|
[1]L. C. C. Jr, and C. Lyons, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery,” Annals of the New York Academy of Sciences, vol. 102, no. 1, pp. 29-45, Oct. 1962. [2]V. B. Juska and M. E. Pemble, “A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems,” Sensors, vol. 20, no. 21, 28 pages, Oct. 2020. [3]S. Zhang, G. Wright, and Y. Yang, “Materials and Techniques for Electrochemical Biosensor Design and Construction,” Biosensors and Bioelectronics, vol. 15, no. 5, pp. 273-282, Aug. 2000. [4]M. Futagawa, T. Iwasaki, H. Murata, M. Ishida, and K. Sawada, “A Miniature Integrated Multimodal Sensor for Measuring pH, EC and Temperature for Precision Agriculture,” Sensors, vol. 12, no. 6, pp. 8338–8354, Jun. 2012. [5]A. U. Alam, Y. Qin, S. Nambiar, J. T. W. Yeow, M. M. R. Howlader, N. X. Hu, M. J. Deen, “Polymers and Organic Materials-Based pH Sensors for Healthcare Applications,” Progress in Materials Science, vol. 96, pp. 174–216, Jul. 2018. [6]M. Alizadeh-Sani, E. Mohammadian, J. W. Rhim, and S. M. Jafari, “pH-sensitive (halochromic) Smart Packaging Film Based on Natural Food Colorants for the Monitoring of Food Quality and Safety,” Trends in Food Science & Technology, vol. 105, pp. 93–144, Nov. 2020. [7]C. Dincer, R. Bruch, E. Costa-Rama, M. T. Fernández-Abedul, A. Merkoçi, A. Manz, G. A. Urban, F. Güder, “Disposable Sensors in Diagnostics, Food, and Environmental Monitoring,” Advanced Materials, vol. 31, no. 30, 28 pages, May. 2019. [8]H. Ryu, D. Thompson, Y. Huang, B. Li, and Y. Lei, “Electrochemical Sensors for Nitrogen Species: A Review,” Sensors and Actuators Reports, vol. 2, no. 1, 12 pages, Nov. 2020. [9]Z. P. Yang, C. J. Zhang, J. X. Zhang, and W. B. Bai, “Potentiometric Glucose Biosensor Based on Core–Shell Fe3O4–Enzyme–Polypyrrole Nanoparticles,” Biosensors and Bioelectronics, vol. 51, pp. 268-273, Jan. 2014. [10]J. G. Ayenimo, S. B. Adeloju, “Improved Potentiometric Glucose Detection with Ultra-Thin Polypyrrole-Glucose Oxidase Film,” Analytical Methods, vol. 6, pp. 8996-9006, Sep. 2014. [11]K. u. Hasan, M. H. Asif, M. U. Hassan, M. O. Sandberg, O. Nur, M. Willander, S. Fagerholm, and P. Stralfors, “A Miniature Graphene-Based Biosensor for Intracellular Glucose Measurements,” Electrochimica Acta, vol. 174, pp. 574-580, Aug. 2015. [12]J. C. Chou, S. J. Yan, Y. H. Liao, Chih-Hsien Lai, Y. X. Wu, and C. Y. Wu, “Remote Detection for Glucose and Lactate Based on Flexible Sensor Array,” IEEE Sensors Journal, vol. 18, no. 8, pp. 3467-3474, Apr. 2018. [13]L. Mou, Y. Xia, and X. Y. Jiang, “Epidermal Sensor for Potentiometric Analysis of Metabolite and Electrolyte,” Analytical Chemistry, vol. 93, pp. 11525-11531, Aug. 2021. [14]S. Sinha, T. Pal, “A Comprehensive Review of FET-Based pH Sensors: Materials, Fabrication Technologies, and Modeling,” Electrochemical Science Advances, vol. 2, no. 5, 50 