跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊銘
研究生(外文):HUANG JYUN-MING
論文名稱:氧化鎂薄膜葡萄糖感測器電路與晶片設計整合於微型化軟性印刷電路板之研究
論文名稱(外文):Research on Magnesium Oxide Thin Film Glucose Biosensor Circuit and Chip Design Integration in Miniaturized Flexible Printed Circuit Board
指導教授:楊博惠
指導教授(外文):YANG, PO-HUI
口試委員:陳耀煌周榮泉楊博惠
口試委員(外文):CHEN, YAW-HWANGCHOU JUNG-CHUANYANG, PO-HUI
口試日期:2024-06-26
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:221
中文關鍵詞:微型化多工感測器氧化鎂葡萄糖氧化酶電壓式量測技術電壓回授型儀表放大器
外文關鍵詞:miniaturized multi-sensormagnesium oxideglucose oxidasepotentiometric measurement technologyvoltage feedback instrumentation amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
葡萄糖是人體血液中重要物質,由於人體內葡萄糖水平是衡量糖尿病的重要指標,所以它一直是生醫檢測研究的焦點。本論文以電壓式量測技術的方式研究氧化鎂(MgO)薄膜氫離子感測器,並以此為基礎進一步開發基於酶修飾的MgO薄膜葡萄糖感測器,且使用電壓回授型儀表放大器組成量測電路。又因微型化是生醫感測器的發展重點,本論文將感測器以及量測電路整合成微型化架構之多感測器系統。本多感測器系統分為兩部份,一為感測電極之研究開發,二為下線晶片與量測電路板之整合開發,兩者皆採用柔軟、輕便且低成本的柔性印刷電路板製成。在感測電極的方面藉由射頻濺鍍工藝並在實驗出的穩定濺鍍參數下沉積MgO在感測薄膜工作電極上。為了增強感測器對葡萄糖的感測能力,本論文採用了葡萄糖氧化酶(GOD)增強感測器的性能。本論文使用了多項儀器對MgO薄膜進行了分析和驗證,包括X光光電子能譜儀、場發射掃描電子顯微鏡、原子力顯微鏡和能量色散X光譜儀。研究及實驗結果表明,在2 mM至10 mM範圍內,基於酶修飾MgO葡萄糖感測器在各項指標上皆具有出色的表現,其中感測度為17.45 mV/mM並且線性度可達到0.998。在儀表放大器的方面,藉由電路的設計、結構、佈局以及下線。本碩士論文成功實現下線晶片整合感測器之微型化多工感測器的開發並且將感測器之面積從11.52 cm2縮小至3.3 cm2。
Glucose is an important substance in the human blood, and it has always been the focus of biomedical testing and research because the glucose level in the human body is an important indicator for measuring diabetes. In this thesis, the magnesium oxide (MgO) film hydrogen ion sensor was studied by potentiometric measurement technology, and the MgO film glucose sensor based on enzyme modification was further developed on this basis, and the measurement circuit was composed by using a voltage-feedback instrumentation amplifier. Since miniaturization is the focus of the development of biosensors, this paper integrates sensors and measurement circuits into a multi-sensor system with a miniaturized architecture. The multi-sensor system is divided into two parts, one is the research and development of sensing electrodes, and the other is the integration and development of tape-out chips and measurement circuit boards, both of which are made of flexible, lightweight and low-cost flexible printed circuit boards. In terms of the sensing electrode, MgO is deposited on the working electrode of the sensing film by the RF sputtering process and under the stable sputtering parameters of the experiment. To enhance the sensor's ability to sense glucose, glucose oxidase (GOD) was used to enhance the performance of the sensor. In this paper, MgO thin films were analyzed and validated using several instruments, including X-ray photoelectron spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and energy dispersive X-ray spectroscopy. The results show that the enzyme-modified MgO glucose sensor has an excellent performance in all indexes in the range of 2 mM to 10 mM, the sensitivity is 17.45 mV/mM and the linearity can reach 0.998. In terms of instrumentation amplifiers, the design, structure, layout, and tape-out circuits are introduced. In this master's thesis, we successfully developed a miniaturized multi-task sensor with integrated sensors on the tape-out chip and reduced the sensor area from 11.52 cm2 to 3.3 cm2.
