跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 12:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余承航
研究生(外文):Yu, Cheng-Hang
論文名稱:非對稱脈寬調變之高頻雙主動橋式轉換器
論文名稱(外文):High-Frequency Dual-Active-Bridge Converter with Asymmetric Pulse-Width-Modulation
指導教授:華志強華志強引用關係
指導教授(外文):Hua, Chih-Chiang
口試委員:莫清賢陳建富張永農
口試委員(外文):Moo, Chin-SienChen, Jiann-FuhChang, Yong-Nong
口試日期:2024-07-25
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:64
中文關鍵詞:零電壓切換非對稱脈寬調變雙主動橋式
外文關鍵詞:Zero voltage switching (ZVS)asymmetric pulse-width modulation (APWM)Dual Active Bridge (DAB)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本文的主要目的是研製一種具零電壓切換(Zero Voltage Switching, ZVS)的非對稱脈寬調變(APWM)高頻雙主動橋式(Dual Active Bridge, DAB)轉換器。在傳統的相移調變(Phase Shift Modulation, PSM)DAB轉換器中,循環電流會隨著負載減少而增加,進而影響轉換器效率。循環電流不參與主動能量的傳遞,類似於交流系統中的無功功率。它會增加轉換器的導通損耗和磁性損耗,而APWM能夠在確保ZVS和零電流切換(Zero Current Switching, ZCS)條件下同時減少循環電流,擴展柔性切換範圍,從而降低由循環電流所引起的導通損耗。為了解決這些問題,本文將APWM技術與高頻操作相結合,APWM可以在更寬的功率範圍內實現ZVS,特別是在輕負載條件下顯著提高轉換器效率。實驗設置主要由微處理器作為主要控制器,結合非對稱脈寬調變 DAB轉換器。本文建立了一個電路原型,其直流輸入電壓為400V,輸出電壓範圍為48V,工作於500kHz的切換頻率下。本文提供了詳細的模型分析,並通過模擬和實驗驗證了轉換器的可行性。
The purpose of this thesis is to develop a high-frequency Dual Active Bridge (DAB) converter with zero voltage switching using asymmetric pulse-width modulation (APWM). In traditional phase-shift modulation (PSM) DAB converters, the circulating current increases as the load decreases, which in turn affects the converter efficiency. The circulating current does not participate in the active power transfer, similar to reactive power in AC systems, but may increase the conduction and magnetic losses of the converter. The converter with APWM can reduce the circulating current while ensuring zero voltage switching (ZVS) and zero current switching (ZCS), expanding the soft switching range and thereby reducing the conduction losses caused by the circulating current. To address these issues, this research combines APWM method with high-frequency operation. APWM can achieve ZVS over a wider power range, significantly improving the converter efficiency, especially under light load conditions. The experimental setup is mainly composed of a microprocessor as the primary controller, combined with an APWM DAB converter. This research establishes a circuit prototype with a DC input voltage of 400V and an output voltage range of 48V, operating at a switching frequency of 500kHz. The detailed model analysis and experiments results are provided to verify the feasibility and performance of the proposed converter.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 論文大綱 6
第二章 傳統DAB轉換器介紹 7
2.1 DAB轉換器 7
2.2 相移式全橋轉換器 9
2.2.1 相移式全橋轉換器操作原理 10
2.2.2 相移式全橋轉換器電路分析 10
2.3 柔性切換(Soft Switching) 技術 16
2.3.1 零電壓切換(Zero Voltage Switching, ZVS) 技術 17
2.3.2 零電流切換(Zero Current Switching, ZCS) 技術 18
第三章 本文電路架構設計與研製 19
3.1 電路分析 21
3.2 電路參數設計 24
3.2.1電路規格參數 24
3.2.2電路元件參數設計 24
3.2.3變壓器設計 26
3.3 開關選擇 26
3.4 數位訊號處理器 27
3.5 周邊硬體電路 29
3.5.1閘極驅動電路 29
3.5.2電壓感測電路 31
第四章 模擬與實驗結果 32
4.1 模擬結果 32
4.2 實驗結果 35
4.2.1 電路規格及參數 35
4.2.2 實驗波形 37
4.2.3 系統效率 44
4.2.4 損耗分析 44
第五章 結論與未來研究方向 47
5.1 結論 47
5.2 未來研究方向 48
參考文獻 49


[1]E. L. Carvalho, C. A. Felipe, L. V. Bellinaso, C. M. d. O. Stein, R. Cardoso, and L. Michels, "Asymmetrical-PWM DAB Converter With Extended ZVS/ZCS Range and Reduced Circulating Current for ESS Applications," IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12990-13001, Nov. 2021.
