[1] 112年死因統計結果分析。民國 113 年04 月 13 日,取自:衛生福利部統計處網頁: https://dep.mohw.gov.tw/DOS/lp-5069-113-xCat-y112.html.
[2] T. Viriyasaranon, J.W. Chen., Y.H. Koh, J.H. Cho, M.K. Jung, S.H. Kim, H.J. Kim, W.J. Lee, J.H. Choi, S.M. woo, “Annotation-Efficient Deep Learning Model for Pancreatic Cancer Diagnosis and Classification Using CT Images: A Retrospective Diagnostic Study,” Cancers (Basel), vol. 15, no. 13, Jul. 2023.
[3] X. Li, R. Guo, J. Lu, T. Chen, and X. Qian, “Causality-Driven Graph Neural Network for Early Diagnosis of Pancreatic Cancer in Non-Contrast Computerized Tomography,” IEEE Trans Med Imaging, vol. 42, no. 6, pp. 1656–1667, Jun. 2023.
[4] A. H. Shnawa, G. Mohammed, M. R. Hadi, K. Ibrahim, M. M. Adnan, and W. Hameed, “Optimal Elman Neural Network for Pancreatic Cancer Classification Using Computed Tomography Images,” in 6th Iraqi International Conference on Engineering Technology and its Applications, IICETA 2023, Institute of Electrical and Electronics Engineers Inc., pp. 689–695, 2023.
[5] K. Si, Y. Xue, X. Yu, X. Zhu, Q. Li, W. Gong, T. Liang, S. Duan, “Fully end-to-end deep-learning-based diagnosis of pancreatic tumors,” Theranostics, vol. 11, no. 4, pp. 1982–1990, 2021.
[6] H. Li, M. Reichert, K. Lin, N. Tselousov, R. Braren, D. Fu, R. Schmid, J. Li, B. Menze, and K. Shi, “Differential diagnosis for pancreatic cysts in CT scans using densely-connected convolutional networks,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp. 2095-2098, 2019.
[7] K.-L. Liu, T. Wu, P.-T Chen, Y.M. Tsai, H. Roth, M.-S. Wu, W.-C. Liao, W. Wang, “Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation,” Lancet Digit Health, vol. 2, no. 6, pp. e303–e313, Jun. 2020.
[8] F. P. Salanitri, G. Bellitto, S. Palazzo, I. Irmakci, M. Wallace, C. Bolan, M. Engels, S. Hoogenboom, M. Aldinucci, U. Bagci, D. Giordano, C. Spampinato, “Neural Transformers for Intraductal Papillary Mucosal Neoplasms (IPMN) Classification in MRI images,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, IEEE, pp. 475–479, 2022.
[9] N. Xiao, Z. Li, S. Chen, L. Zhao, Y. Yang, H. Xie, Y. Liu, Y. Quan, J. Duan, “Contrast-enhanced CT Image Synthesis of Thyroid Based on Transfomer and Texture Branching,” 5th International Conference on Artificial Intelligence and Big Data (ICAIBD), IEEE, Chengdu, China, pp. 94–100, 2022.
[10] J. Butke, T. Frick, F. Roghmann, S. F. El-Mashtoly, K. Gerwert, and A. Mosig, “End-to-end Multiple Instance Learning for Whole-Slide Cytopathology of Urothelial Carcinoma,” In MICCAI Workshop on Computational Pathology, 57-68, 2021.
[11] H. Li, F. Yang, Y. Zhao, X. Xing, J. Zhang, M. Gao, J. Huang, L. Wang, J. Yao, “DT-MIL: deformable transformer for multi-instance learning on histopathological image,” In International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 206–216, 2021.
[12] Z. Shao, H. Bian, Y. Chen, Y. Wang, J. Zhang, X. Ji, Y. zhang, “TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification,” Advances in Neural Information Processing Systems, vol. 34, 2136-2147, Jun. 2021.
[13] C. Hou, Q. Sun, W. Wang, and J. Zhang, “Shuffle Attention Multiple Instances Learning for Breast Cancer Whole Slide Image Classification,” in 2022 IEEE International Conference on Image Processing (ICIP), IEEE, pp. 466–470, Oct. 2022.
[14] T. Zhang, Y. Feng, Y. Feng, Y. Zhao, Y. Lei, N. Ying, Z. Yan, Y. He, G. Zhang, “Shuffle instances-based vision transformer for pancreatic cancer ROSE image classification,” arXiv:2208.06833, Aug. 2022.