摘要 i
Abstract ii
Acknowledgments iii
Table of Contents iv
List of Tables viii
List of Figures x
Chapter 1 Background 1
1.1 Development 1
1.2 Motivations and Purposes 4
1.3 Outline 7
Chapter 2 Introduction 10
2.1 Materials of the pH Sensor, Glucose Biosensor, and Multi-Sensor 10
2.1.1 Magnesium Oxide, MgO 10
2.1.2 Glucose Oxidase, GOD 11
2.1.3 Flexible Printed Circuit Board, FPCB 12
2.2 Measurement Principles and Characteristics of the pH Sensor and Glucose Biosensor 14
2.2.1 Measurement Principle of the pH Sensor 14
2.2.2 Measurement Principles of the Glucose Biosensor 17
2.2.3 Sensing Characteristics of the pH Sensor and Biosensor 18
2.3 Measurement System of the pH Sensor and Glucose Biosensor 23
2.3.1 Potentiometric Measurement System 23
2.3.2 Operational Amplifier, OPA 26
2.3.3 Instrumentation Amplifier, INA 27
Chapter 3 Experimental 28
3.1 Materials and Instruments 28
3.1.1 Source of Materials 28
3.1.2 Experiment and Analysis Instruments 31
3.1.2.1 Radio Frequency (RF) Sputtering System 31
3.1.2.2 Field-emission Scanning Electron Microscope, FE-SEM 33
3.1.2.3 X-ray photoelectron spectroscopy, XPS 35
3.1.2.4 Atomic Force Microscopy, AFM 37
3.1.2.5 Analysis Instruments 39
3.2 Fabrication Process and Structure of the pH Sensor, Glucose Biosensor, and Multi-Sensor 40
3.2.1 Structure of the pH Sensor, Glucose Biosensor and Multi-Sensor 40
3.2.2 Fabrication Process of the pH Sensor 44
3.2.3 Fabrication Process of the Glucose Biosensor 46
3.2.4 Fabrication Process of the Multi-Sensor 48
3.3 Fabrication Process of the Test Solution 50
3.3.1 Fabrication Process of the pH Solution 50
3.3.2 Fabrication Process of the Glucose Solution 52
3.4 Measurement System of the pH Sensor and the Glucose Biosensor 54
3.4.1 Design of the Voltage-Time (V-T) Measurement System 54
3.4.2 Design of the Miniaturized Measurement System 57
3.4.3 Design of the Readout Circuit Chip 59
3.4.3.1 Design of the Operational Amplifier 59
3.4.3.2 Design of the Instrumentation Amplifier 66
3.4.4 Layout of the Readout Circuit Chip 68
3.4.4.1 Layout of the Two-Stage OPA and INA 68
3.4.4.2 Layout of the Folded-Cascode OPA and INA 72
Chapter 4 Results and Discussion 76
4.1 Material Analysis of the MgO Sensing Layer 76
4.1.1 FE-SEM Analysis of the MgO Sensing Layer 76
4.1.2 XPS Analysis of the MgO Sensing Layer 80
4.1.3 AFM Analysis of the MgO Sensing Layer 83
4.2 Sensing Characteristics of the pH Sensor 87
4.2.1 Average Sensitivity and Linearity of the pH Sensor 87
4.2.2 Drift Effect of the pH Sensor 91
4.2.3 Hysteresis Effects of the pH Sensor 93
4.2.4 Reproducibility of the pH Sensor 95
4.2.5 Repeatability of the pH Sensor 97
4.2.6 Response Time of the pH Sensor 99
4.2.7 Interference Effect of the pH Sensor 101
4.2.8 Sensing Characteristics Comparisons of the pH Sensor Based on Difference Sensing Electrode Structures 103
4.3 Sensing Characteristics of the Glucose Biosensor 105
4.3.1 Average Sensitivity, Linearity, and LOD of the Glucose Biosensor 105
4.3.2 Interference Effect of the Glucose Biosensor 108
4.3.3 Response Time of the Glucose Biosensor 110
4.3.4 Drift Effect of the Glucose Biosensor 112
4.3.5 Reproducibility of the Glucose Biosensor 114
4.3.6 Repeatability of the Glucose Biosensor 116
4.3.7 Response Time of the Glucose Biosensor 118
4.3.8 Sensing Characteristics Comparisons of the Glucose Biosensor Based on Difference Sensing Electrode Structure 120
4.4 Sensing Characteristics of the Multi-Sensor 123
4.4.1 Electrochemical Impedance Spectroscopy Analysis of the MgO Multi-Sensor Characteristic 123
4.4.2 Sensing Performance of the MgO Multi-Sensor 125
4.4.3 Repeatability of the MgO Multi-Sensor 127
4.4.4 Interference Effect of the MgO Multi-Sensor 129
4.5 Design Results and Specifications of the Readout Circuit Chip 130
4.5.1 Simulation Results of the Two-Stage OPA Driven by the Constant gm Bias Circuit 130
4.5.2 Simulation Results of the Folded-Cascode OPA Driven by the Constant gm Bias Circuit 144
4.5.3 Simulation Results of the INA Based on the Two-Stage OPA 154
4.5.4 Measurement Results of the Readout Circuit Chip 162
Chapter 5 Conclusions 173
Chapter 6 Future Works 175
References 177
附錄 187

[1]L. C. C. Jr, and C. Lyons, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery,” Annals of the New York Academy of Sciences, vol. 102, no. 1, pp. 29-45, Oct. 1962.
