跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 20:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠瑋
研究生(外文):CHEN, KUAN-WEI
論文名稱:混合脈波寬度與頻率調變之雙向隔離型直流轉換器
論文名稱(外文):Bidirectional Isolated DC-to-DC Converter With Hybrid Control of PWM and PFM
指導教授:華志強華志強引用關係
指導教授(外文):HUA, CHIH-CHIANG
口試委員:莫清賢張永農陳建富華志強
口試委員(外文):MOO, CHIN-SIENCHANG, YONG-NONGCHEN, JIANN-FUHHUA, CHIH-CHIANG
口試日期:2024-07-25
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:61
中文關鍵詞:兩級轉換器雙向直流轉換器混合控制
外文關鍵詞:Two-stage converterBidirectional DC-DC converterHybrid control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種適用於直流微電網和電池儲能系統的雙向直流轉換器。該轉換器採用兩級架構,其中第一級為全橋CLLC轉換器,有效實現高壓側與低壓側之間的能量轉換,並保持電氣隔離與零電壓切換的優點。第二級為交錯式降壓轉換器,結合脈波寬度調變(PWM)和脈波頻率調變(PFM)以提升輕載時的效率,進而提升整體效率。本系統採用TI的TMS320F28335數位控制晶片作為控制核心,通過感測電池電壓和電流進行混合控制,從而有效地實現雙向功率流動和高電壓轉換比,增強系統的整體穩定性。
此轉換器設計的高壓側電壓範圍為400 V,電池電壓範圍為58 V,且輸出功率達1.5 kW。實驗結果顯示,在充電模式下,峰值效率可達91%;在放電模式下,峰值效率可達93%。這些實驗結果驗證了理論分析的正確性以及轉換器的特性。
This thesis proposes a bidirectional DC-DC converter for DC microgrids and battery storage systems. The proposed converter employs a two-stage topology, with the first stage being a full-bridge CLLC converter that effectively achieves energy conversion between high and low voltage while maintaining electrical isolation and zero-voltage switching benefits. The second stage utilizes an interleaved buck converter, integrating a hybrid control strategy to enhance efficiency under light-load conditions, thereby improving overall efficiency. The proposed system employs the TI TMS320F28335 digital control chip as the control core, utilizing output voltage and current sensing to perform Pulse Width Modulation (PWM) and Pulse Frequency Modulation (PFM), thereby effectively enabling bidirectional power flow and a high voltage conversion ratio, enhancing the overall system stability.
The proposed converter operates with a high-side voltage range of 400 V and battery voltage range of 58 V, with an output power of 1.5 kW. Experimental results show that the peak efficiency reaches 91% in forward mode and 93% in reverse mode. These results confirm the accuracy of the theoretical analysis and the performance of the proposed converter.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景及動機 1
1.2 文獻探討 2
1.3 論文大綱 4
第二章 雙向交錯式兩級轉換器之分析 5
2.1 CLLC轉換器 5
2.1.1 CLLC諧振槽之諧振頻率 6
2.1.2 CLLC諧振槽之電壓增益 8
2.1.3 CLLC轉換器之電路動作原理分析 9
2.2 交錯式降壓轉換器 11
第三章 雙向交錯式兩級轉換器參數設計 14
3.1 CLLC轉換器規格與諧振參數設計 14
3.2 交錯式降壓轉換器參數設計 16
3.3 轉換器元件設計與選用 17
3.3.1 電感設計與選用 17
3.3.2 變壓器設計 18
3.3.3 開關元件選擇 19
3.4 數位控制設計 19
3.4.1 數位信號處理器 20
3.4.2 數位控制流程介紹 22
3.5 週邊輔助硬體電路 24
3.5.1 閘極驅動電路 24
3.5.2 電壓感測電路 25
3.5.3 電流感測電路 26
第四章 實驗結果 27
4.1 電路規格參數 27
4.2 實驗波形量測 28
4.2.1 充電模式之關鍵波形量測 28
4.2.2 放電模式之關鍵波形量測 34
4.3 損耗分析 42
4.3.1 損耗分析公式介紹 42
4.3.2 充電模式之損耗分析 43
4.3.3 放電模式之損耗分析 44
第五章 結論與未來展望 45
5.1 結論 45
5.2 未來展望 46
參考文獻 47


[1]J. Yin, J. Lu, Y. Liu, J. Peng and H. Jiang, "Novel Phase-Shift Method for Fast Power Reversal With Transient Zero Voltage Switching in a Bidirectional Dual Active Bridge DC–DC Converter," IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8028-8038, Sept. 2021.
[2]S. Bal, D. B. Yelaverthi, A. K. Rathore and D. Srinivasan, "Improved Modulation Strategy Using Dual Phase Shift Modulation for Active Commutated Current-Fed Dual Active Bridge," IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 7359-7375, Sept. 2018.
[3]J. Yin, J. Lu, Y. Liu, J. Peng and H. Jiang, "Novel Phase-Shift Method for Fast Power Reversal With Transient Zero Voltage Switching in a Bidirectional Dual Active Bridge DC–DC Converter," IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8028-8038, Sept. 2021.
[4]Q. Bu, H. Wen, J. Wen, Y. Hu and Y. Du, "Transient DC Bias Elimination of Dual-Active-Bridge DC–DC Converter With Improved Triple-Phase-Shift Control," in IEEE Transactions on Industrial Electronics, vol. 67, no. 10, pp. 8587-8598, Oct. 2020.
[5]T. Jiang, J. Zhang, X. Wu, K. Sheng and Y. Wang, "A Bidirectional LLC Resonant Converter With Automatic Forward and Backward Mode Transition," IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 757-770, Feb. 2015.