pages, Oct. 2022. [15]C. H. Kao, C. S. Liu, S. H. Lu, S. C. Tsai, W. L. Chan, B. H. Lin, C. F. Lin, H. Chen, J. Han, “Multianalyte Mg-Doped InGaZnO Electrolyte-Insulator-Semiconductor Biosensors and Multiple Material Characterizations of Membrane Nanostructures,” IEEE Sensors Journal, vol. 20, no. 18, pp. 10653–10663, Sep. 2020. [16]T. M. Pan, Y. H. Huang, J. L. Her, B. S. Lou, and S. T. Pang, “Solution Processed ZnInxOy Sensing Membranes on Flexible PEN for Extended-Gate Field-Effect Transistor pH Sensors,” Journal of Alloys and Compounds, vol. 822, 8 pages, May. 2020. [17]A. Gaddour, W. Dghais, B. Hamdi, and M. Ben Ali, “Temperature Compensation Circuit for ISFET Sensor,” Journal of Low Power Electronics and Applications, vol. 10, no. 1, 16 pages, Jan. 2020. [18]E. Tanumihardja, W. Olthuis, and A. Van den Berg, “Ruthenium Oxide Nanorods as Potentiometric pH Sensor for Organs-on-Chip Purposes,” Sensors, vol. 18, no. 9, 11 pages, Sep. 2018. [19]W. D. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, “A Flexible pH Sensor Based on the Iridium Oxide Sensing Film,” Sensors and Actuators A: Physical, vol. 169, no. 1, pp. 1–11, Sep. 2011. [20]D. Srikanya, A. M. Bhat, and C. Sahu, “Design and Analysis of High-Performance Double-Gate ZnO Nano-Structured Thin-Film ISFET for pH Sensing Applications,” Microelectronics Journal, vol. 137, 9 pages, Jul. 2023. [21]C. C. Yang, K. Y. Chen, and Y. K. Su, “TiO2 Nano Flowers Based EGFET Sensor for pH Sensing,” Coatings, vol. 9, no. 4, 7 pages, Apr. 2019. [22]L. Manjakkal, D. Szwagierczak, and R. Dahiya, “Metal oxides based electrochemical pH sensors: Current progress and future perspectives,” Progress in Materials Science, vol. 109, 31 pages, Apr. 2020. [23]M. Veiseh, M. H. Zareie, and M. Zhang, “Highly Selective Protein Patterning on Gold − Silicon Substrates for Biosensor Applications,” Langmuir, vol. 18, no. 17, pp. 6671-6678, Jul. 2002. [24]M. Tyagi, M. Tomar, and V. Gupta, “NiO Nanoparticle-Based Urea Biosensor,” Biosensors and Bioelectronics, vol. 41, pp. 110-115, Mar. 2013. [25]C. L. Ng, and M. B. I. Reaz, “Evolution of A Capacitive Electromyography Contactless Biosensor: Design and Modelling Techniques,” Measurement, vol. 145, pp. 460-471, Oct. 2019. [26]P. H. Yang, Y. S. Chang, and C. T. Chan, “Aluminum-Doped Zinc Oxide Enzymatic Dopamine Biosensor Integrated with Potentiometric Readout Circuit Board,” IEEE Sensors Journal, vol. 23, no. 3, pp. 1809-1817, Feb. 2023. [27]D. Wang, D. Ba, Z. Hao, Y. Li, F. Sun, K. Liu, G. Du, Q. Mei, “A Novel Approach for PDMS Thin Film Production Towards Application as Substrate for Flexible Biosensors,” Materials Letters, vol. 221, pp. 228-231, Jun. 2018. [28]Y. Aleeva, G. Maira, M. Scopelliti, V. Vinciguerra, G. Scandurra, G. Cannatà, G. Giusi, C. Ciofi, V. Figà, L. G. Occhipinti, and B. Pignataro, “Amperometric Biosensor and Front-End