[2]V. B. Juska and M. E. Pemble, “A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems,” Sensors, vol. 20, no. 21, 28 pages, Oct. 2020.
[3]S. Zhang, G. Wright, and Y. Yang, “Materials and Techniques for Electrochemical Biosensor Design and Construction,” Biosensors and Bioelectronics, vol. 15, no. 5, pp. 273-282, Aug. 2000.
[4]M. Futagawa, T. Iwasaki, H. Murata, M. Ishida, and K. Sawada, “A Miniature Integrated Multimodal Sensor for Measuring pH, EC and Temperature for Precision Agriculture,” Sensors, vol. 12, no. 6, pp. 8338–8354, Jun. 2012.
[5]A. U. Alam, Y. Qin, S. Nambiar, J. T. W. Yeow, M. M. R. Howlader, N. X. Hu, M. J. Deen, “Polymers and Organic Materials-Based pH Sensors for Healthcare Applications,” Progress in Materials Science, vol. 96, pp. 174–216, Jul. 2018.
[6]M. Alizadeh-Sani, E. Mohammadian, J. W. Rhim, and S. M. Jafari, “pH-sensitive (halochromic) Smart Packaging Film Based on Natural Food Colorants for the Monitoring of Food Quality and Safety,” Trends in Food Science & Technology, vol. 105, pp. 93–144, Nov. 2020.
[7]C. Dincer, R. Bruch, E. Costa-Rama, M. T. Fernández-Abedul, A. Merkoçi, A. Manz, G. A. Urban, F. Güder, “Disposable Sensors in Diagnostics, Food, and Environmental Monitoring,” Advanced Materials, vol. 31, no. 30, 28 pages, May. 2019.
[8]H. Ryu, D. Thompson, Y. Huang, B. Li, and Y. Lei, “Electrochemical Sensors for Nitrogen Species: A Review,” Sensors and Actuators Reports, vol. 2, no. 1, 12 pages, Nov. 2020.
[9]Z. P. Yang, C. J. Zhang, J. X. Zhang, and W. B. Bai, “Potentiometric Glucose Biosensor Based on Core–Shell Fe3O4–Enzyme–Polypyrrole Nanoparticles,” Biosensors and Bioelectronics, vol. 51, pp. 268-273, Jan. 2014.
[10]J. G. Ayenimo, S. B. Adeloju, “Improved Potentiometric Glucose Detection with Ultra-Thin Polypyrrole-Glucose Oxidase Film,” Analytical Methods, vol. 6, pp. 8996-9006, Sep. 2014.
[11]K. u. Hasan, M. H. Asif, M. U. Hassan, M. O. Sandberg, O. Nur, M. Willander, S. Fagerholm, and P. Stralfors, “A Miniature Graphene-Based Biosensor for Intracellular Glucose Measurements,” Electrochimica Acta, vol. 174, pp. 574-580, Aug. 2015.
[12]J. C. Chou, S. J. Yan, Y. H. Liao, Chih-Hsien Lai, Y. X. Wu, and C. Y. Wu, “Remote Detection for Glucose and Lactate Based on Flexible Sensor Array,” IEEE Sensors Journal, vol. 18, no. 8, pp. 3467-3474, Apr. 2018.
[13]L. Mou, Y. Xia, and X. Y. Jiang, “Epidermal Sensor for Potentiometric Analysis of Metabolite and Electrolyte,” Analytical Chemistry, vol. 93, pp. 11525-11531, Aug. 2021.
[14]S. Sinha, T. Pal, “A Comprehensive Review of FET-Based pH Sensors: Materials, Fabrication Technologies, and Modeling,” Electrochemical Science Advances, vol. 2, no. 5, 50 pages, Oct. 2022.
[15]C. H. Kao, C. S. Liu, S. H. Lu, S. C. Tsai, W. L. Chan, B. H. Lin, C. F. Lin, H. Chen, J. Han, “Multianalyte Mg-Doped InGaZnO Electrolyte-Insulator-Semiconductor Biosensors and Multiple Material Characterizations of Membrane Nanostructures,” IEEE Sensors Journal, vol. 20, no. 18, pp. 10653–10663, Sep. 2020.
