 394-398, 2015.
[15]Newman, Jeffrey D., Anthony PF Turner. "Home blood glucose biosensors: a commercial perspective." Biosensors and bioelectronics, vol. 20, no. 12, pp. 2435-2453, 2005.
[16]D'Orazio, Paul. "Biosensors in clinical chemistry." Clinica chimica acta, vol. 334, no. 1-2, pp. 41-69, 2003.
[17]Fierro, Jose Luis G. "Metal oxides: chemistry and applications. " CRC press, 2005.
[18]黃炳照、莊睦賢, "電化學感測器," 化工技術 第七卷第二期, 1999.
[19]格魯德, "化學傳感器," 科學出版社, 2008.
[20]D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical biosensors: recommended definitions and classification," Biosensors and Bioelectronics, vol. 16, pp. 121-131, 2001.
[21]Hassan, M. H., Vyas, C., Grieve, B., Bartolo, P. "Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing." Sensors, vol. 21, no. 14, pp. 4672-4674, 2021.
[22]Yoo, Eun-Hyung, Soo-Youn Lee. "Glucose biosensors: an overview of use in clinical practice." Sensors, vol. 10, no. 5, pp. 4558-4579, 2010.
[23]Clark Jr, Leland C., Champ Lyons. "Electrode systems for continuous monitoring in cardiovascular surgery." Annals of the New York Academy of sciences, vol. 102, no. 1, pp. 29-45, 1962.
[24]Newman, Jeffrey D., Anthony PF Turner. "Home blood glucose biosensors: a commercial perspective." Biosensors and bioelectronics, vol. 20, no. 12, pp. 2435-2453, 2005.
[25]Matthews, D. R., Bown, E., Watson, A., Holman, R. R., Steemson, J., Hughes, S., Scott, D. "Pen-sized digital 30-second blood glucose meter." The Lancet, vol. 329, no. 8536, pp. 778-779, 1987.
[26]Ipekci, H. H., Kazak, O., Tor, A., Uzunoglu, A. "Tuning active sites of N-doped porous carbon catalysts derived from vinasse for high-performance electrochemical sensing." Particulate Science and Technology, vol. 41, no. 1, pp. 93-104, 2023.
[27]Salimi, A., Sharifi, E., Noorbakhsh, A., Soltanian, S. "Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity." Biosensors and Bioelectronics, vol. 22, no. 12, pp. 3146-3153, 2007.
[28]Kang, X., Mai, Z., Zou, X., Cai, P., Mo, J. "A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes." Analytical biochemistry, vol. 369, no. 1, pp. 71-79, 2007.
[29]Jiang, D., Chu, Z., Peng, J., Luo, J., Mao, Y., Yang, P., Jin, W. "One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection." Electrochimica Acta, vol. 270, pp. 147-155, 2018.
[30]Thatikayala, D., Ponnamma, D., Sadasivuni, K. K., Cabibihan, J. J., Al-Ali, A. K., Malik, R. A., Min, B. "Progress of advanced nanomaterials in the non-enzymatic electrochemical sensing of glucose and H2O2." Biosensors, vol. 10, no. 11, pp. 151-153, 2020.
[31]Wei, M., Qiao, Y., Zhao, H., Liang, J., Li, T., Luo, Y., Sun, X. "Electrochemical non-enzymatic glucose sensors: recent progress and perspectives." Chemical communications, vol. 56, no. 93, pp. 14553-14569, 2020.
[32]Lee, Chung Won, Jun Min Suh, and Ho Won Jang. "Chemical sensors based on two-dimensional (2D) materials for selective detection of ions and molecules in liquid." Frontiers in Chemistry, vol. 7, pp. 708-711, 2019.
[33]Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., Kim, K. S. "Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications." Chemical reviews, vol. 112, no. 11, pp. 6156-6214, 2012.
[34]Moses, P. G., Mortensen, J. J., Lundqvist, B. I., Nørskov, J. K. "Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2." The Journal of chemical physics, vol. 130, no. 10, pp 39-44, 2009.
[35]Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., de Heer, W. A. "Electronic confinement and coherence in patterned epitaxial graphene." Science, vol. 312, no. 7, pp. 1191-1196, 2006.
[36]Parlak, O., İncel, A., Uzun, L., Turner, A. P., Tiwari, A. "Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors." Biosensors and Bioelectronics, vol. 89, pp. 545-550, 2017.
