跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:費爾南達
研究生(外文):FERNANDA SARWATATWADHIKA PERDANA
論文名稱:建構多建築專案的資源配置排程模式
論文名稱(外文):Scheduling Model for Resource Allocation Problems in Multiple Building Construction Projects
指導教授:劉述舜劉述舜引用關係
指導教授(外文):LIU, SHU-SHUN
口試委員:陳介豪林建良
口試委員(外文):CHEN, JIEH-HAURLIN, CHIEN-LIANG
口試日期:2024-07-04
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:91
中文關鍵詞:線性排程法約束程式設計資源分配優化模型住宅建設專案排程重複性專案
外文關鍵詞:Linear Scheduling Methodresource allocationoptimizationrepetitive projectshousing constructionConstraint Programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
專案管理中的排程是關鍵步驟,直接影響執行過程。大型和重複性專案的排程需要強大的資源管理和排程方法。傳統排程方法在處理複雜的重複性專案時常遇困難。線性排程法(LSM)常用於重複性專案,但許多研究忽略了活動間資源關係的重要性,這對於高效排程至關重要。本文提出一個優化模型,整合這些資源關係,從而提升資源分配和排程精度。該模型應用於一個包含5棟房屋和17個單位的住宅專案,目標是最小化總專案工期和成本。此外,本文引入了一種反映現實情況的資源替代合約系統。該模型使用約束程式設計(CP)開發,因其使用介面友好且能靈活表示複雜問題和目標。這種方法不僅優化了排程過程,還為每個資源提供詳細的排程,確保專案執行更高效且具成本效益。
Scheduling is a critical step in project management, directly impacting the implementation process. Scheduling large-scale and repetitive projects requires robust resource management and technique. Traditional scheduling methods often struggle when addressing complex repetitive projects. The Linear Scheduling Method (LSM) is frequently employed for repetitive projects by researchers, yet many studies ignore the important aspect of resource relationships within activities, which is essential for efficient scheduling. This paper proposes an optimization model that incorporates these resource relationships, thereby enhancing resource allocation and scheduling precision. The model is applied to a housing project consisting of 5 houses and 17 units, with the objective of minimizing the total project duration and cost. Additionally, it introduces an alternative contract system for resources, reflecting real-world scenarios more accurately. The model is developed using Constraint Programming (CP), chosen for its user-friendly interface and flexibility in representing complex problems and objectives. This approach not only optimizes the scheduling process but also provides a detailed schedule for each resource, ensuring a more efficient and cost-effective project execution.
摘要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER 1. INTRODUCTION 1
1.1 Research Background 1
1.2 Research Limitation 4
1.3 Research Contribution 4
1.4 Research Objective 5
1.5 Research Flowchart 6
1.6 Research Framework 7
CHAPTER 2. LITERATURE REVIEW 8
2.1 Project Scheduling 8
2.2 Resource Allocation in Linear Construction 10
2.3 Non-uniform Multiple Building Project 13
2.4 Constraint Programming 15
CHAPTER 3. METHODOLOGY 17
3.1 Multiple Building Project Scheduling 17
3.2 Resource Allocation 19
3.3 Constraint Programming for Resource Allocation 22
CHAPTER 4. MODEL FORMULATION 26
4.1 Model Concept 26
4.1.1 Project Description 26
4.1.2 Project Characteristics and Assumptions 32
4.2 Model Formulation 34
4.2.1 Input Data 34
4.2.2 Decision Variable 36
4.2.3 Decision Expression 36
4.2.4 Objective Function 37
4.2.5 Constraint 38
CHAPTER 5. RESULT AND ANALYSIS 42
5.1 Model benchmark 42
5.2 Scenario 1 (Minimum Project Duration) 48
5.3 Scenario 2 (Minimize resource cost) 52
5.4 Scenario 3 (Minimize total resource costs with alternative contract systems) 56
5.5 Scenario Comparison 59
CHAPTER 6. CONCLUSION AND RECOMMENDATION 63
6.1 Conclusion 63
6.2 Recommendation 65
REFERENCES 66
APPENDICES 73
1.Agrama, F. A. (2015). Versatile multi-objective genetic optimization for non-identical multi-storey building projects. 2015 International Conference on Industrial Engineering and Operations Management (IEOM), 1–10. https://doi.org/10.1109/IEOM.2015.7093925
2.Arabpour Roghabadi, M., & Moselhi, O. (2021). Optimized crew selection for scheduling of repetitive projects. Engineering, Construction and Architectural Management, 28(6), 1517–1540. https://doi.org/10.1108/ECAM-10-2019-0590
3.Askew, W. H., Al-jibouri, S. H., Mawdesley, M. J., & Patterson, D. E. (2002). Planning linear construction projects: automated method for the generation of earthwork activities. Automation in Construction, 11(6), 643–653. https://doi.org/10.1016/S0926-5805(02)00005-5
4.Baptiste, P., Nuijten, W., & Le Pape, C. (2001). Constraint-Based Scheduling. Springer Science & Business Media.