[16]T. M. Pan, Y. H. Huang, J. L. Her, B. S. Lou, and S. T. Pang, “Solution Processed ZnInxOy Sensing Membranes on Flexible PEN for Extended-Gate Field-Effect Transistor pH Sensors,” Journal of Alloys and Compounds, vol. 822, 8 pages, May. 2020.
[17]A. Gaddour, W. Dghais, B. Hamdi, and M. Ben Ali, “Temperature Compensation Circuit for ISFET Sensor,” Journal of Low Power Electronics and Applications, vol. 10, no. 1, 16 pages, Jan. 2020.
[18]E. Tanumihardja, W. Olthuis, and A. Van den Berg, “Ruthenium Oxide Nanorods as Potentiometric pH Sensor for Organs-on-Chip Purposes,” Sensors, vol. 18, no. 9, 11 pages, Sep. 2018.
[19]W. D. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, “A Flexible pH Sensor Based on the Iridium Oxide Sensing Film,” Sensors and Actuators A: Physical, vol. 169, no. 1, pp. 1–11, Sep. 2011.
[20]D. Srikanya, A. M. Bhat, and C. Sahu, “Design and Analysis of High-Performance Double-Gate ZnO Nano-Structured Thin-Film ISFET for pH Sensing Applications,” Microelectronics Journal, vol. 137, 9 pages, Jul. 2023.
[21]C. C. Yang, K. Y. Chen, and Y. K. Su, “TiO2 Nano Flowers Based EGFET Sensor for pH Sensing,” Coatings, vol. 9, no. 4, 7 pages, Apr. 2019.
[22]L. Manjakkal, D. Szwagierczak, and R. Dahiya, “Metal oxides based electrochemical pH sensors: Current progress and future perspectives,” Progress in Materials Science, vol. 109, 31 pages, Apr. 2020.
[23]M. Veiseh, M. H. Zareie, and M. Zhang, “Highly Selective Protein Patterning on Gold − Silicon Substrates for Biosensor Applications,” Langmuir, vol. 18, no. 17, pp. 6671-6678, Jul. 2002.
[24]M. Tyagi, M. Tomar, and V. Gupta, “NiO Nanoparticle-Based Urea Biosensor,” Biosensors and Bioelectronics, vol. 41, pp. 110-115, Mar. 2013.
[25]C. L. Ng, and M. B. I. Reaz, “Evolution of A Capacitive Electromyography Contactless Biosensor: Design and Modelling Techniques,” Measurement, vol. 145, pp. 460-471, Oct. 2019.
[26]P. H. Yang, Y. S. Chang, and C. T. Chan, “Aluminum-Doped Zinc Oxide Enzymatic Dopamine Biosensor Integrated with Potentiometric Readout Circuit Board,” IEEE Sensors Journal, vol. 23, no. 3, pp. 1809-1817, Feb. 2023.
[27]D. Wang, D. Ba, Z. Hao, Y. Li, F. Sun, K. Liu, G. Du, Q. Mei, “A Novel Approach for PDMS Thin Film Production Towards Application as Substrate for Flexible Biosensors,” Materials Letters, vol. 221, pp. 228-231, Jun. 2018.
[28]Y. Aleeva, G. Maira, M. Scopelliti, V. Vinciguerra, G. Scandurra, G. Cannatà, G. Giusi, C. Ciofi, V. Figà, L. G. Occhipinti, and B. Pignataro, “Amperometric Biosensor and Front-End Electronics for Remote Glucose Monitoring by Crosslinked PEDOT-Glucose Oxidase,” IEEE Sensors Journal, vol. 18, no. 12, pp. 4869-4878, Apr. 2018.
[29]B. Wang, Y. Wu, Y. Chen, B. Weng, and C. Li, “Flexible Paper Sensor Fabricated Via in Situ Growth of Cu Nanoflower on RGO Sheets Towards Amperometrically Non-Enzymatic Detection of Glucose,” Sensors and Actuators B: Chemical, vol. 238, pp. 802–808, Jan. 2017.
[30]P. H. Yang, Y. S. Chang, and C. T. Chan, “ZnO and AZO Film Potentiometric pH Sensors Based on Flexible Printed Circuit Board,” Chemosensors, vol. 10, no. 8, 14 pages, 2022.