[2]A. Kazemtarghi, S. Dey, A. Mallik, and N. G. Johnson, "Asymmetric Half-Frequency Modulation in DAB to Optimize the Conduction and Switching Losses in EV Charging Applications," IEEE Transactions on Transportation Electrification, vol. 9, no. 3, pp. 4196-4210, Sept. 2023.
[3]J. Shen, J. Zhang, X. Huang, L. Qiu, and Y. Fang, "Active Thermal Management Method for Output-Parallel DAB DC–DC Converters Under Parameter Mismatches and Asymmetrical Modulation,"IEEE Transactions on Power Electronics, vol. 38, no. 7, pp. 8237-8248, July 2023.
[4]Y. Park, S. Chakraborty, and A. Khaligh, "DAB Converter for EV Onboard Chargers Using Bare-Die SiC MOSFETs and Leakage-Integrated Planar Transformer,"IEEE Transactions on Transportation Electrification, vol. 8, no. 1, pp. 209-224, March 2022.
[5]Y. Yan, H. Bai, A. Foote, and W. Wang, "Securing Full-Power-Range Zero-Voltage Switching in Both Steady-State and Transient Operations for a Dual-Active-Bridge-Based Bidirectional Electric Vehicle Charger,"IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7506-7519, July 2020.
[6]Z. Lu, M. Su, G. Xu, L. Li, W. Xiong, and J. Fang, "Switch-Multiplexed Quasi-Two-Stage Isolated Bidirectional Buck-DAB Converter With Full Load ZVS Range,"IEEE Transactions on Power Electronics, vol. 38, no. 9, pp. 10541-10546, Sept. 2023.
[7]X. Chen, G. Xu, H. Han, Y. Sun, and M. Su, "Dual-Mode Bidirectional LLC-DAB Converter Based on a Modulated Coupled Inductor,"IEEE Transactions on Power Electronics, vol. 38, no. 1, pp. 90-95, Jan. 2023.
[8]A. Blinov, R. Kosenko, D. Vinnikov, and L. Parsa, "Bidirectional Isolated Current-Source DAB Convert-er With Extended ZVS/ZCS Range and Reduced Energy Circulation for Storage Applications,"IEEE Transactions on Industrial Electronics, vol. 67, no. 12, pp. 10552-10563, Dec. 2020.
[9]Z. Guo, "Modulation Scheme of Dual Active Bridge Converter for Seamless Transitions in Multiworking Modes Compromising ZVS and Conduction Loss,"IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7399-7409, Sept. 2020.
[10]S. Shao, H. Chen, X. Wu, J. Zhang, and K. Sheng, "Circulating Current and ZVS-on of a Dual Active Bridge DC-DC Converter: A Review,"IEEE Access, vol. 7, pp. 50561-50572, 2019.
[11]B. Zhao, Q. Song, W. Liu, G. Liu, and Y. Zhao, "Universal High-Frequency-Link Characterization and Practical Fundamental-Optimal Strategy for Dual-Active-Bridge DC-DC Converter Under PWM Plus Phase-Shift Control,"IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6488-64, Dec. 2015.
[12]K. Murata, and F. Kurokawa, "Performance characteristic of interleaved LLC resonant converter with phase shift modulation," 2015 IEEE International Telecommunications Energy Conference (INTELEC), Osaka, Japan, 2015, pp. 1-5.
[13]N. Kollipara, M. K. Kazimierczuk, A. Reatti, and F. Corti, "Phase Control and Power Optimization of LLC Converter," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5.
[14]B. Xue, H. Wang, J. Liang, Q. Cao, and Z. Li, "Phase-Shift Modulated Interleaved LLC Converter With Ultrawide Output Voltage Range,"IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 493-503, Jan. 2021.
[15]W. Zhao, X. Zhang, S. Gao, and M. Ma, "Improved Model-Based Phase-Shift Control for Fast Dynamic Response of Dual-Active-Bridge DC/DC Converters,"IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 223-231, Feb. 2021.
[16]S. S. Muthuraj, V. K. Kanakesh, P. Das, and S. K. Panda, "Triple Phase Shift Control of an LLL Tank Based Bidirectional Dual Active Bridge Converter,"IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 8035-8053, Oct. 2017.
[17]Y. Xiao, Z. Zhang, K. T. Manez, and M. A. E. Andersen, "A Universal Power Flow Model for Dual Ac-tive Bridge-Based Converters With Phase Shift Modulation,"IEEE Transactions on Power Electronics, vol. 36, no. 6, pp. 6480-6500, June 2021.
