|
1.Agrama, F. A. (2015). Versatile multi-objective genetic optimization for non-identical multi-storey building projects. 2015 International Conference on Industrial Engineering and Operations Management (IEOM), 1–10. https://doi.org/10.1109/IEOM.2015.7093925 2.Arabpour Roghabadi, M., & Moselhi, O. (2021). Optimized crew selection for scheduling of repetitive projects. Engineering, Construction and Architectural Management, 28(6), 1517–1540. https://doi.org/10.1108/ECAM-10-2019-0590 3.Askew, W. H., Al-jibouri, S. H., Mawdesley, M. J., & Patterson, D. E. (2002). Planning linear construction projects: automated method for the generation of earthwork activities. Automation in Construction, 11(6), 643–653. https://doi.org/10.1016/S0926-5805(02)00005-5 4.Baptiste, P., Nuijten, W., & Le Pape, C. (2001). Constraint-Based Scheduling. Springer Science & Business Media. 5.Bezerra, P., & Scheer, S. (2021). A Metaheuristic Procedure Combined with 4D Simulation as an Alternative for the Scheduling Process of Housing Complexes. In E. Toledo Santos & S. Scheer (Eds.), Proceedings of the 18th International Conference on Computing in Civil and Building Engineering (pp. 574–593). Springer International Publishing. 6.Biruk, S., & Jaskowski, P. (2017). Scheduling Linear Construction Projects with Constraints on Resource Availability. Archives of Civil Engineering, 63. https://doi.org/10.1515/ace-2017-0001 7.Christiawan, K. N., & Gondokusumo, O. (2020). The implementation of non-unit-based scheduling method in a housing project. IOP Conference Series: Materials Science and Engineering, 1007(1), 012070. https://doi.org/10.1088/1757-899X/1007/1/012070 8.Coelho, P., Silva, C., Ferreira, L. M., & Franca, B. (2018). Operational improvement of an industrial equipment rental system using discrete event simulation. IFAC-PapersOnLine, 51(11), 478–483. https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.364 9.Duffy, G., Woldesenbet, A., Jeong, D. H. S., & Oberlender, G. D. (2012). Advanced linear scheduling program with varying production rates for pipeline construction projects. Automation in Construction, 27, 99–110. https://doi.org/10.1016/J.AUTCON.2012.05.014 10.EL Idrissi, R. N., Ouassaid, M., & Maaroufi, M. (2024). A Constraint Programming approach for collective smart building scheduling improved by blockchain structure. Renewable Energy Focus, 100571. https://doi.org/10.1016/J.REF.2024.100571 11.Fan, S. L., Sun, K. S., & Wang, Y. R. (2012). GA optimization model for repetitive projects with soft logic. Automation in Construction, 21(1), 253–261. https://doi.org/10.1016/J.AUTCON.2011.06.009 12.Fan, S. L., Tserng, H. P., & Wang, M. T. (2003). Development of an object-oriented scheduling model for construction projects. Automation in Construction, 12(3), 283–302. https://doi.org/10.1016/S0926-5805(02)00092-4 13.G, I. P. (2007). Multiobjective Linear Programming Model for Scheduling Linear Repetitive Projects. Journal of Construction Engineering and Management, 133(6), 417–424. https://doi.org/10.1061/(ASCE)0733-9364(2007)133:6(417) 14.G, M. K., & M, A. D. (1998). Resource Leveling of Linear Schedules Using Integer Linear Programming. Journal of Construction Engineering and Management, 124(3), 232–244. https://doi.org/10.1061/(ASCE)0733-9364(1998)124:3(232) 15.García-Nieves, J. D., Ponz-Tienda, J. L., Ospina-Alvarado, A., & Bonilla-Palacios, M. (2019). Multipurpose linear programming optimization model for repetitive activities scheduling in construction projects. Automation in Construction, 105, 102799. https://doi.org/10.1016/J.AUTCON.2019.03.020 16.Georgy, M. E. (2008). Evolutionary resource scheduler for linear projects. Automation in Construction, 17(5), 573–583. https://doi.org/10.1016/J.AUTCON.2007.10.005 17.Gunnar, L. (2008). Productivity Scheduling Method Compared to Linear and Repetitive Project Scheduling Methods. Journal of Construction Engineering and Management, 134(9), 711–720. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:9(711) 18.Gunnar, L. (2011). Integrating Efficient Resource Optimization and Linear Schedule Analysis with Singularity Functions. Journal of Construction Engineering and Management, 137(1), 45–55. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000244 19.Hajji, M. K., Hadda, H., & Dridi, N. (2023). Makespan Minimization for the Two-Stage Hybrid Flow Shop Problem with Dedicated Machines: A Comprehensive Study of Exact and Heuristic Approaches. Computation, 11(7). https://doi.org/10.3390/computation11070137 20.He, W., Li, W., & Wang, W. (2021). Developing a Resource Allocation Approach for Resource-Constrained Construction Operation under Multi-Objective Operation. Sustainability, 13(13). https://doi.org/10.3390/su13137318 21.Hegazy, T., & Kamarah, E. (2022). Schedule optimization for scattered repetitive projects. Automation in Construction, 133, 104042. https://doi.org/10.1016/J.AUTCON.2021.104042 22.Jing, L., & Ming, L. (2018). Constraint Programming Approach to Optimizing Project Schedules under Material Logistics and Crew Availability Constraints. Journal of Construction Engineering and Management, 144(7), 04018049. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001507 23.Katsuragawa, C. M., Lucko, G., Isaac, S., & Su, Y. (2021). Fuzzy Linear and Repetitive Scheduling for Construction Projects. Journal of Construction Engineering and Management, 147(3), 04021002. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001996 24.Kim, W., Ryu, D., & Jung, Y. (2014). Application of linear scheduling method (LSM) for nuclear power plant (NPP) construction. Nuclear Engineering and Design, 270, 65–75. https://doi.org/10.1016/J.NUCENGDES.2013.12.053 25.Leu, S. Sen, Yang, C. H., & Huang, J. C. (2000). Resource leveling in construction by genetic algorithm-based optimization and its decision support system application. Automation in Construction, 10(1), 27–41. https://doi.org/10.1016/S0926-5805(99)00011-4 26.Lin, J. C. W., Lv, Q., Yu, D., Srivastava, G., & Chen, C. H. (2022). Optimized scheduling of resource-constraints in projects for smart construction. Information Processing & Management, 59(5), 103005. https://doi.org/10.1016/J.IPM.2022.103005 27.Liu, S. S., & Wang, C. J. (2007). Optimization model for resource assignment problems of linear construction projects. Automation in Construction, 16(4), 460–473. https://doi.org/10.1016/J.AUTCON.2006.08.004 28.Liu, S., & Wang, C. (2009). Two‐stage profit optimization model for linear scheduling problems considering cash flow. Construction Management and Economics, 27(11), 1023–1037. https://doi.org/10.1080/01446190903233111 29.Liu, S.-S., Budiwirawan, A., & Arifin, M. F. A. (2021). Non-Sequential Linear Construction Project Scheduling Model for Minimizing Idle Equipment Using Constraint Programming (CP). Mathematics, 9(19). https://doi.org/10.3390/math9192492 30.Liu, S.-S., & Wang, C.-J. (2008). Resource-constrained construction project scheduling model for profit maximization considering cash flow. Automation in Construction, 17(8), 966–974. https://doi.org/10.1016/j.autcon.2008.04.006 31.Long, L. D., & Ohsato, A. (2009). A genetic algorithm-based method for scheduling repetitive construction projects. Automation in Construction, 18(4), 499–511. https://doi.org/https://doi.org/10.1016/j.autcon.2008.11.005 32.Lustig, I. J., & Puget, J.-F. (2001). Program Does Not Equal Program: Constraint Programming and Its Relationship to Mathematical Programming. Interfaces, 31(6), 29–53. https://doi.org/10.1287/inte.31.6.29.9647 33.Major Labor Laws of Indonesia, Pub. L. No. 13, Ministry of the State Secretariat. (2003). 34.Ming, L., & Heng, L. (2003). Resource-Activity Critical-Path Method for Construction Planning. Journal of Construction Engineering and Management, 129(4), 412–420. https://doi.org/10.1061/(ASCE)0733-9364(2003)129:4(412) 35.Mohamed, H. H., Ibrahim, A. H., & Soliman, A. A. (2021). Toward Reducing Construction Project Delivery Time under Limited Resources. Sustainability, 13(19). https://doi.org/10.3390/su131911035 36.Nazila, R.-E., & Saiedeh, R. (2017). Uncertainty-Aware Linear Schedule Optimization: A Space-Time Constraint-Satisfaction Approach. Journal of Construction Engineering and Management, 143(5), 04016132. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001276 37.Nguyen, L. D., Le-Hoai, L., Tran, D. Q., Dang, C. N., & Nguyen, C. V. (2019). Effect of project complexity on cost and schedule performance in transportation projects. Construction Management and Economics, 37(7), 384–399. https://doi.org/10.1080/01446193.2018.1532592 38.Oujana, S., Amodeo, L., Yalaoui, F., & Brodart, D. (2023). Mixed-Integer Linear Programming, Constraint Programming and a Novel Dedicated Heuristic for Production Scheduling in a Packaging Plant. Applied Sciences, 13(10). https://doi.org/10.3390/app13106003 39.Ramani, P. V., Selvaraj, P., T., S., & Gupta, A. (2022). Application of Linear Scheduling in Water Canal Construction with a Comparison of Critical Path Method. Journal of Construction in Developing Countries, 27(1), 189–212. https://doi.org/10.21315/jcdc2022.27.1.11 40.Rossi, F., van Beek, P., & Walsh, T. (2008). Chapter 4 Constraint Programming. Foundations of Artificial Intelligence, 3, 181–211. https://doi.org/10.1016/S1574-6526(07)03004-0 41.Saad, D. A., Masoud, M., & Osman, H. (2021). Multi-objective optimization of lean-based repetitive scheduling using batch and pull production. Automation in Construction, 127, 103696. https://doi.org/10.1016/J.AUTCON.2021.103696 42.Salama, T., & Moselhi, O. (2019). Multi-objective optimization for repetitive scheduling under uncertainty. Engineering, Construction and Architectural Management, 26(7), 1294–1320. https://doi.org/10.1108/ECAM-05-2018-0217 43.Senouci, A., & Al-Derham, H. R. (2008). Genetic algorithm-based multi-objective model for scheduling of linear construction projects. Advances in Engineering Software, 39(12), 1023–1028. https://doi.org/10.1016/J.ADVENGSOFT.2007.08.002 44.Shahryar, M., & Moatassem, A. (2021). Linear Optimization Model to Minimize Total Cost of Repetitive Construction Projects and Identify Order of Units. Journal of Management in Engineering, 37(4), 04021036. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000936 45.Sonmez, R., Ahmadisheykhsarmast, S., & Güngör, A. A. (2022). BIM integrated smart contract for construction project progress payment administration. Automation in Construction, 139, 104294. https://doi.org/https://doi.org/10.1016/j.autcon.2022.104294 46.Su, Y., & Lucko, G. (2015). Comparison and Renaissance of Classic Line-of-balance and Linear Schedule Concepts for Construction Industry. Procedia Engineering, 123, 546–556. https://doi.org/10.1016/J.PROENG.2015.10.107 47.Tang, Y., Liu, R., & Sun, Q. (2014). Schedule control model for linear projects based on linear scheduling method and constraint programming. Automation in Construction, 37, 22–37. https://doi.org/10.1016/J.AUTCON.2013.09.008 48.Tang, Y., Liu, R., Wang, F., Sun, Q., & Kandil, A. A. (2018). Scheduling Optimization of Linear Schedule with Constraint Programming. Computer-Aided Civil and Infrastructure Engineering, 33(2), 124–151. https://doi.org/https://doi.org/10.1111/mice.12277 49.Tomczak, M., & Jaśkowski, P. (2022). Harmonizing construction processes in repetitive construction projects with multiple buildings. Automation in Construction, 139, 104266. https://doi.org/https://doi.org/10.1016/j.autcon.2022.104266 50.Vandevoorde, S., & Vanhoucke, M. (2006). A comparison of different project duration forecasting methods using earned value metrics. International Journal of Project Management, 24(4), 289–302. https://doi.org/10.1016/J.IJPROMAN.2005.10.004 51.Wang, Z., Hu, Z., & Tang, Y. (2020). Float-Based Resource Leveling Optimization of Linear Projects. IEEE Access, 8, 176997–177020. https://doi.org/10.1109/ACCESS.2020.3027058 52.Wei, J., Liu, Y., Lu, X., Feng, Y., & Wang, Y. (2024). Optimization of Tunnel Construction Schedule Considering Soft Logic. Applied Sciences, 14(6). https://doi.org/10.3390/app14062580 53.Wen Liu, Ian Flood, & Raja R. A. Issa. (2005). Simulation and Optimization of Linear Construction Projects. Computing in Civil Engineering. 54.Yogesh, G., & Hanumanth Rao, C. (2021). A study on linear scheduling methods in road construction projects. Materials Today: Proceedings, 47, 5475–5478. https://doi.org/10.1016/J.MATPR.2021.07.393 55.Yu, Z., Wang, C., Zhao, Y., Hu, Z., & Tang, Y. (2023). Linear Project-Scheduling Optimization Considering a Reverse Construction Scenario. Applied Sciences, 13(16). https://doi.org/10.3390/app13169407 56.Zhong, Y., Chen, Z., Zhou, Z., & Hu, H. (2018). Uncertainty Analysis and Resource Allocation in Construction Project Management. Engineering Management Journal, 30(4), 293–305. https://doi.org/10.1080/10429247.2018.1492269 57.Zou, X., Wu, G., & Zhang, Q. (2021). Work continuity constraints in repetitive project scheduling considering soft logic. Engineering, Construction and Architectural Management, 28(6), 1713–1738. https://doi.org/10.1108/ECAM-11-2019-0595
|