[31]P. H. Yang, J. M. Huang, Y. S. Chang, C. T. Chan, and H. J. Hu, “Fabrication and Characterization of MgO-Based Enzymatic Glucose Biosensors,” IEEE Sensors Journal, vol. 23, no. 23, pp. 28587-28596, Dec. 2023
[32]H. Zhang, S.-F. Hua, and L. Zhang, “Co-Immobilization of Cellulase and Glucose Oxidase on Graphene Oxide by Covalent Bonds: A Biocatalytic System for One-Pot Conversion of Gluconic Acid from Carboxymethyl Cellulose,” Journal of Chemical Technology & Biotechnology, vol. 95, no. 4, pp. 1116–1125, Nov. 2020.
[33]S. Gao, H. Lin, H. Zhang, H. Yao, Y. Chen, and J. Shi, “Nanocatalytic Tumor Therapy by Biomimetic Dual Inorganic Nanozyme-Catalyzed Cascade Reaction,” Advanced Science, vol. 6, no. 3, 19 pages, Jul. 2019.
[34]J. Jeevanandam, Y. S. Chan, and Y. H. Ku, “Aqueous Eucalyptus Globulus Leaf Extract-Mediated Biosynthesis of MgO Nanorods,” Applied Biological Chemistry, vol. 61, no. 2, pp. 197–208, Feb. 2018.
[35]Y. Wan, C. Samundsett, J. Bullock, M. Hettick, T. Allen, D. Yan, J. Peng, Y. Wu, J. Cui, A. Javey, and A. Cuevas, “Conductive and Stable Magnesium Oxide Electron-Selective Contacts for Efficient Silicon Solar Cells,” Advanced Energy Materials, vol. 7, no. 5, 7 pages, Nov. 2017.
[36]Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as A Function of [Li]/[Nb] and MgO Concentrations”, Applied Physics Letters, vol. 77, no. 16, pp. 2494–2496, Oct. 2000.
[37]C. H. Kao, C. L. Chang, W. M. Su, Y. T. Chen, C. C. Lu, Y. S. Lee, C. H. Jong, C. Y. Lin, and H. Chen, “Magnesium Oxide (MgO) pH-Sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment,” Scientific Reports, vol. 7, no. 1, 8 pages, Aug. 2017.
[38]B. Derkus, “Applying the Miniaturization Technologies for Biosensor Design,” Biosensors and Bioelectronics, vol. 79, pp. 901-913, May. 2016.
[39]M. Veiseh, M. H. Zareie, and M. Zhang, “Highly Selective Protein Patterning on Gold − Silicon Substrates for Biosensor Applications,” Langmuir, vol. 18, no. 17, pp. 6671-6678, Jul. 2002.
[40]M. Tyagi, M. Tomar, and V. Gupta, “NiO Nanoparticle-Based Urea Biosensor,” Biosensors and Bioelectronics, vol. 41, pp. 110-115, Mar. 2013.
[41]C. L. Ng, and M. B. I. Reaz, “Evolution of A Capacitive Electromyography Contactless Biosensor: Design and Modelling Techniques,” Measurement, vol. 145, pp. 460-471, Oct. 2019.
[42]V. Arlyapov, N. Y. Yudina, L. Asulyan, S. Alferov, V. Alferov, and A. Reshetilov, “BOD Biosensor Based on The Yeast Debaryomyces Hansenii Immobilized in Poly (vinyl alcohol) Modified by N-Vinylpyrrolidone,” Enzyme and Microbial Technology, vol. 53, no. 4, pp. 257-262, Sep. 2013.
[43]S. Damiati, S. Sopstad, M. Peacock, A. S. Akhtar, I. Pinto, R. R. G. Soares, and A. Russom, “Flex Printed Circuit Board Implemented Graphene-Based Dna Sensor for Detection of SARS-CoV-2,” IEEE Sensors Journal, vol. 21, no. 12, pp. 13060-13067, Jun. 2021.
[44]H. Shamkhalichenar, C. J. Bueche, and J. W. Choi, “Printed Circuit Board (PCB) Technology for Electrochemical Sensors and Sensing Platforms,” Biosensors, vol. 10, no. 11, 16 pages, Oct. 2020.
[45]B. K. Kim, S. J. Lee, J. Y. Kim, K. Y. Ji, Y. J. Yoon, M. Y. Kim, S. H. Park, and J. S. Yoo, “Origin of Surface Defects in PCB Final Finishes by the Electroless Nickel Immersion Gold Process,” Journal of Electronic Materials, vol. 37, pp. 527-534, Jan. 2008.
[46]T. Hiemstra, W. H. Van Riemsdijk, and G. Bolt, “Multisite Proton Adsorption Modeling at the Solid/Solution Interface of (hydr) Oxides: A New Approach: I. Model Description and Evaluation of Intrinsic Reaction Constants,” Journal of Colloid and Interface Science, vol. 133, no. 1, pp. 91–104, Nov. 1989.
