跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳孟軒
研究生(外文):WU, MENG-XUAN
論文名稱:在聯結吊索未解開下精準估算其索力之實驗室測試與實橋應用
論文名稱(外文):Experimental Validations and Field Applications of an Accurate Tension Estimation Method for Two Linked Suspenders without Untying the Intersection Clamp
指導教授:吳文華
指導教授(外文):WU, WEN-HWA
口試委員:陳建州余志鵬
口試委員(外文):CHEN, CHIEN-CHOUYU, CHIH-PENG
口試日期:2024-06-13
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:136
中文關鍵詞:索力估算微振法振形拱橋交叉聯結吊索系統實驗室聯結鋼絞線系統索夾面外與面內量測系統化振態篩選機制
外文關鍵詞:tension estimationambient vibration methodmode shapelinked suspender system of arch bridgelaboratory test of linked pre-stressed strandsrope clipout-of-plane and in-plane measurementssystematic sifting algorithm for mode selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
現代橋梁工程中,纜索是斜張橋、預力箱型梁橋和拱橋等結構的重要構件。由於這些橋梁結構的持續發展,纜索索力的定期檢測與即時監測成為重要工作。傳統的索力估算方法包括直接量測和間接量測,而間接量測的微振法因為具經濟性且施工機動性極高,已成為實務工程中最常用的索力評估方法。本研究團隊基於微振法,發展出一套結合振形與振態頻率的索力估算法,並進一步解決了纜索複雜邊界束制和斷面積慣性矩難以精準判斷的問題。本論文的主要研究重點在於延伸這套方法至實際拱橋交叉聯結吊索系統的應用,尤其是在不需解開吊索聯結的情況下進行索力估算。首先以興同橋吊索的參數調整實驗室聯結鋼絞線系統來進行量測,用以驗證其在較低細長度參數下之估算誤差。接著更使用這套方法在興同橋進行交叉聯結吊索系統的現地量測,從而根據分析結果具體實證其索力估算精度。
由本研究的結果首先可發現,新式索夾在面外和面內方向量測的索力估算誤差都頗低,證明不同聯結方式對索力估算的影響。其次實驗室結果指出,吊索細長度參數對索力估算精度有顯著影響;當此值高於600時,誤差可控制在0.5%以下;但當此值低至250時,誤差可能達到2%至3%。至於實橋量測結果則顯示,實際聯結吊索的訊號較複雜,這個現象判斷可能來自實際索夾與吊索之接觸在現場參雜各種變數,並且自然會對各振態頻率與振形的識別產生相當影響,所以需經由系統化振態篩選機制來提高索力估算的準確性。綜合實橋聯結吊索三個案例的結果來看,在量測訊號齊全的情況下,索力估算誤差可控制在1%以下,展現出極為優異的實際應用價值。
In modern bridge engineering, cables are crucial components in structures such as cable-stayed bridges, prestressed box girder bridges, and arch bridges. Due to the continuous development of these bridge structures, the regular inspection and real-time monitoring of cable forces have become essential tasks. Traditional methods for estimating cable forces include direct measurement and indirect measurement. Among the indirect measurement methods, the ambient vibration method has been most commonly applied in practical engineering due to its cost-effectiveness and high operational flexibility. Our research team has developed a cable force estimation algorithm based on the ambient vibration method, which integrates mode shapes and natural frequencies. This approach further addresses challenges related to the complex boundary conditions of cables and the difficulty in accurately determining the cross-sectional area moment of inertia. The current study focuses on extending the application of this method to the case of two suspenders linked by an intersection clamp. Field validations with the out-of-plane and in-plane measurements on an arch bridge are conducted to verify the corresponding accuracy of tension estimation.
Based on the results of this research work, it is first observed that the tension estimation errors with the out-of-plane and in-plane measurements using the new type of intersection clamps are both quite low. This demonstrates the influence of different intersection clamps may have on the tension estimation. The laboratory results further indicate that the slenderness parameter of the suspenders significantly affects the accuracy of tension estimation. When this parameter is above 600, the estimation error can be kept below 0.5%. However, when it decreases to around 250, the corresponding error may be increased to the level between 2% and 3%. Regarding the measurements on actual bridges, the results show that the signals obtained from connected suspenders are much more complicated than those associated with the experimental system. This complexity is likely due to various factors for the actual contacts between the intersection clamps and the suspenders at the site. Such a problem may significantly deteriorate the identification accuracy of modal frequencies and shapes. Therefore, a systematic sifting algorithm, for mode selection is developed to improve the accuracy of tension estimation. According to the results from the three cases of actual linked suspenders, it is verified that the error of tension estimation can be kept under 1% if all the desired measurements are obtained. This demonstrates an exceptional value in practical applications.
摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 相關研究進展 2
1.3 研究動機與目的 3
1.4 論文架構 4
第二章 基於多點量測決定有效振動長度之索力估算法 6
2.1 纜索振動方程式與理論解 6
2.2 基於擬合振形正弦分量之有效振動長度 8
2.3 點位布設的重要考量 9
2.4 僅依局部多點量測之有效振動長度決定 11
第三章 推廣至聯結吊索之應用 14
3.1 數值模型探討 14
3.1.1 各振態振形峰谷值之觀察 15
3.1.2 不同量測範圍對有效半波長精度之影響 17
3.1.3 面內與面外量測之有效半波長精度比較 18
3.1.4 纜索細長度參數對有效半波長精度之影響 19
3.2 實驗室預力鋼絞線驗證 20
3.2.1 面內與面外量測之索力估算精度比較 21
3.2.2 纜索細長度參數對索力估算精度之影響 23
第四章 進一步實驗室預力鋼絞線驗證 40
4.1 實驗系統、量測儀器與相關規劃 40
4.2 以Case A案例重新檢視不同索夾對面內量測之影響 42
4.3 Case B與Case C案例之索力估算精度 43
第五章 興同橋聯結吊索之實際應用 73
5.1 興同橋簡介及其R6與R7吊索解開聯結之單根量測分析 73
5.2 R6吊索聯結下之面外量測分析 74
5.3 R6吊索聯結下之面內量測分析 77
5.4 R7吊索聯結下之面外量測分析 78
第六章 結論與建議 113
6.1 結論 113
6.2 建議 114
參考文獻 115

[1] J. C. Russell and T. J. Lardner, 1998, Experimental Determination of Frequencies and Tension for Elastic Cables, Journal of Engineering Mechanics, ASCE, Vol. 124, No., 10, pp. 1067-1072.
[2] A. Cunha, E. Caetano, and R. Delgado, 2001, Dynamic Tests on Large Cable-stayed Bridge, Journal of Bridge Engineering, ASCE, Vol. 6, No. 1, pp. 54-62.
[3] W. X. Ren, H. L. Liu, and G. Chen, 2008, Determination of Cable Tensions Based on Frequency Differences, Engineering Computations, Vol. 25, No. 2, pp. 172-189.
[4] C. Rebelo, E. Julio, H. Varum, and A. Costa, 2010, Cable Tensioning Control and Modal Identification of a Circular Cable-stayed Footbridge, Experimental Techniques, Vol. 34, No. 4, pp. 62-68.
[5] R. W. Clough and J. Penzien, 1993, Dynamics of Structures, McGraw-Hill, New York.
[6] M. Geradin and D. Rixen, 1997, Mechanical Vibrations: Theory and Application to Structural Dynamics, John Wiley, Chichester, New York.
[7] Z. Fang and J. Q. Wang, 2012, Practical Formula for Cable Tension Estimation by Vibration Method, Journal of Bridge Engineering, ASCE, Vol. 17, No. 1, pp. 161-164.
[8] C. P. Yu and C. C. Cheng, 2012, Dynamic Analysis of a Cable-stayed Bridge Using Continuous Formulation of 1-D Linear Member, Earthquakes and Structures, Vol. 3, No. 3-4, pp. 271-295.
[9] H. Zui, T. Shinke, and Y. Namita, 1996, Practical Formula for Estimation of Cable Tension by Vibration Method, Journal of Structural Engineering, ASCE, Vol. 122, No. 6, pp. 651-656.
[10] H. Nam and N. T. Nghia, 2011, Estimation of Cable Tension Using Measured Natural Frequencies, Procedia Engineering, Vol. 14, pp. 1510-1517.
[11] D. Dan, Y. Chen, and X. Yan, 2014, Determination of Cable Force Based on the Corrected Numerical Solution of Cable Vibration Frequency Equations, Structural Engineering and Mechanics, Vol. 50, No. 1, pp. 37-52.
[12] A. B. Mebrabi and H. Tabatabai, 1998, Unified Finite Difference Formulation for Free Vibration of Cables, Journal of Structural Engineering, ASCE, Vol. 124, No. 11, pp. 1313-1322.