[15] B. Napoleon, M. Palazzo, AI. Lemaistre, F. Caillol, L. Palazzo, A. Aubert, L. Buscail, F. Maire, B. M. Morellon, B. Pujol, and M. Giovannini. “Needle-based confocal laser endomicroscopy of pancreatic cystic lesions: a prospective multicenter validation study in patients with definite diagnosis,” Endoscopy, vol. 51, no. 9, pp. 825-835, Sep. 2019.
[16] S. G. Krishna, W. R. Brugge, J. M. Dewitt, P. Kongkam, B. Napoleon, C. Robles-Medranda, D. Tan, S. El-Dika S. McCarthy, J. Walker, M. E. Dillhoff, A. Manilchuk, C. Schmidt, B. Swanson, Z. K. Shah, P. A. Hart, and A. L. Conwell, “Needle-based confocal laser endomicroscopy for the diagnosis of pancreatic cystic lesions: an international external interobserver and intraobserver study (with videos),” Gastrointestinal Endoscopy, vol. 86, no. 4, pp. 644-654, Oct. 2017.
[17] H. Neumann, R. Kiesslich, M. B. Wallace, and M. F. Neurath, “Confocal laser endomicroscopy: technical advances and clinical applications,” Gastroenterology, vol. 139, no. 2, pp. 388-392, 1 Aug. 2010.
[18] S. S. Chauhan, B. K. Abu Dayyeh, Y. M. Bhat, K. T. Gottlieb, J. H. Hwang, S. Komanduri, V. Konda, S. K. Lo, M. A. Manfredi, J. T. Maple, F.M. Murad, U.D. Siddiqui, S, Banerjee, M.B. Wallace, “Confocal laser endomicroscopy,” Gastrointest Endosc, vol. 80, no. 6, pp. 928–938, Dec. 2014.
[19] A. Villard, I. Breuskin, O. Casiraghi, S. Asmandar, C. Laplace-Builhe, M. Abbaci, A. Moya Plana, “Confocal laser endomicroscopy and confocal microscopy for head and neck cancer imaging: Recent updates and future perspectives,” Oral Oncology, vol. 127. Elsevier Ltd, Apr. 01, 2022.
[20] M.S. Bhutani, P. Koduru, V. Joshi, J.G. Karstensen, A. Saftoiu, P. Vilmann, M. Giovannini, “EUS-Guided Needle-Based Confocal Laser Endomicroscopy: A Novel Technique With Emerging Applications,” Gastroenterol Hepatol (N Y), vol. 11, no. 4, pp. 235–40, Apr. 2015.
[21] M.-I. Costache, S. Iordache, J. Karstensen, A. Saftoiu, and P. Vilmann, “Endoscopic ultrasound-guided fine needle aspiration: From the past to the future,” Endosc Ultrasound, vol. 2, no. 2, p. 77, 2013.
[22] S. Hao, W. Ding, Y. Jin, Y. Di, F. Yang, H. He, H. Li, C. Jin, D. Fu, and L. Zhong, “Appraisal of EUS-guided needle-based confocal laser endomicroscopy in the diagnosis of pancreatic lesions: A single Chinese center experience,” Endosc Ultrasound, vol. 9, no. 3, pp. 180–186, May-Jun 2020.
[23] P. Kongkam, R. Pittayanon, P. Sampatanukul, P. Angsuwatcharakon, S. Aniwan, P. Prueksapanich, V. Sriuranpong, P. Navicharern, S. Treeprasertsuk, P. Kullavanijaya, and R. Rerknimitr, “Endoscopic ultrasound-guided needle-based confocal laser endomicroscopy for diagnosis of solid pancreatic lesions (ENES): a pilot study,” Endoscopy International Open, vol. 4, no. 1, E17-E23, Jan. 2016.
[24] B. Napoleon, S. G. Krishna, B. Marco, D. Carr-Locke, K. J. Chang, À. Ginès, F. G. Gress, A. Larghi, K. W. Oppong, L. Palazzo, P. Kongkam, C. Robles-Medranda, D. Sejpal, D. Tan, and W. R. Brugge, “Confocal endomicroscopy for evaluation of pancreatic cystic lesions: a systematic review and international Delphi consensus report,” Endoscopy International Open, vol. 8, no. 11, E1566-E1581, Nov. 2020.
[25] J. Guo, M. S. Bhutani, M. Giovannini, Z. Li, Z. Jin, A. Yang, G. Xu, G. Wang, S. Sun, “Can endoscopic ultrasound-guided needle-based confocal laser endomicroscopy replace fine-needle aspiration for pancreatic and mediastinal diseases?” Endoscopic Ultrasound, vol. 6, no. 6, pp. 376–381, Nov. 01, 2017.
[26] Advanced endoscopy:ERCP and EUS, From gutworks webside : https://www.gutworks.com.au/endoscopy-ercp-eus-procedure-murdoch-perth.