[47]P. Bergveld, “Thirty Years of ISFETOLOGY: What Happened in The Past 30 Years and What May Happen in the Next 30 Years,” Sensors and Actuators B: Chemical, vol. 88, no. 1, pp. 1–20, Jan. 2003.
[48]R. Van Hal, J. Eijkel, and P. Bergveld, “A General Model to Describe the Electrostatic Potential at Electrolyte Oxide Interfaces,” Advances in Colloid and Interface Science, vol. 69, no. 1–3, pp. 31–62, Dec. 1996.
[49]Y. Jia, B. Wang, Z. Wu, J. Han, T. Zhang, L. J. Vandeperre, C. R. Cheeseman, “Role of Sodium Hexametaphosphate in MgO/SiO2 Cement Pastes,” Cement and Concrete Research, vol. 89, pp. 63–71, Nov. 2016.
[50]L. Amaral, I. Oliveira, R. Salomão, E. Frollini, and V. Pandolfelli, “Temperature and Common-Ion Effect on Magnesium Oxide (MgO) Hydration,” Ceramics International, vol. 36, no. 3, pp. 1047–1054, Apr. 2010.
[51]O. Fruhwirth, G. Herzog, I. Hollerer, and A. Rachetti, “Dissolution and Hydration Kinetics of MgO,” Surface Technology, vol. 24, no. 3, pp. 301–317, Mar. 1985.
[52]L. Fu, C. Ybert, O. Bonhomme, L. Joly, and A. L. Biance, “Electrokinetic Sweeping of Colloids at A Reactive Magnesium Oxide Interface,” Soft Matter, vol. 17, no. 38, pp. 8705–8711, Sep. 2021.
[53]S. A. Hilli, and M. Willander, “The pH Response and Sensing Mechanism of N-type ZnO/Electrolyte Interfaces,” Sensors, vol. 9, no. 9, pp. 7445-7480, Sep. 2009.
[54]I. S. Kucherenko, O. O. Soldatkin, F. Lagarde, N. Jaffrezic-Renault, S. V. Dzyadevych, A. P. Soldatkin, “Determination of Total Creatine Kinase Activity in Blood Serum using An Amperometric Biosensor Based on Glucose Oxidase and Hexokinase,” Talanta, vol. 144, pp. 604-611, Nov. 2015.
[55]S. M. U. Ali, O. Nur, M. Willander, and B. Danielsson, “A Fast and Sensitive Potentiometric Glucose Microsensor Based on Glucose Oxidase Coated ZnO Nanowires Grown on A Thin Silver Wire,” Sensors and Actuators B: Chemical, vol. 145, no. 2, pp. 869–874, Mar. 2010.
[56]M. Lakshmanakumar, N. Nesakumar, A. J. Kulandaisamy, and J. B. B. Rayappan, “Principles and Recent Developments in Optical and Electrochemical Sensing of Dopamine: A Comprehensive Review,” Measurement, vol. 183, 17 pages, Oct. 2021.
[57]N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, “Introduction to Biosensors,” Essays in Biochemistry, vol. 60, no. 1, 68 pages, Jun. 2016.
[58]J. C. Chou, K. T. Lee, Chih-Hsien Lai, Po-Yu Kuo, Yu-Hsun Nien, Y. H. Hao, and Z. X. Kang, “Novel Potentiometric Non-Enzymatic Ascorbic Acid Sensor Based on Molybdenum Oxide Film and Copper Nanoparticles,” IEEE Sensors Journal, vol. 22, no. 1, pp. 50-60, Jan. 2022.
[59]J. C. Chou, S. H. Lin, Po-Yu Kuo, Chih-Hsien Lai, Yu-Hsun Nien, T. Y. Lai, and T. Y. Su, “A Sensitive Potentiometric Biosensor using MBs-AO/GO/ZnO Membranes-Based Arrayed Screen-Printed Electrodes for AA Detection and Remote Monitoring,” IEEE Access, vol. 7, pp. 105962-105972, Jul. 2019.
[60]Yu-Hsun Nien, T. Y. Su, J. C. Chou, Po-Yu Kuo, Chih-Hsien Lai, C. S. Ho, Z. X. Dong, Z. X. Kang, and T. Y. Lai, “Improving the Drift Effect and Hysteresis Effect of Urea Biosensor Based on Graphene Oxide/Nickel Oxide Sensing Film Modified Either by Au Nanoparticles or γ-Fe2O3 Nanoparticles using Back-End Calibration Circuit,” IEEE Journal of the Electron Devices Society, vol. 9, pp. 242-249, Jan. 2021.