[13] Y. Gautier, O. Moretti, and C. Cremona, 2005, Universal Curves for Practical Estimation of Cable Tension by Frequency Measurement, Proceedings of International Conference on Experimental Vibration Analysis for Civil Engineering Structures, Bordeaux, France.
[14] A. A. Sagues, S. C. Kranc, and T. G. Eason, 2006, Vibrational Tension Measurement of External Tendons in Segmental Posttensioned Bridges, Journal of Bridge Engineering, ASCE, Vol. 11, No. 5, pp. 582-589.
[15] H. Liu, L. Wang, G. Tan, and Y. Cheng, 2013, Effective Prestressing Force Testing Method of External Prestressed Bridge Based on Frequency Method, Applied Mechanics and Materials, Vol. 303-306, pp. 363-366.
[16] Y. H. Huang, J. Y. Fu, R. H. Wang, Q. Gan, R. Rao, and A. R. Liu, 2014, Practical Formula to Calculate Tension of Vertical Cable with Hinged-fixed Conditions Based on Vibration Method, Journal of Vibroengineering, Vol. 16, No. 2, pp. 997-1009.
[17] Y. H. Huang, J. Y. Fu, R. H. Wang, Q. Gan, and A. R. Liu, 2015, Unified Practical Formulas for Vibration-based Method of Tension Estimation, Advances in Structural Engineering, Vol. 18, No. 3, pp. 405-422.
[18] Z. K. Lee, C. C. Chen, C. C. Chou, and K. C. Chang, 2006, Analysis of Ambient Vibration Signals of Stay Cables Based on a Finite Element Approach, Journal of Chinese Institute for Civil and Hydraulic Engineering, Vol. 18, No. 2, pp. 279-288.
[19] R. Geier, G. De Roeck, and R. Flesch, 2006, Accurate Cable Force Determination Using Ambient Vibration Measurements, Structure and Infrastructure Engineering, Vol. 2, No. 1, pp. 43-52.
[20] W. Liao, Y. Q. Ni, and G. Zheng, 2012, Tension Force and Structural Parameter Identification of Bridge Cables, Advances in Structural Engineering, Vol. 15, No. 6, pp. 983-995.
[21] E. De Sa Caetano, R. Bartek, F. Magalhaes, C. Keenan, and G. Trippick, 2013, Assessment of Cable Forces at the London 2012 Olympic Stadium Roof, Structural Engineering International, Vol. 23, No. 4, pp. 489-500.
[22] W. H. Wu, C. C. Chen, C. Y. Liu, and G. Lai, 2010, Determination of Stay Cable Force Based on Multiple Vibration Measurements to Consider the Effects of Uncertain Boundary Constraints, Proceedings of 5th European Workshop on Structural Health Monitoring, Sorrento, Italy.
[23] C. C. Chen, W. H. Wu, C. H. Huang, and G. Lai, 2013, Determination of Stay Cable Force Based on Effective Vibration Length Accurately Estimated from Multiple Measurements, Smart Structures and Systems, Vol. 11, No. 4, pp. 411-433.
[24] W. H. Wu, C. C. Chen, M. R. Leu, and G. Lai, 2012, Determination of Stay Cable Force Based on Multiple Vibration Measurements to Consider the Effects of Unsymmetrical Boundary Constraints, Proceedings of 6th European Workshop on Structural Health Monitoring, Dresden, Germany.
[25] C. C. Chen, W. H. Wu, M. R. Leu, and G. Lai, 2016, Tension Determination of Stay Cable or External Tendon with Complicated Constraints Using Multiple Vibration Measurements, Measurement, Vol. 86, pp. 182-195.
[26] W. H. Wu, C. C. Chen, Y. C. Chen, G. Lai, and C. M. Huang, 2018, Tension Determination for Suspenders of Arch Bridge Based on Multiple Vibration Measurements Concentrated at One End, Measurement, Vol. 123, pp. 254-269.
[27] C. C. Chen, W. H. Wu, S. Y. Chen, and G. Lai, 2018, A Novel Tension Determination Approach Exempted from Complexity of Boundary Constraints by Probing Mode Shape Functions of Elastic Cables, Engineering Structures, Vol. 166, pp. 152-166.