Electronics for Remote Glucose Monitoring by Crosslinked PEDOT-Glucose Oxidase,” IEEE Sensors Journal, vol. 18, no. 12, pp. 4869-4878, Apr. 2018. [29]B. Wang, Y. Wu, Y. Chen, B. Weng, and C. Li, “Flexible Paper Sensor Fabricated Via in Situ Growth of Cu Nanoflower on RGO Sheets Towards Amperometrically Non-Enzymatic Detection of Glucose,” Sensors and Actuators B: Chemical, vol. 238, pp. 802–808, Jan. 2017. [30]P. H. Yang, Y. S. Chang, and C. T. Chan, “ZnO and AZO Film Potentiometric pH Sensors Based on Flexible Printed Circuit Board,” Chemosensors, vol. 10, no. 8, 14 pages, 2022. [31]P. H. Yang, J. M. Huang, Y. S. Chang, C. T. Chan, and H. J. Hu, “Fabrication and Characterization of MgO-Based Enzymatic Glucose Biosensors,” IEEE Sensors Journal, vol. 23, no. 23, pp. 28587-28596, Dec. 2023 [32]H. Zhang, S.-F. Hua, and L. Zhang, “Co-Immobilization of Cellulase and Glucose Oxidase on Graphene Oxide by Covalent Bonds: A Biocatalytic System for One-Pot Conversion of Gluconic Acid from Carboxymethyl Cellulose,” Journal of Chemical Technology & Biotechnology, vol. 95, no. 4, pp. 1116–1125, Nov. 2020. [33]S. Gao, H. Lin, H. Zhang, H. Yao, Y. Chen, and J. Shi, “Nanocatalytic Tumor Therapy by Biomimetic Dual Inorganic Nanozyme-Catalyzed Cascade Reaction,” Advanced Science, vol. 6, no. 3, 19 pages, Jul. 2019. [34]J. Jeevanandam, Y. S. Chan, and Y. H. Ku, “Aqueous Eucalyptus Globulus Leaf Extract-Mediated Biosynthesis of MgO Nanorods,” Applied Biological Chemistry, vol. 61, no. 2, pp. 197–208, Feb. 2018. [35]Y. Wan, C. Samundsett, J. Bullock, M. Hettick, T. Allen, D. Yan, J. Peng, Y. Wu, J. Cui, A. Javey, and A. Cuevas, “Conductive and Stable Magnesium Oxide Electron-Selective Contacts for Efficient Silicon Solar Cells,” Advanced Energy Materials, vol. 7, no. 5, 7 pages, Nov. 2017. [36]Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as A Function of [Li]/[Nb] and MgO Concentrations”, Applied Physics Letters, vol. 77, no. 16, pp. 2494–2496, Oct. 2000. [37]C. H. Kao, C. L. Chang, W. M. Su, Y. T. Chen, C. C. Lu, Y. S. Lee, C. H. Jong, C. Y. Lin, and H. Chen, “Magnesium Oxide (MgO) pH-Sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment,” Scientific Reports, vol. 7, no. 1, 8 pages, Aug. 2017. [38]B. Derkus, “Applying the Miniaturization Technologies for Biosensor Design,” Biosensors and Bioelectronics, vol. 79, pp. 901-913, May. 2016. [39]M. Veiseh, M. H. Zareie, and M. Zhang, “Highly Selective Protein Patterning on Gold − Silicon Substrates for Biosensor Applications,” Langmuir, vol. 18, no. 17, pp. 6671-6678, Jul. 2002. [40]M. Tyagi, M. Tomar, and V. Gupta, “NiO Nanoparticle-Based Urea Biosensor,” Biosensors and Bioelectronics, vol. 41, pp. 110-115, Mar. 2013. [41]C. L. Ng, and M. B. I. Reaz, “Evolution of A Capacitive Electromyography Contactless Biosensor: Design and Modelling Techniques,” Measurement, vol. 