[61]A. K. Mishra, D. K. Jarwal, B. Mukherjee, A. Kumar, S. Ratan, and S. Jit, “CuO Nanowire-Based Extended-Gate Field-Effect-Transistor (FET) for pH Sensing and Enzyme-Free/Receptor-Free Glucose Sensing Applications,” IEEE Sensors Journal, vol. 20, no. 9, pp. 5039-5047, Jan. 2020.
[62]L. C. Chen, E. Wang, C. S Tai, Y. C. Chiu, C. W. Li, Y. R. Lin, T. H. Lee, C. W. Huang, J. C. Chen, and W. L. Chen, “Improving the Reproducibility, Accuracy, and Stability of An Electrochemical Biosensor Platform for Point-of-Care Use,” Biosensors and Bioelectronics, vol. 155, 8 pages, May. 2020.
[63]M. A. A. Lomillo, O. D. Renedo, L. F. Gonçalves, and M. J. A. Martínez, “Sensitive Enzyme-Biosensor Based on Screen-Printed Electrodes for Ochratoxin A,” Biosensors and Bioelectronics, vol. 25, no. 6, pp. 1333-1337, Feb. 2010.
[64]P. H. Yang, C. T. Chan, and Y. S. Chang, “A Flexible Printed Circuit Board-Based ZnO Enzymatic Uric Acid Potentiometric Biosensor Measurement and Characterization,” IEEE Journal of the Electron Devices Society, vol. 11, pp. 114-121, Feb. 2023.
[65]R. Doaga, T. M. Cormac, and E. Dempsey, “Functionalized Magnetic Nanomaterials for Electrochemical Biosensing of Cholesterol and Cholesteryl Palmitate,” Microchimica Acta, vol. 187, no. 225, 10 pages, Mar. 2020.
[66]F. A. Stevie and C. L. Donley, “Introduction to X-ray Photoelectron Spectroscopy,” Journal of Vacuum Science & Technology A, vol. 38, no. 6, 20 pages, Sep. 2020.
[67]K. Haase and A. E. Pelling, “Investigating Cell Mechanics with Atomic Force Microscopy,” Journal of the Royal Society Interface, vol. 12, no. 104, 15 pages, Mar. 2015.
[68]W. R. Carmody, “Easily Prepared Wide Range Buffer Series,” Journal of Chemical Education, vol. 38, no. 11, 2 pages, Nov. 1961.
[69]R. J. E. Jansen, J. Haanstra, and D. Sillars, “Complementary Constant-gm Biasing of Nauta-Transconductors in Low-Power gm–C Filters to ±2 % Accuracy Over Temperature,” IEEE Journal of Solid-State Circuits, vol. 48, no. 7, pp. 1585-1594, Jul. 2013.
[70]A. Yadav, “A Review Paper on Design and Synthesis of Two-Stage CMOS OPAMP,” International Journal of Advances in Engineering & Technology, vol. 2, no. 1, 12 pages, Jan. 2012.
[71]L. Safari, G. Ferri, S. Minaei and V. Stornelli, “Principles of Instrumentation Amplifiers,” Current-Mode Instrumentation Amplifiers, pp. 1–13, Oct. 2018.
[72]J. H. Lee, J. H. Eun, S. Y. Park, S. G. Kim, and H. J. Kim, “Hydration of RF Magnetron Sputtered MgO Thin Film for A Protective Layer in AC Plasma Display Panel,” Thin Solid Film, vol. 435, no. 1, pp. 95–101, Jul. 2003.
[73]R. S. Alvim, I. Borges Jr, D. G. Costa, and A. A. Leitao, “Density-Functional Theory Simulation of The Dissociative Chemisorption of Water Molecules on The MgO (001) Surface,” The Journal of Physical Chemistry C, vol. 116, no. 1, pp. 738–744, Dec. 2012.
[74]J. L. Chen, J. H. Zhu, “A Query on the Mg 2p Binding Energy of MgO,” Res Chem Intermed, vol. 45, pp. 947–950, Jan. 2019.
[75]J. E. Alfonso, M. Cardenas, and J. F. Marco, “Influence of Fabrication Parameters on Crystallization, Microstructure, Surface Composition, and Optical Behavior of MgO Thin Film Deposited by RF Magnetron Sputtering,” Journal of Superconductivity and Novel Magnetism, vol. 26, pp. 2463–2466, Feb. 2013.
[76]Y. R. Denny, T. Firmansyah, V. Gustiono, and S. S. Lee, “Effect of Substrate Temperature on the Electronic Properties of MgO Thin Film on Si (100) Grown by Electron Beam Evaporation,” Key Engineering Materials, vol. 841, pp. 243–247, May. 2020.