[27] E. A. F. Piñeros, H. J. Cardona, K. Karia, A. Sethi, and M. Kahaleh, “Utility of Probe-based (Cellvizio) Confocal Laser Endomicroscopy in Gastroenterology,” Rev Col Gastroenterol, vol.30, no.3, pp.298-314, 2015.
[28] M. G. Keane, N. Wehnert, M. Perez-Machado, G. K. Fusai, D. Thorburn, K. W. Oppong, N. Carroll, A. J. Metz, and S. P. Pereira, “A prospective trial of CONfocal endomicroscopy in CYSTic lesions of the pancreas: CONCYST-01,” Endoscopy International Open, vol. 7, no. 9, E1117-E1122, Sep. 2019.
[29] N. D. Pilonis, W. Januszewicz, and M. di Pietro, “Confocal laser endomicroscopy in gastro-intestinal endoscopy: Technical aspects and clinical applications,” Translational Gastroenterology and Hepatology, vol. 7. AME Publishing Company, Jan. 01, 2022.
[30] S. G. Krishna, B. Swanson, P. A. Hart, S. El-Dika, J. P. Walker, S. T. McCarthy, A. Malli, Z. K. Shah, and D. L. Conwell, “Validation of diagnostic characteristics of needle based confocal laser endomicroscopy in differentiation of pancreatic cystic lesions,” Endoscopy International Open, vol. 4, no. 11, pp. E1124-E1135, Nov. 2016.
[31] S. G. Krishna, R. M. Modi, A. K. Kamboj, B. J. Swanson, P. A. Hart, M. E. Dillhoff, A. Manilchuk, C. R. Schmidt, D. L. Conwell, “In vivo and ex vivo confocal endomicroscopy of pancreatic cystic lesions: A prospective study,” World Journal of Gastroenterology, vol. 23, no. 18. Baishideng Publishing Group Co, pp. 3338–3348, May 14, 2017.
[32] S. G. Krishna and J. H. Lee, “Appraisal of needle-based confocal laser endomicroscopy in the diagnosis of pancreatic cysts,” World Journal of Gastroenterology, vol. 22, no. 4. Baishideng Publishing Group Inc, pp. 1701–1710, Jan. 28, 2016.
[33] R. M. Modi, A. K. Kamboj, B. Swanson, D. L. Conwell, and S. G. Krishna, “Novel technique for diagnosis of mucinous cystic neoplasms: in vivo and ex vivo confocal laser endomicroscopy,” VideoGIE, vol. 2, no. 3, pp. 55–56, Mar. 2017.
[34] W. Chen, N. Ahmed, and S. G. Krishna, “Pancreatic Cystic Lesions: A Focused Review on Cyst Clinicopathological Features and Advanced Diagnostics,” Diagnostics, vol. 13, no. 1. Multidisciplinary Digital Publishing Institute (MDPI), Jan. 01, 2023.
[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, “Attention Is All You Need,” Neural Information Processing Systems, pp. 5998-6008, Dec. 2017.
[36] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
[37] HUNG-YI LEE (李宏毅) MACHINE LEARNING 2021 SPRING : https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.php.
[38] T. G. Dietterich, R. H. Lathrop, and T. Lozano-P6rez, “Solving the multiple instance problem with axis-parallel rectangles,” Artificial Intelligence, vol. 89, no. 1–2, pp. 31-71, 1997.
[39] M. Ilse, J. M. Tomczak, and M. Welling, “Attention-based Deep Multiple Instance Learning,” In: International conference on machine learning. PMLR. p. 2127-2136, 2018.
[40] G. Quellec, G. Cazuguel, B. Cochener, and M. Lamard, “Multiple-Instance Learning for Medical Image and Video Analysis,” IEEE Reviews in Biomedical Engineering, vol. 10. Institute of Electrical and Electronics Engineers, pp. 213–234, 2017.
[41] K. Uehara, W. Uegami, H. Nosato, M. Murakawa, J. Fukuoka, and H. Sakanashi, “Evidence Dictionary Network Using Multiple Instance Contrastive Learning for Explainable Pathological Image Analysis,” in Proceedings - International Symposium on Biomedical Imaging, IEEE Computer Society, 2023 (pp. 1-5). IEEE.
[42] Z. Sha and J. Li, “MITformer: A Multiinstance Vision Transformer for Remote Sensing Scene Classification,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
[43] W.-J. Zhang and Z.-H. Zhou, “Multi-Instance Learning with Distribution Change,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1, Jun. 2014.
[44] 周易凱, “基於電腦視覺與深度學習網路於共焦顯微內視鏡視訊中的胰腺囊性癌變分類,” 國立雲林科技大學電機工程系碩士論文, 2022。