145, pp. 460-471, Oct. 2019. [42]V. Arlyapov, N. Y. Yudina, L. Asulyan, S. Alferov, V. Alferov, and A. Reshetilov, “BOD Biosensor Based on The Yeast Debaryomyces Hansenii Immobilized in Poly (vinyl alcohol) Modified by N-Vinylpyrrolidone,” Enzyme and Microbial Technology, vol. 53, no. 4, pp. 257-262, Sep. 2013. [43]S. Damiati, S. Sopstad, M. Peacock, A. S. Akhtar, I. Pinto, R. R. G. Soares, and A. Russom, “Flex Printed Circuit Board Implemented Graphene-Based Dna Sensor for Detection of SARS-CoV-2,” IEEE Sensors Journal, vol. 21, no. 12, pp. 13060-13067, Jun. 2021. [44]H. Shamkhalichenar, C. J. Bueche, and J. W. Choi, “Printed Circuit Board (PCB) Technology for Electrochemical Sensors and Sensing Platforms,” Biosensors, vol. 10, no. 11, 16 pages, Oct. 2020. [45]B. K. Kim, S. J. Lee, J. Y. Kim, K. Y. Ji, Y. J. Yoon, M. Y. Kim, S. H. Park, and J. S. Yoo, “Origin of Surface Defects in PCB Final Finishes by the Electroless Nickel Immersion Gold Process,” Journal of Electronic Materials, vol. 37, pp. 527-534, Jan. 2008. [46]T. Hiemstra, W. H. Van Riemsdijk, and G. Bolt, “Multisite Proton Adsorption Modeling at the Solid/Solution Interface of (hydr) Oxides: A New Approach: I. Model Description and Evaluation of Intrinsic Reaction Constants,” Journal of Colloid and Interface Science, vol. 133, no. 1, pp. 91–104, Nov. 1989. [47]P. Bergveld, “Thirty Years of ISFETOLOGY: What Happened in The Past 30 Years and What May Happen in the Next 30 Years,” Sensors and Actuators B: Chemical, vol. 88, no. 1, pp. 1–20, Jan. 2003. [48]R. Van Hal, J. Eijkel, and P. Bergveld, “A General Model to Describe the Electrostatic Potential at Electrolyte Oxide Interfaces,” Advances in Colloid and Interface Science, vol. 69, no. 1–3, pp. 31–62, Dec. 1996. [49]Y. Jia, B. Wang, Z. Wu, J. Han, T. Zhang, L. J. Vandeperre, C. R. Cheeseman, “Role of Sodium Hexametaphosphate in MgO/SiO2 Cement Pastes,” Cement and Concrete Research, vol. 89, pp. 63–71, Nov. 2016. [50]L. Amaral, I. Oliveira, R. Salomão, E. Frollini, and V. Pandolfelli, “Temperature and Common-Ion Effect on Magnesium Oxide (MgO) Hydration,” Ceramics International, vol. 36, no. 3, pp. 1047–1054, Apr. 2010. [51]O. Fruhwirth, G. Herzog, I. Hollerer, and A. Rachetti, “Dissolution and Hydration Kinetics of MgO,” Surface Technology, vol. 24, no. 3, pp. 301–317, Mar. 1985. [52]L. Fu, C. Ybert, O. Bonhomme, L. Joly, and A. L. Biance, “Electrokinetic Sweeping of Colloids at A Reactive Magnesium Oxide Interface,” Soft Matter, vol. 17, no. 38, pp. 8705–8711, Sep. 2021. [53]S. A. Hilli, and M. Willander, “The pH Response and Sensing Mechanism of N-type ZnO/Electrolyte Interfaces,” Sensors, vol. 9, no. 9, pp. 7445-7480, Sep. 2009. [54]I. S. Kucherenko, O. O. Soldatkin, F. Lagarde, N. Jaffrezic-Renault, S. V. Dzyadevych, A. P. Soldatkin, “Determination of Total Creatine Kinase Activity in Blood Serum