[77]D. Mercier, J. Światowska, E. Protopopoff, S. Zanna, A. Seyeux, and P. Marcus, “Inhibition of Mg Corrosion by Sulfur Blocking of the Hydrogen Evolution Reaction on Iron Impurities,” Journal of The Electrochemical Society, vol. 167, no. 12, 12 pages, Aug. 2020.
[78]P. H. Yang, J. M. Huang, Y. S. Chang, C. T. Chan, and W. S. Chen, “Potentiometric MgO Film pH Sensor Measurement Analysis and Integrated Flexible Printed Circuit Board,” IEEE Journal of the Electron Devices Society, vol. 12, pp. 74–82, Jan. 2024.
[79]J. F. Cheng, J. C. Chou, T. P. Sun, S. K. Hsiung, and H. L. Kao, “New Calibration Methods to Eliminate the Non-Ideal Effect of Drift and Hysteresis in All-Solid-State Potassium Electrode,” IEEE Sensors Journal, vol. 11, no. 5, pp. 1263–1273, Oct. 2010.
[80]S. Jamasb, S. Collins, and R. L. Smith, “A Physical Model for Drift in pH ISFETs,” Sensors and Actuators B: Chemical, vol. 49, no. 1–2, pp. 146–155, Jun. 1998.
[81]J. C. Chou, Y. H. Huang, Chih-Hsien Lai, Yu-Hsun Nien, Po-Yu Kuo, T. Y. Lai, T. Y. Su, and Z. X. Kang, “Study of the Glucose biosensor Based on Potentiometric Non-Enzymatic Nafion/CZO Thin Film,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15926-15934, Jul. 2021.
[82]A. K. Mishra, D. K. Jarwal, B. Mukherjee, A. Kumar, S. Ratan, and S. Jit, “CuO Nanowire-Based Extended-Gate Field-Effect-Transistor (FET) for pH Sensing and Enzyme-Free/Receptor-Free Glucose Sensing Applications,” IEEE Sensors Journal, vol. 20, no. 01, pp. 5039–5047, May. 2020.
[83]S. J. Young, L. T. Lai, and W. L. Tang, “Improving the Performance of pH Sensors with One-Dimensional ZnO Nanostructures,” IEEE Sensors Journal, vol. 19, no. 23, pp. 10972–10976, Aug. 2019.
[84]C. H. Kao, H. Chen, M. L. Lee, C. C. Liu, H. Y. Ueng, Y. C. Chu, Y. J. Chen, and K. M. Chang “Multianalyte Biosensor Based on pH-Sensitive ZnO Electrolyte–Insulator–Semiconductor Structures,” Journal of Applied Physics, vol. 115, no. 18, 6 pages, May. 2014.
[85]S. Sinha, R. Mukhiya, R. Sharma, P. Khanna, and V. Khanna, “Fabrication, Characterization and Electrochemical Simulation of AlN-Gate ISFET pH Sensor,” Journal of Materials Science: Materials in Electronics, vol. 30, pp. 7163–7174, Mar. 2019.
[86]Á. Lavín, J. de. Vicente, M. Holgado, M. F. Laguna, R. Casquel, B. Santamaría, M. V. Maigler, A. L. Hernández, and Y. Ramírez, “On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors,” Sensors, vol. 18, no. 7, 18 pages, Jun. 2018.
[87]D. Bruen, C. Delaney, L. Florea, and D. Diamond, “Glucose Sensing for Diabetes Monitoring Recent Developments,” Sensors, vol. 17, no. 8, 21 pages, Aug. 2017.
[88]I. S. Kucherenko, O. O. Soldatkin, F. Lagarde, N. Jaffrezic-Renault, S. Dzyadevych, and A. Soldatkin, “Determination of Total Creatine Kinase Activity in Blood Serum Using an Amperometric Biosensor Based on Glucose Oxidase and Hexokinase,” Talanta, vol. 144, pp. 604–611, Nov. 2015.
[89]R. Ahmad, N. Tripathy, M.-S. Ahn, and Y.-B. Hahn, “Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid,” Scientific Reports, vol. 7, no. 1, 8 pages, Apr. 2017.
[90]W. C. Lee, K. B. Kim, N.G. Gurudatt, K. K. Hussain, C. S. Choi, D. S. Park, and Y. B. Shim, “Comparison of Enzymatic and Non-Enzymatic Glucose Biosensors Based on Hierarchical Au-Ni Alloy with Conductive Polymer,” Biosensors and Bioelectronics, vol. 130, pp. 48–54, Apr. 2019.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