[37]Su, S., Zhang, C., Yuwen, L., Liu, X., Wang, L., Fan, C., Wang, L. "Uniform Au@ Pt core–shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction." Nanoscale, vol. 8, no. 1, pp. 602-608, 2016.
[38]Kim, W., Javey, A., Vermesh, O., Wang, Q., Li, Y., Dai, H. "Hysteresis caused by water molecules in carbon nanotube field-effect transistors." Nano Letters, vol. 3, no. 2, pp. 193-198, 2003.
[39]Su, M., Liang, Z., Zhao, C., Liu, P., Yue, S., Xie, W. "Preparation of high quality Cu2O crystal and its opto-electronic properties." Materials Letters, vol. 170, pp. 80-84, 2016.
[40]Kumar, R. R., Yu, W. C., Murugesan, T., Chen, P. C., Ranjan, A., Lu, M. Y., Lin, H. N. "Formation of large-scale MoS2/Cu2O/ZnO heterostructure arrays by in situ photodeposition and application for ppb-level NO2 gas sensing." Journal of Alloys and Compounds, vol. 952, pp. 169984-169987, 2013.
[41]González, Carlos Márquez. "Electrical characterization of reliability in advanced silicon-on-insulator structures for sub-22nm technologies. " Universidad de Granada, 2017.
[42]Geim, Andre K., Irina V. Grigorieva. "Van der Waals heterostructures." Nature, vol. 499, no. 7459, pp. 419-425, 2013.
[43]Krishna, R., Titus, E., Salimian, M., Okhay, O., Rajendran, S., Rajkumar, A., Gracio, J. "Hydrogen storage for energy application." Hydrogen storage. IntechOpen, 2012.
[44]Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N. "Superior thermal conductivity of single-layer graphene." Nano letters, vol. 8, no. 3, pp. 902-907, 2008.
[45]Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., Zhang, H. "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets." Nature chemistry, vol. 5, no. 4, pp. 263-275, 2013.
[46]Kang, Seoung-Hun, Young-Kyun Kwon. "Strain effects on phase transitions in transition metal dichalcogenides." Current Applied Physics, vol. 19, no. 6, pp. 690-696, 2019.
[47]Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A. "Single-layer MoS2 transistors." Nature nanotechnology, vol. 6, no. 3, pp. 147-150, 2011.
[48]Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., Strano, M. S. "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides." Nature nanotechnology, vol. 7, no. 11, pp. 699-712, 2012.
[49]Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. "Atomically thin MoS 2: a new direct-gap semiconductor." Physical review letters, vol. 105, no. 13, pp. 136805-136808, 2010.
[50]Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M., Chhowalla, M. "Coherent atomic and electronic heterostructures of single-layer MoS2." ACS nano, vol. 6, no. 8, pp. 7311-7317, 2012.
[51] Enyashin, A. N., Yadgarov, L., Houben, L., Popov, I., Weidenbach, M., Tenne, R., Seifert, G. "New route for stabilization of 1T-WS2 and MoS2 phases." The Journal of Physical Chemistry C, vol. 115, no. 50, pp. 24586-24591, 2011.
[52]Cai, L., He, J., Liu, Q., Yao, T., Chen, L., Yan, W., Wei, S. "Vacancy-induced ferromagnetism of MoS2 nanosheets." Journal of the American Chemical Society, vol. 137, no. 7, pp. 2622-2627, 2015.
[53]Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., Wang, F. "Emerging photoluminescence in monolayer MoS2." Nano letters, vol. 10, no. 4, pp. 1271-1275, 2010.
[54]Alivisatos, A. Paul. "Semiconductor clusters, nanocrystals, and quantum dots." Science, vol. 271, no. 5251, pp. 933-937, 1966.
[55]Rg, Parr, W. Yang. "Density-functional theory of atoms and molecules," 1989.
[56]Zhang, C., Tang, S., Deng, M., Du, Y. "Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage." Chinese Physics B, vol. 27, no. 6, pp. 66103-66105, 2018.
[57]Van Der Zande, A. M., P. Y. Huang. "D. a. Chenet, TC Berkelbach, Y. You, G.-H. Lee, TF Heinz, DR Reichman, D. a. Muller, and JC Hone." Nat. Mater, vol. 12, pp. 554-556, 2013.
[58]Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M., Lou, J. "Large area vapor phase growth and characterization of MoS2 atomic layers on SiO2 substrate." Advanced Materials, vol. 1111, no. 5072, 2011.