using An Amperometric Biosensor Based on Glucose Oxidase and Hexokinase,” Talanta, vol. 144, pp. 604-611, Nov. 2015. [55]S. M. U. Ali, O. Nur, M. Willander, and B. Danielsson, “A Fast and Sensitive Potentiometric Glucose Microsensor Based on Glucose Oxidase Coated ZnO Nanowires Grown on A Thin Silver Wire,” Sensors and Actuators B: Chemical, vol. 145, no. 2, pp. 869–874, Mar. 2010. [56]M. Lakshmanakumar, N. Nesakumar, A. J. Kulandaisamy, and J. B. B. Rayappan, “Principles and Recent Developments in Optical and Electrochemical Sensing of Dopamine: A Comprehensive Review,” Measurement, vol. 183, 17 pages, Oct. 2021. [57]N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, “Introduction to Biosensors,” Essays in Biochemistry, vol. 60, no. 1, 68 pages, Jun. 2016. [58]J. C. Chou, K. T. Lee, Chih-Hsien Lai, Po-Yu Kuo, Yu-Hsun Nien, Y. H. Hao, and Z. X. Kang, “Novel Potentiometric Non-Enzymatic Ascorbic Acid Sensor Based on Molybdenum Oxide Film and Copper Nanoparticles,” IEEE Sensors Journal, vol. 22, no. 1, pp. 50-60, Jan. 2022. [59]J. C. Chou, S. H. Lin, Po-Yu Kuo, Chih-Hsien Lai, Yu-Hsun Nien, T. Y. Lai, and T. Y. Su, “A Sensitive Potentiometric Biosensor using MBs-AO/GO/ZnO Membranes-Based Arrayed Screen-Printed Electrodes for AA Detection and Remote Monitoring,” IEEE Access, vol. 7, pp. 105962-105972, Jul. 2019. [60]Yu-Hsun Nien, T. Y. Su, J. C. Chou, Po-Yu Kuo, Chih-Hsien Lai, C. S. Ho, Z. X. Dong, Z. X. Kang, and T. Y. Lai, “Improving the Drift Effect and Hysteresis Effect of Urea Biosensor Based on Graphene Oxide/Nickel Oxide Sensing Film Modified Either by Au Nanoparticles or γ-Fe2O3 Nanoparticles using Back-End Calibration Circuit,” IEEE Journal of the Electron Devices Society, vol. 9, pp. 242-249, Jan. 2021. [61]A. K. Mishra, D. K. Jarwal, B. Mukherjee, A. Kumar, S. Ratan, and S. Jit, “CuO Nanowire-Based Extended-Gate Field-Effect-Transistor (FET) for pH Sensing and Enzyme-Free/Receptor-Free Glucose Sensing Applications,” IEEE Sensors Journal, vol. 20, no. 9, pp. 5039-5047, Jan. 2020. [62]L. C. Chen, E. Wang, C. S Tai, Y. C. Chiu, C. W. Li, Y. R. Lin, T. H. Lee, C. W. Huang, J. C. Chen, and W. L. Chen, “Improving the Reproducibility, Accuracy, and Stability of An Electrochemical Biosensor Platform for Point-of-Care Use,” Biosensors and Bioelectronics, vol. 155, 8 pages, May. 2020. [63]M. A. A. Lomillo, O. D. Renedo, L. F. Gonçalves, and M. J. A. Martínez, “Sensitive Enzyme-Biosensor Based on Screen-Printed Electrodes for Ochratoxin A,” Biosensors and Bioelectronics, vol. 25, no. 6, pp. 1333-1337, Feb. 2010. [64]P. H. Yang, C. T. Chan, and Y. S. Chang, “A Flexible Printed Circuit Board-Based ZnO Enzymatic Uric Acid Potentiometric Biosensor Measurement and Characterization,” IEEE Journal of the Electron Devices Society, vol. 11, pp. 114-121, Feb. 2023. [65]R. Doaga, T. M. Cormac, and E. Dempsey, “Functionalized