5.Bezerra, P., & Scheer, S. (2021). A Metaheuristic Procedure Combined with 4D Simulation as an Alternative for the Scheduling Process of Housing Complexes. In E. Toledo Santos & S. Scheer (Eds.), Proceedings of the 18th International Conference on Computing in Civil and Building Engineering (pp. 574–593). Springer International Publishing.
6.Biruk, S., & Jaskowski, P. (2017). Scheduling Linear Construction Projects with Constraints on Resource Availability. Archives of Civil Engineering, 63. https://doi.org/10.1515/ace-2017-0001
7.Christiawan, K. N., & Gondokusumo, O. (2020). The implementation of non-unit-based scheduling method in a housing project. IOP Conference Series: Materials Science and Engineering, 1007(1), 012070. https://doi.org/10.1088/1757-899X/1007/1/012070
8.Coelho, P., Silva, C., Ferreira, L. M., & Franca, B. (2018). Operational improvement of an industrial equipment rental system using discrete event simulation. IFAC-PapersOnLine, 51(11), 478–483. https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.364
9.Duffy, G., Woldesenbet, A., Jeong, D. H. S., & Oberlender, G. D. (2012). Advanced linear scheduling program with varying production rates for pipeline construction projects. Automation in Construction, 27, 99–110. https://doi.org/10.1016/J.AUTCON.2012.05.014
10.EL Idrissi, R. N., Ouassaid, M., & Maaroufi, M. (2024). A Constraint Programming approach for collective smart building scheduling improved by blockchain structure. Renewable Energy Focus, 100571. https://doi.org/10.1016/J.REF.2024.100571
11.Fan, S. L., Sun, K. S., & Wang, Y. R. (2012). GA optimization model for repetitive projects with soft logic. Automation in Construction, 21(1), 253–261. https://doi.org/10.1016/J.AUTCON.2011.06.009
12.Fan, S. L., Tserng, H. P., & Wang, M. T. (2003). Development of an object-oriented scheduling model for construction projects. Automation in Construction, 12(3), 283–302. https://doi.org/10.1016/S0926-5805(02)00092-4
13.G, I. P. (2007). Multiobjective Linear Programming Model for Scheduling Linear Repetitive Projects. Journal of Construction Engineering and Management, 133(6), 417–424. https://doi.org/10.1061/(ASCE)0733-9364(2007)133:6(417)
14.G, M. K., & M, A. D. (1998). Resource Leveling of Linear Schedules Using Integer Linear Programming. Journal of Construction Engineering and Management, 124(3), 232–244. https://doi.org/10.1061/(ASCE)0733-9364(1998)124:3(232)
15.García-Nieves, J. D., Ponz-Tienda, J. L., Ospina-Alvarado, A., & Bonilla-Palacios, M. (2019). Multipurpose linear programming optimization model for repetitive activities scheduling in construction projects. Automation in Construction, 105, 102799. https://doi.org/10.1016/J.AUTCON.2019.03.020
16.Georgy, M. E. (2008). Evolutionary resource scheduler for linear projects. Automation in Construction, 17(5), 573–583. https://doi.org/10.1016/J.AUTCON.2007.10.005
17.Gunnar, L. (2008). Productivity Scheduling Method Compared to Linear and Repetitive Project Scheduling Methods. Journal of Construction Engineering and Management, 134(9), 711–720. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:9(711)
18.Gunnar, L. (2011). Integrating Efficient Resource Optimization and Linear Schedule Analysis with Singularity Functions. Journal of Construction Engineering and Management, 137(1), 45–55. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000244
19.Hajji, M. K., Hadda, H., & Dridi, N. (2023). Makespan Minimization for the Two-Stage Hybrid Flow Shop Problem with Dedicated Machines: A Comprehensive Study of Exact and Heuristic Approaches. Computation, 11(7). https://doi.org/10.3390/computation11070137
20.He, W., Li, W., & Wang, W. (2021). Developing a Resource Allocation Approach for Resource-Constrained Construction Operation under Multi-Objective Operation. Sustainability, 13(13). https://doi.org/10.3390/su13137318
21.Hegazy, T., & Kamarah, E. (2022). Schedule optimization for scattered repetitive projects. Automation in Construction, 133, 104042. https://doi.org/10.1016/J.AUTCON.2021.104042