[28] 陳建州、吳文華、陳欣怡、賴國龍,2020,結合振形之微振索力估算法中量測點位配置對精度的影響,結構工程,第35卷,第3期,第99-117頁。
[29] B. Yan, J. Yu, and M. Soliman, 2015, Estimation of Cable Tension Force Independent of Complex Boundary Conditions, Journal of Engineering Mechanics, ASCE, Vol. 141, No. 1, 06014015.
[30] B. Yan, W. Chen, J. Yu, and X. Jiang, 2019, Mode Shape-Aided Tension Force Estimation of Cable with Arbitrary Boundary Conditions, Journal of Sound and Vibration, Vol. 440, pp. 315-331.
[31] C. P. Yu, 2020, Tension Prediction for Straight Cables Based on Effective Vibration Length with a Two-frequency Approach, Engineering Structures, Vol. 222, Paper No. 111121.
[32] B. Yan, D. Li, W. Chen, L. Deng, and X. Jiang, 2021, Mode Shape-aided Cable Force Determination Using Digital Image Correlation, Structural Health Monitoring, Vol. 20, No. 5, pp. 2430-2445.
[33] L. Chen, Y. Xu, and L. Sun, 2021, A Component Mode Synthesis Method for Reduced-order Modeling of Cable Networks in Cable-stayed Bridges, Journal of Sound and Vibration, Vol. 491, Paper No. 115769.
[34] M. Geuzaine, F. Foti, and V. Denoel, 2021, Minimal Requirements for the Vibration-based Identification of the Axial Force, the Bending Stiffness and the Flexural Boundary Conditions in Cables, Journal of Sound and Vibration, Vol. 511, Paper No. 116326.
[35] M. I. Syamsi, C. Y. Wang, and V. S. Nguyen, 2022, Tension Force Identification for Cable of Various End-restraints Using Equivalent Effective Vibration Lengths of Mode Pairs, Measurement, Vol. 197, 111319.
[36] W. Chen, B. Yan, J. Liao, L. Luo, and Y. Dong, 2022, Cable Force Determination Using Phase-based Video Motion Magnification and Digital Image Correlation, International Journal of Structural Stability and Dynamics, Vol. 22, No. 7, 2250036.
[37] Y. Cheng, Z. Su, J. Zhang, 2024. Mode Shape-aided Cable Force Estimation of a Double-hanger System Using a Vision-based Monitoring Method, Vol. 227, Paper No. 114214.
[38] W. H. Wu, C. C. Chen, Y. T. Liu, and G. Lai, 2022, Numerical Verification for a Cable Tension Estimation Method Simply Based on Local Vibration Measurements, Proceedings of 11th International Conference on Structural Health Monitoring of Intelligent Infrastructure, Montreal, Canada.
[39] C. C. Chen, W. H. Wu, Y. T. Liu, and G. Lai, 2022, A Convenient Cable Tension Estimation Method Simply Based on Local Vibration Measurements to Fit Partial Mode Shapes, Engineering, Vol. 272, Paper No. 115008.
[40] C. C. Chen, W. H. Wu, Y. P. Ko, and G. Lai, 2023, Extensive Field Validations and Corresponding Numerical Investigations for a Cable Tension Estimation Method Based on Local Vibration Measurements, Structural Control and Health Monitoring, Vol. 2023, 9691363.
[41] C. C. Chen, W. H. Wu and Y. C. Peng, 2023, A Convenient Tension Estimation Method for Linked Suspenders Based on Multiple Vibration Measurements, Proceedings of 10th International Conference on Experimental Vibration Analysis for Civil Engineering Structures, Milan, Italy, Vol. 1, pp. 330-338.
[42] W. H. Wu, C. C. Chen, Y. C. Peng, and G. Lai, 2024, An Accurate Tension Estimation Method Simply Based on Local Vibration Measurements for Two Suspenders Linked by an Intersection Clamp, Structural Control and Health Monitoring, in review.
[43] A. Furukawa, S. Yamada, and R. Kobayashi, 2022, Tension Estimation Methods for Two Cables Connected by an Intersection Clamp Using Natural Frequencies, Journal of Civil Structural Health Monitoring, Vol. 12, pp. 339-360.
[44] A. Furukawa, S. Yamada, and R. Kobayashi, 2022, Tension Estimation Methods for Nielsen-Lohse Bridges Using Out-of-Plane and in-Plane Natural Frequencies, Journal of Civil Structural Health Monitoring, Vol. 23, Paper No. 2250036.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top