[59]Laskar, M. R., Ma, L., Kannappan, S., Sung Park, P., Krishnamoorthy, S., Nath, D. N., Rajan, S. "Large area single crystal (0001) oriented MoS2." Applied Physics Letters, vol. 102, no. 25, 2013.
[60]Lee, Y., Lee, J., Bark, H., Oh, I. K., Ryu, G. H., Lee, Z., Lee, C. "Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor." Nanoscale, vol. 6, no. 5, pp. 2821-2826, 2014.
[61]Orofeo, C. M., Suzuki, S., Sekine, Y., Hibino, H. "Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films." Applied Physics Letters, vol. 105, no. 8, 2014.
[62]Choudhary, N., Park, J., Hwang, J. Y., Choi, W. "Growth of large-scale and thickness-modulated MoS2 nanosheets." ACS applied materials & interfaces, vol. 6, no. 23, pp. 21215-21222, 2014.
[63]Lin, Y. C., Zhang, W., Huang, J. K., Liu, K. K., Lee, Y. H., Liang, C. T., Li, L. J. "Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization." Nanoscale, vol. 4, no. 20, pp. 6637-6641, 2012.
[64]Wang, H., Yu, L., Lee, Y. H., Shi, Y., Hsu, A., Chin, M. L., Palacios, T. "Integrated circuits based on bilayer MoS2 transistors." Nano letters, vol. 12, no. 9, pp. 4674-4680, 2012.
[65]Lin, M. W., Liu, L., Lan, Q., Tan, X., Dhindsa, K. S., Zeng, P., Zhou, Z. "Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte." Journal of Physics D: Applied Physics, vol. 45, no. 34, pp. 345102-345106, 2012.
[66]Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., Lou, J. "Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers." Nature materials, vol. 12, no .8, pp. 754-759, 2013.
[67]Lee, Y. H., Zhang, X. Q., Zhang, W., Chang, M. T., Lin, C. T., Chang, K. D., Lin, T. W. "Synthesis of large-area MoS2 atomic layers with chemical vapor deposition." Advanced Materials, vol. 1202, no. 5458, 2012.
[68]Wu, W., De, D., Chang, S. C., Wang, Y., Peng, H., Bao, J., Pei, S. S. "High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains." Applied Physics Letters, vol 102, no. 14, 2013.
[69]Li, H., Yin, Z., He, Q., Li, H., Huang, X., Lu, G., Zhang, H. "Fabrication of single‐and multilayer MoS2 film‐based field‐effect transistors for sensing NO at room temperature." small, vol. 8, no. 1, pp. 63-67, 2012.
[70]Guo, S., Arab, A., Krylyuk, S., Davydov, A. V., Zaghloul, M. E. "Fabrication and characterization of humidity sensors based on CVD grown MoS 2 thin film." 2017 IEEE 17th international conference on nanotechnology (IEEE-NANO). IEEE, 2017.
[71]Karim, S. S., Sudais, A., Shah, M. S., Farrukh, S., Ali, S., Ahmed, M., Fan, X. "A contemplating review on different synthesis methods of 2D-Molybdenum disulfide (MoS2) nanosheets." Fuel, vol. 351, pp. 128923-128926, 2023.
[72]Liu, Song, Xuefeng Guo. "Carbon nanomaterials field-effect-transistor-based biosensors." NPG Asia Materials, vol. 4, no. 8, pp. 23-29, 2012.
[73]Huang, J. H., Chen, H. H., Liu, P. S., Lu, L. S., Wu, C. T., Chou, C. T., Hou, T. H. "Large-area few-layer MoS2 deposited by sputtering." Materials Research Express, vol. 3, no. 6, pp. 65007-65009, 2016.
[74]Kang, K., Xie, S., Huang, L., Han, Y., Huang, P. Y., Mak, K. F., Park, J. "High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity." Nature, vol. 520, no. 7549, pp. 656-660, 2015.
[75]Zhang, X., Huang, X., Xue, M., Ye, X., Lei, W., Tang, H., Li, C. "Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres." Materials Letters, vol. 148, pp. 67-70, 2015.
[76]Ahmad, K., Shinde, M. A., Song, G., Kim, H. "Fabrication of MoS2/rGO/AgNWs on PET substrate for flexible electrochromic devices." Synthetic Metals, vol. 287, pp. 117074-117078, 2022.