22.Jing, L., & Ming, L. (2018). Constraint Programming Approach to Optimizing Project Schedules under Material Logistics and Crew Availability Constraints. Journal of Construction Engineering and Management, 144(7), 04018049. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001507
23.Katsuragawa, C. M., Lucko, G., Isaac, S., & Su, Y. (2021). Fuzzy Linear and Repetitive Scheduling for Construction Projects. Journal of Construction Engineering and Management, 147(3), 04021002. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001996
24.Kim, W., Ryu, D., & Jung, Y. (2014). Application of linear scheduling method (LSM) for nuclear power plant (NPP) construction. Nuclear Engineering and Design, 270, 65–75. https://doi.org/10.1016/J.NUCENGDES.2013.12.053
25.Leu, S. Sen, Yang, C. H., & Huang, J. C. (2000). Resource leveling in construction by genetic algorithm-based optimization and its decision support system application. Automation in Construction, 10(1), 27–41. https://doi.org/10.1016/S0926-5805(99)00011-4
26.Lin, J. C. W., Lv, Q., Yu, D., Srivastava, G., & Chen, C. H. (2022). Optimized scheduling of resource-constraints in projects for smart construction. Information Processing & Management, 59(5), 103005. https://doi.org/10.1016/J.IPM.2022.103005
27.Liu, S. S., & Wang, C. J. (2007). Optimization model for resource assignment problems of linear construction projects. Automation in Construction, 16(4), 460–473. https://doi.org/10.1016/J.AUTCON.2006.08.004
28.Liu, S., & Wang, C. (2009). Two‐stage profit optimization model for linear scheduling problems considering cash flow. Construction Management and Economics, 27(11), 1023–1037. https://doi.org/10.1080/01446190903233111
29.Liu, S.-S., Budiwirawan, A., & Arifin, M. F. A. (2021). Non-Sequential Linear Construction Project Scheduling Model for Minimizing Idle Equipment Using Constraint Programming (CP). Mathematics, 9(19). https://doi.org/10.3390/math9192492
30.Liu, S.-S., & Wang, C.-J. (2008). Resource-constrained construction project scheduling model for profit maximization considering cash flow. Automation in Construction, 17(8), 966–974. https://doi.org/10.1016/j.autcon.2008.04.006
31.Long, L. D., & Ohsato, A. (2009). A genetic algorithm-based method for scheduling repetitive construction projects. Automation in Construction, 18(4), 499–511. https://doi.org/https://doi.org/10.1016/j.autcon.2008.11.005
32.Lustig, I. J., & Puget, J.-F. (2001). Program Does Not Equal Program: Constraint Programming and Its Relationship to Mathematical Programming. Interfaces, 31(6), 29–53. https://doi.org/10.1287/inte.31.6.29.9647
33.Major Labor Laws of Indonesia, Pub. L. No. 13, Ministry of the State Secretariat. (2003).
34.Ming, L., & Heng, L. (2003). Resource-Activity Critical-Path Method for Construction Planning. Journal of Construction Engineering and Management, 129(4), 412–420. https://doi.org/10.1061/(ASCE)0733-9364(2003)129:4(412)
35.Mohamed, H. H., Ibrahim, A. H., & Soliman, A. A. (2021). Toward Reducing Construction Project Delivery Time under Limited Resources. Sustainability, 13(19). https://doi.org/10.3390/su131911035
36.Nazila, R.-E., & Saiedeh, R. (2017). Uncertainty-Aware Linear Schedule Optimization: A Space-Time Constraint-Satisfaction Approach. Journal of Construction Engineering and Management, 143(5), 04016132. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001276
37.Nguyen, L. D., Le-Hoai, L., Tran, D. Q., Dang, C. N., & Nguyen, C. V. (2019). Effect of project complexity on cost and schedule performance in transportation projects. Construction Management and Economics, 37(7), 384–399. https://doi.org/10.1080/01446193.2018.1532592
38.Oujana, S., Amodeo, L., Yalaoui, F., & Brodart, D. (2023). Mixed-Integer Linear Programming, Constraint Programming and a Novel Dedicated Heuristic for Production Scheduling in a Packaging Plant. Applied Sciences, 13(10). https://doi.org/10.3390/app13106003
39.Ramani, P. V., Selvaraj, P., T., S., & Gupta, A. (2022). Application of Linear Scheduling in Water Canal Construction with a Comparison of Critical Path Method. Journal of Construction in Developing Countries, 27(1), 189–212. https://doi.org/10.21315/jcdc2022.27.1.11