[18]L. Chen, L. Tarisciotti, A. Costabeber, Q. Guan, P. Wheeler, and P. Zanchetta, "Phase-Shift Modulation for a Current-Fed Isolated DC–DC Converter in More Electric Aircrafts,"IEEE Transactions on Power Elec-tronics, vol. 34, no. 9, pp. 8528-8543, Sept. 2019.
[19]P. -J. Liu, T. -F. Chen, and H. -S. Yang, "A Li-Ion Battery Charger With Variable Charging Current and Automatic Voltage-Compensation Controls for Parallel Charging,"IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 1, pp. 997-1006, Feb. 2022,.
[20]X. Pan, H. Li, Y. Liu, T. Zhao, C. Ju, and A. K. Rathore, "An Overview and Comprehensive Comparative Evaluation of Current-Fed-Isolated-Bidirectional DC/DC Converter,"IEEE Transactions on Power Elec-tronics, vol. 35, no. 3, pp. 2737-2763, March 2020.
[21]D. Sha, Y. Xu, J. Zhang, and Y. Yan, "Current-Fed Hybrid Dual Active Bridge DC–DC Converter for a Fuel Cell Power Conditioning System With Reduced Input Current Ripple,"IEEE Transactions on Indus-trial Electronics, vol. 64, no. 8, pp. 6628-6638, Aug. 2017.
[22]S. Chaurasiya, and B. Singh, "A Bidirectional Fast EV Charger for Wide Voltage Range Using Three-Level DAB Based on Current and Voltage Stress Optimization,"IEEE Transactions on Transportation Electrification, vol. 9, no. 1, pp. 1330-1340, March 2023.
[23]S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, "Topologies and Control Schemes of Bidirectional DC–DC Power Converters: An Overview,"IEEE Access, vol. 7, pp. 117997-118019, 2019.
[24]M. N. Kheraluwala, R. W. Gascoigne, D. M. Divan, and E. D. Baumann, "Performance characterization of a high-power dual active bridge DC-to-DC converter,"IEEE Transactions on Industry Applications, vol. 28, no. 6, pp. 1294-1301, Nov.-Dec. 1992.
[25]N. Hou, Y. Zhang, and Y. W. Li, "A Natural Transient-Behavior-Based Control Theory for DAB-Based Two-Stage DC–DC Converter,"IEEE Transactions on Power Electronics, vol. 38, no. 12, pp. 15137-15141, Dec. 2023.
[26]I. Kougioulis, A. Pal, P. Wheeler, and M. R. Ahmed, "An Isolated Multiport DC–DC Converter for Inte-grated Electric Vehicle On-Board Charger,"IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 4, pp. 4178-4198, Aug. 2023.
[27]X. Li, H. Ma, S. Ren, J. Yi, S. Lu, and Q. Feng, "A Novel LCL Resonant Converter With Inherent CC-CV Output for On-Board Chargers of Plug-In Electric Vehicles,"IEEE Transactions on Power Electronics, vol. 38, no. 4, pp. 4212-4217, April 2023.
[28]Z. Fang, H. Yue, Z. Wei, Z. Zhang, and Z. Huang, "A Control-Free Series Resonant Converter for Battery Charging With Automatic CC-to-CV Profile and Whole-Process High Efficiency,"IEEE Transactions on Power Electronics, vol. 38, no. 7, pp. 8666-8675, July 2023.
[29]P. -J. Liu, and L. -H. Chien, "A High-Efficiency Integrated Multimode Battery Charger With an Adaptive Supply Voltage Control Scheme,"IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6869-6876, Aug. 2018.
[30]X. Qu, H. Chu, S. -C. Wong, and C. K. Tse, "An IPT Battery Charger With Near Unity Power Factor and Load-Independent Constant Output Combating Design Constraints of Input Voltage and Transformer Pa-rameters,"IEEE Transactions on Power Electronics, vol. 34, no. 8, pp. 7719-7727, Aug. 2019.
[31]3F36 Datasheet, Ferroxcube, 2013.
[32]“Product specifications”, Ferroxcube, 2016
[33]AIMW120R060M Datasheet, Infineon Technologies, 2023.
[34]IRFB4228 Datasheet, International Rectifier, 2006.
[35]Texas Instruments, “TMS302F2833x, MS302F2833x Digital Signal Controllers (DSCs),” MS302F28335 datasheet, Jun. 2007.
[36]Si8275 Datasheet, Skysworks, 2022.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top