跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何佳芸
研究生(外文):HO, CHIA-YUN
論文名稱:氨燃料電池中電催化劑研究趨勢之分析與氫燃料電池性能之比較
論文名稱(外文):Analysis of Research Trends in Electrocatalysts for Ammonia Fuel Cells and Comparison with Hydrogen Fuel Cell Performance.
指導教授:萬騰州萬騰州引用關係
指導教授(外文):WAN,TERNG-JOU
口試委員:黃志彬白子易
口試委員(外文):HUANG, CHIH-PINPAI, TZE-YI
口試日期:2024-06-17
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:89
中文關鍵詞:直接氨燃料電池電催化劑文獻計量學淨零碳排能源氨能源
外文關鍵詞:Direct ammonia fuel cellsElectrocatalystsBibliometricsNet zero carbon emissions energyAmmonia energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
各國將積極推動於2050年前實現淨零碳排放目標,因此激發了大量綠色能源 (如太陽能、風能、水力能、海洋能、氫能和氨能)相關研究。在這些綠色能源中,氨能因其在儲存和運輸過程中的安全性以及高能量密度等特性而具潛力。氨利用於肥料、還原劑、冷凍劑、燃料 (包含直接氨燃料電池)。本研究使用文獻計量學分析直接氨燃料電池領域,透過限縮直接氨燃料電池領域之關鍵因子與建立相關關鍵字,得知catalyst一詞在該領域中佔有一席之地,並對該詞進行後續關鍵字之層次分析。分析結果得知貴金屬電催化劑使用以鉑基為主,非貴金屬則為鎳基為主,因此奠定後續實驗使用之催化劑為Pt/C與Ni/C。
研究實驗結果顯示,使用陰陽極組合為Pt/C−Pt/C之氨燃料電池與氫燃料電池皆擁有最優的功率密度,分別為1.76 mWcm-2與5.37 mWcm-2。使用陰陽極組合為Pt/C−Ni/C的氨燃料電池與氫燃料電池功率密度分別為0.04 mWcm-2與0.49 mWcm-2。由此可知,在電催化劑中使用貴金屬較具潛力。

Countries worldwide are actively aiming to achieve net-zero carbon emissions by 2050, which has spurred extensive research into green energy sources such as solar, wind, hydro, ocean, hydrogen, and ammonia energy. Among these, ammonia energy stands out due to its safety in storage and transport, as well as its high energy density. Ammonia is utilized in fertilizers, reducing agents, refrigerants, and fuels, including direct ammonia fuel cells (DAFCs). This study employs bibliometric analysis to investigate the DAFC field, identifying key factors and establishing relevant keywords. The term "catalyst" emerged as significant in this domain, leading to a subsequent hierarchical keyword analysis. Results indicate that noble metal electrocatalysts predominantly use platinum-based materials, while non-noble metal catalysts are mainly nickel-based. Thus, Pt/C and Ni/C were chosen as the catalysts for further experiments.
Experimental results showed that DAFCs and alkaline hydrogen fuel cells using a Pt/C−Pt/C anode-cathode combination achieved the highest power densities, at 1.76 mWcm-2 and 5.37 mWcm-2, respectively. In contrast, the Pt/C−Ni/C combination yielded lower power densities for DAFCs and HFCs, at 0.04 mWcm-2 and 0.49 mWcm-2, respectively. This indicates that noble metal catalysts have greater potential in electrocatalysis.

摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 研究架構與流程圖 5
第二章 文獻探討 7
2.1 國際能源發展趨勢 7
2.1.1 氫能發展 7
2.1.2 氨能源發展 9
2.2 氫與氨能源應用−燃料電池 12
2.2.1 氫燃料電池 12
2.2.2 氨燃料電池 14
2.3 燃料電池材料簡介—膜電極組件 17
2.3.1 電催化劑 19
2.3.2 膜 23
2.4 文獻計量分析方法簡介 25
第三章 實驗方法與流程 26
3.1 DAFC領域趨勢研究方法 27
3.1.1 詞語雲建立 33
3.1.2 文詞樹狀圖 33
3.1.3 聚類分析 34
3.1.4 關鍵字詞建立 35
3.1.5 關鍵字層次分析 35
3.2 氫/氨燃料電池實驗研究 36
3.2.1 氫/氨燃料電池實驗研究材料 36
3.2.2 實驗進行之儀器設備 36
3.2.3 催化劑製備 38
3.2.4 燃料電池膜電極組件製備 (DAFC/AHFC) 39
3.2.5 電極材料表面微觀檢測 40
3.2.6 氫與氨燃料電池系統運行 40
3.2.7 氫與氨燃料電池性能檢測與分析 43
第四章 結果與討論 44
4.1 文獻計量分析結果 44
4.1.1 關鍵詞語分析結果 44
4.1.2 氨燃料電池核心主題類型分析結果 45
4.1.3 各文獻採用之關鍵字彙整分析 47
4.1.4 結合文獻歸納發現並建立關鍵字詞 48
4.1.5 關鍵字層次分析 50
4.2 氫與氨燃料電池實驗分析 54
4.2.1 電極與催化劑表面微觀分析 54
4.2.2 Pt/C−Pt/C電催化劑電極之氫與氨燃料電池電化學性能分析 55
4.2.3 Pt/C−Ni/C電催化劑電極之氫與氨燃料電池電化學性能分析 58
4.2.4 不同催化劑應用於氫與氨燃料電池之性能分析 60
4.2.5 DAFC研究結果與文獻結果比較分析 62
4.2.6 電催化劑成本分析 64
第五章 結論與建議 66
5.1 結論 66
5.2 建議 67
參考文獻 69