[77]Pramanik, M., Jana, B., Ghatak, A., Das, K. "Improvement in efficiency of MoS2 nanoflower based ethylene gas sensor on transition metal doping: an experimental and theoretical investigation." Materials Chemistry and Physics, vol. 314, pp. 128892-128896, 2024.
[78]Zhai, Y. J., Li, J. H., Chu, X. Y., Xu, M. Z., Jin, F. J., Li, X., Wang, X. H. "MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection." Journal of Alloys and Compounds, vol. 672, pp. 600-608, 2016.
[79]Li, Xueyuan, Xuezhong Du. "Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose." Sensors and Actuators B: Chemical, vol. 239, pp. 536-543, 2017.
[80]Huang, J., Dong, Z., Li, Y., Li, J., Tang, W., Yang, H., Li, R. "MoS2 nanosheet functionalized with Cu nanoparticles and its application for glucose detection." Materials Research Bulletin, vol. 48, no. 11, pp. 4544-4547, 2013.
[81]Fang, L., Wang, F., Chen, Z., Qiu, Y., Zhai, T., Hu, M., Huang, K. "Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic amperometric sensing of glucose." Talanta, vol. 167, pp. 593-599, 2017.
[82]Zhao, Y. F., Yang, Z. Y., Zhang, Y. X., Jing, L., Guo, X., Ke, Z., Sun, K. N. "Cu2O decorated with cocatalyst MoS2 for solar hydrogen production with enhanced efficiency under visible light." The Journal of Physical Chemistry C, vol. 118, no. 26, pp. 14238-14245, 2014.
[83]Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., Steiner, T. "Recent progress in processing and properties of ZnO." Superlattices and Microstructures, vol. 34, no. 1-2, pp. 3-32, 2003.
[84]Escudero, R., R. Escamilla. "Ferromagnetic behavior of high-purity ZnO nanoparticles." Solid State Communications, vol. 151, no. 2, pp. 97-101, 2011.
[85]Wagner, Rudooh S., W. Chadwick Ellis. "Vapor‐liquid‐solid mechanism of single crystal growth." Applied physics letters, vol. 4, no. 5, pp. 89-91, 1964.
[86]Alvi, N. H., ul Hassan, W., Farooq, B., Nur, O., Willander, M. "Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor–liquid–solid (VLS) method." Materials Letters, vol. 106, pp. 158-163, 2013.
[87]Najma, B., Kasi, A. K., Kasi, J. K., Akbar, A., Bokhari, S. M. A., Stroe, I. R. "ZnO/AAO photocatalytic membranes for efficient water disinfection: Synthesis, characterization and antibacterial assay." Applied Surface Science, vol. 448, pp. 104-114, 2018.
[88]Srisuai, N., Boonruang, S., Horprathum, M., Sarapukdee, P., Denchitcharoen, S. "Growth of highly uniform size-distribution ZnO NR arrays on sputtered ZnO thin film via hydrothermal with PMMA template assisted." Materials Science in Semiconductor Processing, vol. 105, pp. 104736-104739, 2020.
[89]Soleimanzadeh, R., Mousavi, M. S. S., Mehrfar, A., Esfahani, Z. K., Kolahdouz, M., Zhang, K. "Sequential microwave-assisted ultra-fast ZnO nanorod growth on optimized sol–gel seedlayers." Journal of Crystal Growth, vol. 426, pp. 228-233, 2015.
[90] Rilda, Y., Puspita, F., Refinel, R., Armaini, A., Agustien, A., Pardi, H., Sofyan, N. "Biosynthesis of Ag-doped ZnO nanorods using template Bacillus sp. and polyethylene glycol via sol-gel-hydrothermal methods for antifungal application." South African Journal of Chemical Engineering, vol. 47, no. 1, pp. 91-97, 2024.
[91]Li, W. J., Shi, E. W., Zhong, W. Z., Yin, Z. W. "Growth mechanism and growth habit of oxide crystals." Journal of crystal growth, vol. 203, no. 1-2, pp. 186-196, 1999.
[92]Hou, T. F., Shanmugasundaram, A., Hassan, M. A., Johar, M. A., Ryu, S. W., Lee, D. W. "ZnO/Cu2O-decorated rGO: heterojunction photoelectrode with improved solar water splitting performance." international journal of hydrogen energy, vol. 44, no. 35, pp. 19177-19192, 2019.
