跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 09:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李元育
研究生(外文):LEE, YUAN-YU
論文名稱:應用於輕型電動車充電器之AC/DC轉換器開發與實現
論文名稱(外文):Development and Implementation of AC/DC Converter for Light Electric Vehicle Charger
指導教授:林伯仁
指導教授(外文):LIN, BOR-REN
口試委員:江煥鏗陳俊吉
口試委員(外文):CHIANG, HUANN-KENGCHEN, JYUN-JI
口試日期:2024-07-15
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:156
中文關鍵詞:CLLC諧振式轉換器全橋相移轉換器輕型電動車雙向轉換器
外文關鍵詞:CLLC resonant converterphase shift full-bridge converterlight electric vehiclebidirectional converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出應用於輕型電動車充電系統之雙級轉換器,前級為功因改善升壓式轉換器,適用於寬範圍交流電壓,大幅改善了輸入電流諧波,並提供高壓直流至後級負載,後級為雙向全橋CLLC諧振轉換器,轉換器在順向充電模式下,將為電動車電池充電;而反向放電模式下,電池透過轉換器傳輸功率至高壓側。此外,本論文將設計另一組後級轉換器,即為全橋相移轉換器,亦可應用於單向性輕型電動車充電,而轉換器皆以Gogoro輕型電動車電池電壓為例進行電路設計。
雙向全橋CLLC諧振轉換器使用脈波頻率調變控制,通過諧振增益曲線變化,使系統具備較高輸出彈性,最高可達兩倍電壓增益,且一次側功率開關於全負載條件下可實現零電壓切換,當操作於第二區間時,整流二極體可實現零電流切換,可降低切換損失及提升效率,高壓側及低壓側皆為全橋架構,具較低電流應力,適合大功率傳輸應用。而全橋相移轉換器使用相移式脈波寬度調變控制,透過調整相移角度控制輸出電壓穩定,超前臂開關可零電壓切換,落後臂於部分負載條件下可零電壓切換,降低功率開關切換損失。
本論文透過數學模擬軟體及電路模擬軟體進行分析與設計,並於實驗室製作轉換器原型電路以驗證系統可行性。前級功因改善電路之規格如下:交流電壓為85V~265V,輸出電壓為390V,後級轉換器規格如下:順向充電模式下,輸入電壓為350~400V,輸出電壓為35~50V,最大負載電流為28.57A;反向放電模式下,輸入電壓為40~50V,輸出電壓為390V,輸出功率皆為1kW。

A two-stage converter that can be used in charging systems for light electric vehicle (LEV) will be developed. The first stage will be a power factor correction (PFC) boost converter suited to a wide range of input AC voltages, drastically improves the input current harmonics, and provides high DC voltage to DC bus. The second stage is a bidirectional full-bridge CLLC resonant converter. In forward mode, the converter charges the LEV battery. In reverse mode, the battery transmits power to the high-voltage side through the converter. Moreover, another second stage converter will be designed. As a phase-shifted full-bridge converter, it will be designed for unidirectional LEV charging. The converter specifications will be based on Gogoro LEV battery voltage.
The bidirectional full-bridge CLLC resonant converter will be controlled with pulse-frequency modulation to allow higher output flexibility. By changing its resonance gain curve, the voltage gain of the system can be increased by up to two times. Under full load, the primary side power switches will achieve zero-voltage switching (ZVS). When CLLC converter is operating in the second region, the rectifier diode can achieve zero-current switching to reduce switching loss and improve efficiency. Both the high-voltage and low-voltage sides are full-bridge structure with low current stress and suitable for high-power transmission applications. The phase-shifted full-bridge converter uses phase-shifted pulse width modulation to adjust its phase-shift angle and thereby stabilize its output voltage. The leading leg switches are capable of ZVS, and the lagging leg switches can achieve ZVS for some load conditions to reduce switching loss.