[6]H. Li, Z. Zhang, S. Wang, J. Tang, X. Ren and Q. Chen, "A 300-kHz 6.6-kW SiC Bidirectional LLC Onboard Charger," IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1435-1445, Feb. 2020.
[7]X. Chen et al., "A Natural Bidirectional Input-Series–Output-Parallel LLC-DCX Converter With Automatic Power Sharing and Power Limitation Capability for Li-Ion Battery Formation and Grading System," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 3618-3632, Dec. 2020.
[8]T. Jiang, J. Zhang, X. Wu, K. Sheng and Y. Wang, "A Bidirectional Three-Level LLC Resonant Converter With PWAM Control," IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2213-2225, March 2016.
[9]J. -H. Jung, H. -S. Kim, M. -H. Ryu and J. -W. Baek, "Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems," IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1741-1755, April 2013.
[10]Y. Cao, M. Ngo, R. Burgos, A. Ismail and D. Dong, "Switching Transition Analysis and Optimization for Bidirectional CLLC Resonant DC Transformer," IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 3786-3800, April 2022.
[11]T. Mishima and Y. Koga, "Variable Frequency Phase-Difference Controlled CLLC Resonant Bidirectional DC-DC Converter Featuring Wide-Range ZVS Performance and Reactive Power Reduction," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 6283-6290.
[12]Z. Lu, G. Xu, W. Xiong, Y. Sun and M. Su, "A Quasi-Two-Stage Isolated Bidirectional Buck-DAB Converter for Wide Input Voltage Range," IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1384-1390, Feb. 2023.
[13]H. Wu, Y. Jia, F. Yang, L. Zhu and Y. Xing, "Two-Stage Isolated Bidirectional DC–AC Converters With Three-Port Converters and Two DC Buses," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 4428-4439, Dec. 2020.
[14]J. -Y. Lee, Y. -S. Jeong and B. -M. Han, "A Two-Stage Isolated/Bidirectional DC/DC Converter With Current Ripple Reduction Technique," IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 644-646, Jan. 2012.
[15]K. -M. Yoo and J. -Y. Lee, "A 10-kW Two-Stage Isolated/Bidirectional DC/DC Converter With Hybrid-Switching Technique," IEEE Transactions on Industrial Electronics, vol. 60, no. 6, pp. 2205-2213, June 2013
[16]H. Wu, C. Wan, K. Sun and Y. Xing, "A High Step-Down Multiple Output Converter With Wide Input Voltage Range Based on Quasi Two-Stage Architecture and Dual-Output LLC Resonant Converter," IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1793-1796, April 2015.
[17]W. Schulz, "ETSI standards and guides for efficient powering of telecommunication and datacom," INTELEC 07 - 29th International Telecommunications Energy Conference, Rome, Italy, 2007, pp. 168-173.
[18]磷酸鋰鐵電池 Datasheet,昇陽國際半導體股份有限公司
[19]“MAGNETIC POWER CORES”, Ver13, CSC.
[20]“Mn-Zn Ferrite Material Characteristics”, TDK Electronics Inc 2018.
[21]C3M0065090D Datasheet, Wolfspeed, 2024.
[22]IRFB4332 Datasheet, Infineon Technologies, 2018.
[23]“TMS302F2833x, 28xxx Enhanced Pulse Width Modulator (ePWM) Reference Guide”, Texas Instruments, 2007.
[24]“TMS302F2833x, 28xxx Analog-to-Digital Converter (ADC) Module Reference Guide”, Texas Instruments, 2007.
[25]Si8273 Datasheet, Skyworks, 2021.
[26]LM747 Dual Operational Amplifier Datasheet, Texas Instruments, 2011.
[27]KNC600FB-AX-R047AA Datasheet, Vitrohm, 2020.
[28]W. Li, H. Wu, H. Yu and X. He, "Isolated Winding-Coupled Bidirectional ZVS Converter With PWM Plus Phase-Shift (PPS) Control Strategy," IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3560-3570, Dec. 2011.
[29]X. Ma, P. Wang, H. Bi and Z. Wang, "A Bidirectional LLCL Resonant DC-DC Converter With Reduced Resonant Tank Currents and Reduced Voltage Stress of the Resonant Capacitor," IEEE Access, vol. 8, pp. 125549-125564, 2020.
[30][27]Y. Li, Y. Wang, Y. Guan and D. Xu, "Optimized Bidirectional DC-DC Converter Adapted to High Voltage Gain and Wide ZVS Range," IEEE Transactions on Power Electronics, vol. 38, no. 3, pp. 3486-3499, March 2023.
[31]Y. Zhang et al., "A Boost-Inductorless Electrolytic-Capacitorless Single-Stage Bidirectional Isolated AC–DC Converter," IEEE Transactions on Power Electronics, vol. 38, no. 4, pp. 5469-5478, April 2023.
[32]黃重諭,“具有零電壓切換主動箝位雙開關返馳式Zeta轉換器”,國立雲林科技大學,碩士論文,2020年6月。
[33]蕭丞豪,“具有降低二次側損耗主動箝位雙開關順向式轉換器”,國立雲林科技大學,碩士論文,2020年6月。
[34]詹宇均,“具二次側非中心抽頭繞組之非對稱半橋諧振轉換器",國立雲林科技大學,碩士論文,2021年6月。
[35]謝旻笈,“寬輸出範圍之雙向混合控制的CLLLC諧振轉換器”,國立雲林科技大學,碩士論文,2023年3月。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top