[93]Wei, C., Liu, Y., Liu, Q., Xiang, W. "Uniform and dense copper nanoparticles directly modified indium tin oxide electrode for non-enzymatic glucose sensing." Journal of Electroanalytical Chemistry, vol. 835, pp. 273-280, 2019.
[94]Thongma, S., Boonkoom, T., Tantisantisom, K., Krisdanurak, N. "Influence of ZnO seed layer on the alignment of hydrothermal growth ZnO NR array and influence of surface area of metal contact on pn junction diode behavior." Materials Today: Proceedings, vol. 5, no. 7, pp. 15203-15207, 2018.
[95]Sharmila, B., Monoj Kumar Singha, and Priyanka Dwivedi. "Impact of annealing on structural and optical properties of ZnO thin films." Microelectronics Journal, vol. 135, pp. 105759-105762, 2023.
[96]Patterson, A. L. "The Scherrer formula for X-ray particle size determination." Physical review, vol. 56, no. 10, pp. 978-980, 1939.
[97]N. Colthup, Introduction to infrared and Raman spectroscopy: Elsevier, 2012.
[98]Petrovic, Steven. "Cyclic voltammetry of hexachloroiridate (IV): An alternative to the electrochemical study of the ferricyanide ion." The Chemical Educator, vol. 5, pp. 231-235, 2000.
[99]Liu, J., She, J., Deng, S., Chen, J., Xu, N. "Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics." The Journal of Physical Chemistry C, vol. 112, no. 31, pp. 11685-11690, 2008.
[100]Zhao, Y., Li, W., Pan, L., Zhai, D., Wang, Y., Li, L., Shi, Y. "ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor." Scientific reports, vol. 6, no. 1, pp. 32327-32330, 2016.
[101]Chen, Shih-Wei, Jenn-Ming Wu. "Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method." Acta Materialia, vol. 59, no. 2, pp. 841-847, 2011.
[102]Dumcenco, D., Ovchinnikov, D., Marinov, K., Lazic, P., Gibertini, M., Marzari, N., Kis, A. "Large-area epitaxial monolayer MoS2." ACS nano, vol. 9, no. 4, pp. 4611-4620, 2015.
[103]Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., Ryu, S. "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010.
[104]Ma, J., Ge, Y., Dai, P., Lu, C., Xu, X. "Highly stable and sensitive photoelectrochemical photodetectors based on a ZnO nanorod/monolayer MoS2 nanosheets heterostructure." Journal of Alloys and Compounds, vol. 976, pp. 173315-173319, 2024.
[105]Ma, K., Sinha, A., Dang, X., Zhao, H. "Electrochemical preparation of gold nanoparticles-polypyrrole co-decorated 2D MoS2 nanocomposite sensor for sensitive detection of glucose." Journal of The Electrochemical Society, vol. 166, no. 2, pp. 147-150, 2019.
[106]Li, X., Ren, K., Zhang, M., Sang, W., Sun, D., Hu, T., Ni, Z. "Cobalt functionalized MoS2/carbon nanotubes scaffold for enzyme-free glucose detection with extremely low detection limit." Sensors and Actuators B: Chemical, vol. 293, pp. 122-128, 2019.
[107]Zhou, J., Zhao, Y., Bao, J., Huo, D., Fa, H., Shen, X., Hou, C. "One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor." Electrochimica Acta, vol. 250, pp. 152-158, 2017.
[108]Shan, J., Li, J., Chu, X., Xu, M., Jin, F., Wang, X., Wang, X. "High sensitivity glucose detection at extremely low concentrations using a MoS 2-based field-effect transistor." RSC advances, vol. 8, no. 15, pp. 7942-7948, 2018.
[109]Zhai, Y. J., Li, J. H., Chu, X. Y., Xu, M. Z., Jin, F. J., Li, X., Wang, X. H. "MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection." Journal of Alloys and Compounds, vol. 672, pp. 600-608, 2016.
[110]Huang, J., He, Y., Jin, J., Li, Y., Dong, Z., Li, R. "A novel glucose sensor based on MoS2 nanosheet functionalized with Ni nanoparticles." Electrochimica Acta, vol. 136, pp. 41-46, 2014.
[111]Anderson, K., Poulter, B., Dudgeon, J., Li, S. E., Ma, X. "A highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2." Sensors, vol. 17, no. 8, pp. 1807-1810, 2017.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