Analyses and designs will be performed using numerical and circuit simulation software, and a converter prototype circuit will then be produced in the laboratory to verify the feasibility of the system. The first-stage PFC circuit specifications will be an AC voltage of 85–265 V and an output voltage of 390 V. The second-stage converter specifications are as follows: In forward-charging mode, the input voltage is 350–400 V, the output voltage is 35–50 V, and the maximum load current is 28.57 A. In reverse-discharging mode, the input voltage is 40–50 V, the output voltage is 390 V, and the rated power is 1 kW.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 x
圖目錄 xi
符號說明 xviii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究內容 2
1.3 論文大綱 4
第二章 電動機車與充電架構介紹 5
2.1 諧波規範IEC 61000-3-2 5
2.2 電動機車充電器 6
2.3 電動機車電池介紹 6
2.4 電池充電法介紹 7
2.5 直流微電網介紹 7
2.6 電池充電電路架構 8
2.7 整流電路架構 12
第三章 主電路架構動作原理分析 13
3.1 主電路架構介紹 13
3.2 功率因數改善電路 14
3.3 功率因數改善電路動作原理分析 14
3.3.1 階段一[t0~t1] 15
3.3.2 階段二[t1~t2] 16
3.4 全橋CLLC諧振轉換器 16
3.5 順向充電模式電路動作原理分析 17
3.5.1 階段一[t0~t1] 19
3.5.2 階段二[t1~t2] 20
3.5.3 階段三[t2~t3] 21
3.5.4 階段四[t3~t4] 21
3.5.5 階段五[t4~t5] 22
3.5.6 階段六[t5~t0+Ts] 23
3.6 反向放電模式電路動作原理分析 25
3.6.1 階段一[t0~t1] 26
3.6.2 階段二[t1~t2] 27
3.6.3 階段三[t2~t3] 28
3.6.4 階段四[t3~t4] 29
3.6.5 階段五[t4~t5] 30
3.6.6 階段六[t5~t0+Ts] 31
3.7 全橋相移轉換器 32
3.8 相移控制技術 33
3.9 全橋相移轉換器動作分析 34
3.9.1 階段一[t0~t1] 36
3.9.2 階段二[t1~t2] 37
3.9.3 階段三[t2~t3] 38
3.9.4 階段四[t3~t4] 38
3.9.5 階段五[t4~t5] 39
第四章 電路元件設計 41
4.1 電路規格 41
4.2 升壓型PFC參數設計 42
4.2.1 升壓電感LPFC設計 42
4.2.2 直流輸出電容CH設計 43
4.2.3 功率開關設計與選用 44
4.2.4 二極體設計與選用 45
4.3 全橋CLLC諧振轉換器參數設計 46
4.3.1 諧振網路特性分析 46
4.3.2 諧振元件參數設計 51
4.3.3 變壓器鐵芯材質與設計 51
4.3.4 諧振電感設計 53
4.3.5 諧振元件應力分析 54
4.3.6 功率開關應力分析與選用 57
4.3.7 整流開關應力分析及選用 59
4.3.8 輸出電容設計 60
4.3.9 反向模式增益曲線驗證 61
4.4 全橋相移轉換器參數設計 63
4.4.1 功率變壓器匝數比設計 63
4.4.2 變壓器鐵芯材質與設計 63
4.4.3 激磁電感設計 64
4.4.4 輸出濾波電感設計 65
4.4.5 諧振電感設計 65
4.4.6 功率開關元件選用 66
4.4.7 整流二極體元件選用 67
第五章 損耗分析與效率預估 69
5.1 功率變壓器Tr1、Tr2損耗分析 69
5.2 功率開關元件損耗分析 71
5.3 整流開關及整流二極體損耗分析 71
5.4 升壓電感LPFC損失 73
5.5 諧振電感損失 74
5.6 輸出濾波電感損失 76
5.7 效率預估 77
第六章 模擬與實驗數據成果 80
6.1 轉換器之設計規格與實際電路 80
6.2 PSIM模擬波形 82
6.2.1 功率因數改善升壓型轉換器模擬波形 83
6.2.2 全橋CLLC轉換器之順向充電模式模擬波形 84
6.2.3 全橋CLLC轉換器之反向放電模式模擬波形 86
6.2.4 全橋相移轉換器模擬波形 88
6.3 轉換器實驗波形 91
6.3.1 升壓型功率因數改善轉換器 91
6.3.2 全橋CLLC轉換器操作於順向充電模式 94
6.3.3 全橋CLLC轉換器操作於反向放電模式 106
6.3.4 全橋相移轉換器 113
6.4 轉換器實際操作頻率 123
6.5 轉換器實測效率 124
第七章 結論與未來展望 127
7.1 結論 127
7.2 未來展望 127
參考文獻 129

[1] 張宸毓,2024,2023年12月份臺灣機車市場銷售報告,電動機車篇,U-CAR 汽車網站。
[2] Application Note AN1273, “Compliance testing to the IEC 1000-3-2 (EN61000-3-2) and IEC 1000-3-3 (EN61000-3-3) Standard,” Aglient.
[3] 使用手冊,2020,GoCharger® Mobile Plus 隨車電池充電器快充版使用手冊,睿能創意股份有限公司,臺灣。
[4] 使用手冊,2021, i-One電動二輪使用說明書,光捷股份有限公司,臺灣。
[5] J. Fattal and P. B. Dib Nabil Karami, “Review on different charging techniques of a lithium polymer battery,” 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), pp. 33-38, 2015.