Magnetic Nanomaterials for Electrochemical Biosensing of Cholesterol and Cholesteryl Palmitate,” Microchimica Acta, vol. 187, no. 225, 10 pages, Mar. 2020. [66]F. A. Stevie and C. L. Donley, “Introduction to X-ray Photoelectron Spectroscopy,” Journal of Vacuum Science & Technology A, vol. 38, no. 6, 20 pages, Sep. 2020. [67]K. Haase and A. E. Pelling, “Investigating Cell Mechanics with Atomic Force Microscopy,” Journal of the Royal Society Interface, vol. 12, no. 104, 15 pages, Mar. 2015. [68]W. R. Carmody, “Easily Prepared Wide Range Buffer Series,” Journal of Chemical Education, vol. 38, no. 11, 2 pages, Nov. 1961. [69]R. J. E. Jansen, J. Haanstra, and D. Sillars, “Complementary Constant-gm Biasing of Nauta-Transconductors in Low-Power gm–C Filters to ±2 % Accuracy Over Temperature,” IEEE Journal of Solid-State Circuits, vol. 48, no. 7, pp. 1585-1594, Jul. 2013. [70]A. Yadav, “A Review Paper on Design and Synthesis of Two-Stage CMOS OPAMP,” International Journal of Advances in Engineering & Technology, vol. 2, no. 1, 12 pages, Jan. 2012. [71]L. Safari, G. Ferri, S. Minaei and V. Stornelli, “Principles of Instrumentation Amplifiers,” Current-Mode Instrumentation Amplifiers, pp. 1–13, Oct. 2018. [72]J. H. Lee, J. H. Eun, S. Y. Park, S. G. Kim, and H. J. Kim, “Hydration of RF Magnetron Sputtered MgO Thin Film for A Protective Layer in AC Plasma Display Panel,” Thin Solid Film, vol. 435, no. 1, pp. 95–101, Jul. 2003. [73]R. S. Alvim, I. Borges Jr, D. G. Costa, and A. A. Leitao, “Density-Functional Theory Simulation of The Dissociative Chemisorption of Water Molecules on The MgO (001) Surface,” The Journal of Physical Chemistry C, vol. 116, no. 1, pp. 738–744, Dec. 2012. [74]J. L. Chen, J. H. Zhu, “A Query on the Mg 2p Binding Energy of MgO,” Res Chem Intermed, vol. 45, pp. 947–950, Jan. 2019. [75]J. E. Alfonso, M. Cardenas, and J. F. Marco, “Influence of Fabrication Parameters on Crystallization, Microstructure, Surface Composition, and Optical Behavior of MgO Thin Film Deposited by RF Magnetron Sputtering,” Journal of Superconductivity and Novel Magnetism, vol. 26, pp. 2463–2466, Feb. 2013. [76]Y. R. Denny, T. Firmansyah, V. Gustiono, and S. S. Lee, “Effect of Substrate Temperature on the Electronic Properties of MgO Thin Film on Si (100) Grown by Electron Beam Evaporation,” Key Engineering Materials, vol. 841, pp. 243–247, May. 2020. [77]D. Mercier, J. Światowska, E. Protopopoff, S. Zanna, A. Seyeux, and P. Marcus, “Inhibition of Mg Corrosion by Sulfur Blocking of the Hydrogen Evolution Reaction on Iron Impurities,” Journal of The Electrochemical Society, vol. 167, no. 12, 12 pages, Aug. 2020. [78]P. H. Yang, J. M. Huang, Y. S. Chang, C. T. Chan, and W. S. Chen, “Potentiometric MgO Film pH Sensor Measurement Analysis and Integrated Flexible Printed Circuit Board,” IEEE Journal of the Electron Devices