40.Rossi, F., van Beek, P., & Walsh, T. (2008). Chapter 4 Constraint Programming. Foundations of Artificial Intelligence, 3, 181–211. https://doi.org/10.1016/S1574-6526(07)03004-0
41.Saad, D. A., Masoud, M., & Osman, H. (2021). Multi-objective optimization of lean-based repetitive scheduling using batch and pull production. Automation in Construction, 127, 103696. https://doi.org/10.1016/J.AUTCON.2021.103696
42.Salama, T., & Moselhi, O. (2019). Multi-objective optimization for repetitive scheduling under uncertainty. Engineering, Construction and Architectural Management, 26(7), 1294–1320. https://doi.org/10.1108/ECAM-05-2018-0217
43.Senouci, A., & Al-Derham, H. R. (2008). Genetic algorithm-based multi-objective model for scheduling of linear construction projects. Advances in Engineering Software, 39(12), 1023–1028. https://doi.org/10.1016/J.ADVENGSOFT.2007.08.002
44.Shahryar, M., & Moatassem, A. (2021). Linear Optimization Model to Minimize Total Cost of Repetitive Construction Projects and Identify Order of Units. Journal of Management in Engineering, 37(4), 04021036. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000936
45.Sonmez, R., Ahmadisheykhsarmast, S., & Güngör, A. A. (2022). BIM integrated smart contract for construction project progress payment administration. Automation in Construction, 139, 104294. https://doi.org/https://doi.org/10.1016/j.autcon.2022.104294
46.Su, Y., & Lucko, G. (2015). Comparison and Renaissance of Classic Line-of-balance and Linear Schedule Concepts for Construction Industry. Procedia Engineering, 123, 546–556. https://doi.org/10.1016/J.PROENG.2015.10.107
47.Tang, Y., Liu, R., & Sun, Q. (2014). Schedule control model for linear projects based on linear scheduling method and constraint programming. Automation in Construction, 37, 22–37. https://doi.org/10.1016/J.AUTCON.2013.09.008
48.Tang, Y., Liu, R., Wang, F., Sun, Q., & Kandil, A. A. (2018). Scheduling Optimization of Linear Schedule with Constraint Programming. Computer-Aided Civil and Infrastructure Engineering, 33(2), 124–151. https://doi.org/https://doi.org/10.1111/mice.12277
49.Tomczak, M., & Jaśkowski, P. (2022). Harmonizing construction processes in repetitive construction projects with multiple buildings. Automation in Construction, 139, 104266. https://doi.org/https://doi.org/10.1016/j.autcon.2022.104266
50.Vandevoorde, S., & Vanhoucke, M. (2006). A comparison of different project duration forecasting methods using earned value metrics. International Journal of Project Management, 24(4), 289–302. https://doi.org/10.1016/J.IJPROMAN.2005.10.004
51.Wang, Z., Hu, Z., & Tang, Y. (2020). Float-Based Resource Leveling Optimization of Linear Projects. IEEE Access, 8, 176997–177020. https://doi.org/10.1109/ACCESS.2020.3027058
52.Wei, J., Liu, Y., Lu, X., Feng, Y., & Wang, Y. (2024). Optimization of Tunnel Construction Schedule Considering Soft Logic. Applied Sciences, 14(6). https://doi.org/10.3390/app14062580
53.Wen Liu, Ian Flood, & Raja R. A. Issa. (2005). Simulation and Optimization of Linear Construction Projects. Computing in Civil Engineering.
54.Yogesh, G., & Hanumanth Rao, C. (2021). A study on linear scheduling methods in road construction projects. Materials Today: Proceedings, 47, 5475–5478. https://doi.org/10.1016/J.MATPR.2021.07.393
55.Yu, Z., Wang, C., Zhao, Y., Hu, Z., & Tang, Y. (2023). Linear Project-Scheduling Optimization Considering a Reverse Construction Scenario. Applied Sciences, 13(16). https://doi.org/10.3390/app13169407
56.Zhong, Y., Chen, Z., Zhou, Z., & Hu, H. (2018). Uncertainty Analysis and Resource Allocation in Construction Project Management. Engineering Management Journal, 30(4), 293–305. https://doi.org/10.1080/10429247.2018.1492269
57.Zou, X., Wu, G., & Zhang, Q. (2021). Work continuity constraints in repetitive project scheduling considering soft logic. Engineering, Construction and Architectural Management, 28(6), 1713–1738. https://doi.org/10.1108/ECAM-11-2019-0595

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