[6] A. T. Abu Dyak, S. S. Al Mattar, M. Shehadeh and A. Harb, “On the effect of high renewable energy penetration with jordanian electrical power grid,” 2022 13th International Renewable Energy Congress (IREC), pp. 1-6, 2022.
[7] K. Shenai and K. Shah, “Smart DC micro-grid for efficient utilization of distributed renewable energy,” IEEE 2011 EnergyTech, pp. 1-6, 2011.
[8] X. Tan, G. Qu, B. Sun, N. Li and D. H. K. Tsang, “Optimal scheduling of battery charging station serving electric vehicles based on battery swapping,” in IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 1372-1384, 2019.
[9] M. R. Harikrishnan and P. Kanakasabapathy, “On-board charger topology with PFC for light electric vehicle applications,” 2023 International Conference for Advancement in Technology (ICONAT), pp. 1-6, 2023.
[10] B. Singh and R. Kushwaha, “A PFC based EV battery charger using a bridgeless isolated SEPIC converter,” in IEEE Transactions on Industry Applications, vol. 56, no. 1, pp. 477-487, 2020.
[11] T. F. Wu, J. C. Hung, S. Y. Tseng and Y. M. Chen, “Analysis and design of a battery charger with interleaved PFC based on an asymmetrical half-bridge topology,” The 25th International Telecommunications Energy Conference, pp. 579-585, 2003.
[12] S. Sun, J. Fu and L. Wei, “Optimization of high-efficiency half-bridge LLC resonant converter,” 2021 40th Chinese Control Conference (CCC), pp. 5922-5926, 2021.
[13] H. G. Han, Y. J. Choi, S. Y. Choi and R. Y. Kim, “A high efficiency LLC resonant converter with wide ranged output voltage using adaptive turn ratio scheme for a Li-Ion battery charger,” 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-6, 2016.
[14] S. Zou, J. Lu, A. Mallik and A. Khaligh, “3.3kW CLLC converter with synchronous rectification for plug-in electric vehicles,” 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, pp. 1-6, 2017.
[15] E. F. de Oliveira and P. Zacharias, “Comprehensive mode analysis and optimal design methodology of a bidirectional CLLC resonant converter for e-vehicles applications,” 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe), pp. P.1-P.10, 2019.
[16] U. Khalid, D. Shu and H. Wang, “Hybrid modulated reconfigurable bidirectional CLLC converter for V2G enabled PEV charging applications,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3332-3338, 2019.
[17] R. Kumar, G. Kumar, H. Prajapati and K. B. Sahay, “Design development and power extension of phase shift full bridge converter with zero voltage switching,” 2023 IEEE Renewable Energy and Sustainable E-Mobility Conference (RESEM), pp. 1-6, 2023.
[18] H. F. Liu and L. K. Chang, “Flexible and low cost design for a flyback AC/DC converter with harmonic current correction,” in IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 17-24, 2005.
[19] H. Haga and F. Kurokawa, “A novel modulation method of the full bridge three-level LLC resonant converter for battery charger of electrical vehicles,” 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5498-5504, 2015.
[20] G. Yang, P. Sardat, P. Dubus and D. Sadarnac, “High efficiency parallel-parallel LLC resonant converter for HV/LV power conversion in electric/hybrid vehicles,” PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-9, 2014.
[21] Datasheet, 2021, “Alloy powder core MS-250060-2,” Micrometals, USA.
[22] Datasheet, 2017, “Power MOSFET - FMP60N125S2HF,” Fuji Electric, Japan.
[23] Datasheet, 2002, “Ultrafast recovery rectifier - STTH8R06D,” STMicroelectronics, USA.
[24] Datasheet, 2016, “Ferrite core PQ40/40-3C96,” Ferroxcube, USA.
[25] Datasheet, 2010, “Ferrite core - EER35 cores,” TDK, Japan.
[26] Datasheet, 2006, “SMPS IGBT - IRGP50B60PD1PbF,” International Rectifier, USA.
[27] Datasheet, 2010, “Power transistor - IPP60R099P6,” Infineon Technologies, Germany.
[28] Datasheet, 2003, “High frequency secondary rectifier - STTH2003CT,” STMicroelectronics, USA.
[29] Datasheet, 2008, “Material Specification 3C96 core loss,” Ferroxcube, USA.
[30] Datasheet, 2014, “High frequency secondary rectifier - STTH2003CT,” Taiwan Semiconductor, Taiwan.
[31] Datasheet, 2003, “TDK PC40-PC47 core loss (typical),” TDK, Japan.
[32] Datasheet, 2011, “Magnetic powder cores ,” Chang Sung, Korea.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top