Society, vol. 12, pp. 74–82, Jan. 2024. [79]J. F. Cheng, J. C. Chou, T. P. Sun, S. K. Hsiung, and H. L. Kao, “New Calibration Methods to Eliminate the Non-Ideal Effect of Drift and Hysteresis in All-Solid-State Potassium Electrode,” IEEE Sensors Journal, vol. 11, no. 5, pp. 1263–1273, Oct. 2010. [80]S. Jamasb, S. Collins, and R. L. Smith, “A Physical Model for Drift in pH ISFETs,” Sensors and Actuators B: Chemical, vol. 49, no. 1–2, pp. 146–155, Jun. 1998. [81]J. C. Chou, Y. H. Huang, Chih-Hsien Lai, Yu-Hsun Nien, Po-Yu Kuo, T. Y. Lai, T. Y. Su, and Z. X. Kang, “Study of the Glucose biosensor Based on Potentiometric Non-Enzymatic Nafion/CZO Thin Film,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15926-15934, Jul. 2021. [82]A. K. Mishra, D. K. Jarwal, B. Mukherjee, A. Kumar, S. Ratan, and S. Jit, “CuO Nanowire-Based Extended-Gate Field-Effect-Transistor (FET) for pH Sensing and Enzyme-Free/Receptor-Free Glucose Sensing Applications,” IEEE Sensors Journal, vol. 20, no. 01, pp. 5039–5047, May. 2020. [83]S. J. Young, L. T. Lai, and W. L. Tang, “Improving the Performance of pH Sensors with One-Dimensional ZnO Nanostructures,” IEEE Sensors Journal, vol. 19, no. 23, pp. 10972–10976, Aug. 2019. [84]C. H. Kao, H. Chen, M. L. Lee, C. C. Liu, H. Y. Ueng, Y. C. Chu, Y. J. Chen, and K. M. Chang “Multianalyte Biosensor Based on pH-Sensitive ZnO Electrolyte–Insulator–Semiconductor Structures,” Journal of Applied Physics, vol. 115, no. 18, 6 pages, May. 2014. [85]S. Sinha, R. Mukhiya, R. Sharma, P. Khanna, and V. Khanna, “Fabrication, Characterization and Electrochemical Simulation of AlN-Gate ISFET pH Sensor,” Journal of Materials Science: Materials in Electronics, vol. 30, pp. 7163–7174, Mar. 2019. [86]Á. Lavín, J. de. Vicente, M. Holgado, M. F. Laguna, R. Casquel, B. Santamaría, M. V. Maigler, A. L. Hernández, and Y. Ramírez, “On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors,” Sensors, vol. 18, no. 7, 18 pages, Jun. 2018. [87]D. Bruen, C. Delaney, L. Florea, and D. Diamond, “Glucose Sensing for Diabetes Monitoring Recent Developments,” Sensors, vol. 17, no. 8, 21 pages, Aug. 2017. [88]I. S. Kucherenko, O. O. Soldatkin, F. Lagarde, N. Jaffrezic-Renault, S. Dzyadevych, and A. Soldatkin, “Determination of Total Creatine Kinase Activity in Blood Serum Using an Amperometric Biosensor Based on Glucose Oxidase and Hexokinase,” Talanta, vol. 144, pp. 604–611, Nov. 2015. [89]R. Ahmad, N. Tripathy, M.-S. Ahn, and Y.-B. Hahn, “Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid,” Scientific Reports, vol. 7, no. 1, 8 pages, Apr. 2017. [90]W. C. Lee, K. B. Kim, N.G. Gurudatt, K. K. Hussain, C. S. Choi, D. S. Park, and Y. B. Shim, “Comparison of Enzymatic and Non-Enzymatic Glucose Biosensors Based on Hierarchical Au-Ni Alloy with Conductive Polymer,” Biosensors and Bioelectronics, vol. 130, pp. 48–54, Apr. 2019.
|