[1] Abbasi, R., Setzler, B. P., Wang, J., Zhao, Y., Wang, T., Gottesfeld, S., & Yan, Y. (2020). Low-temperature direct ammonia fuel cells: Recent developments and remaining challenges. Current Opinion in Electrochemistry, 21, 335-344. https://doi.org/10.1016/j.coelec.2020.03.021
[2] Aceves, S. M., Martinez-Frias, J., & Garcia-Villazana, O. (2000). Analytical and experimental evaluation of insulated pressure vessels for cryogenic hydrogen storage. International Journal of Hydrogen Energy, 25(11), 1075-1085. https://doi.org/10.1016/S0360-3199(00)00016-1
[3] Achrai, B., Zhao, Y., Wang, T., Tamir, G., Abbasi, R., Setzler, B. P., Page, M., Yan, Y., & Gottesfeld, S. (2020). A Direct Ammonia Fuel Cell with a KOH-Free Anode Feed Generating 180 mW cm−2 at 120 °C. Journal of The Electrochemical Society, 167(13), 134518. https://doi.org/10.1149/1945-7111/abbdd1
[4] Ahrens, M. U., Tolstorebrov, I., Tønsberg, E. K., Hafner, A., Wang, R. Z., & Eikevik, T. M. (2023). Numerical investigation of an oil-free liquid-injected screw compressor with ammonia-water as refrigerant for high temperature heat pump applications. Applied Thermal Engineering, 219, 119425. https://doi.org/10.1016/j.applthermaleng.2022.119425
[5] Alagumalai, A., Mahian, O., Aghbashlo, M., Tabatabaei, M., Wongwises, S., & Wang, Z. L. (2021). Towards smart cities powered by nanogenerators: Bibliometric and machine learning–based analysis. Nano Energy, 83, 105844. https://doi.org/10.1016/j.nanoen.2021.105844
[6] Allagui, A., Oudah, M., Tuaev, X., Ntais, S., Almomani, F., & Baranova, E. A. (2013). Ammonia electro-oxidation on alloyed PtIr nanoparticles of well-defined size. International Journal of Hydrogen Energy, 38(5), 2455-2463. https://doi.org/10.1016/j.ijhydene.2012.11.079
[7] Assumpção, M. H. M. T., da Silva, S. G., de Souza, R. F. B., Buzzo, G. S., Spinacé, E. V., Neto, A. O., & Silva, J. C. M. (2014). Direct ammonia fuel cell performance using PtIr/C as anode electrocatalysts. International Journal of Hydrogen Energy, 39(10), 5148-5152. https://doi.org/10.1016/j.ijhydene.2014.01.053
[8] Assumpção, M. H. M. T., Piasentin, R. M., Hammer, P., De Souza, R. F. B., Buzzo, G. S., Santos, M. C., Spinacé, E. V., Neto, A. O., & Silva, J. C. M. (2015). Oxidation of ammonia using PtRh/C electrocatalysts: Fuel cell and electrochemical evaluation. Applied Catalysis B: Environmental, 174-175, 136-144. https://doi.org/10.1016/j.apcatb.2015.02.021
[9] Athanasaki, G., Jayakumar, A., & Kannan, A. M. (2023). Gas diffusion layers for PEM fuel cells: Materials, properties and manufacturing – A review. International Journal of Hydrogen Energy, 48(6), 2294-2313. https://doi.org/10.1016/j.ijhydene.2022.10.058
[10] Balasubramanian, S., Koloutsou-Vakakis, S., McFarland, D. M., & Rood, M. J. (2015). Reconsidering emissions of ammonia from chemical fertilizer usage in Midwest USA. Journal of Geophysical Research: Atmospheres, 120(12), 6232-6246. https://doi.org/10.1002/2015JD023219
[11] Cai, T., Zhao, D., & Gutmark, E. (2023). Overview of fundamental kinetic mechanisms and emission mitigation in ammonia combustion. Chemical Engineering Journal, 458, 141391. https://doi.org/10.1016/j.cej.2023.141391
[12] Cardoso, J. S., Silva, V., Rocha, R. C., Hall, M. J., Costa, M., & Eusébio, D. (2021). Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines. Journal of Cleaner Production, 296, 126562. https://doi.org/10.1016/j.jclepro.2021.126562
[13] Chen, H., Zhan, Z., Jiang, P., Sun, Y., Liao, L., Wan, X., Du, Q., Chen, X., Song, H., Zhu, R., Shu, Z., Li, S., & Pan, M. (2022). Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA. Applied Energy, 310, 118556. https://doi.org/10.1016/j.apenergy.2022.118556
[14] Chen, R., Zheng, S., Yao, Y., Lin, Z., Ouyang, W., Zhuo, L., & Wang, Z. (2021). Performance of direct ammonia fuel cell with PtIr/C, PtRu/C, and Pt/C as anode electrocatalysts under mild conditions. International Journal of Hydrogen Energy, 46(54), 27749-27757. https://doi.org/10.1016/j.ijhydene.2021.06.001
[15] Davey, C. J., Luqmani, B., Thomas, N., & McAdam, E. J. (2022). Transforming wastewater ammonia to carbon free energy: Integrating fuel cell technology with ammonia stripping for direct power production. Separation and Purification Technology, 289, 120755. https://doi.org/10.1016/j.seppur.2022.120755
[16] David, W. I. F., Agnew, G. D., Bañares-Alcántara, R., Barth, J., Bøgild Hansen, J., Bréquigny, P., de Joannon, M., Fürstenberg Stott, S., Fürstenberg Stott, C., Guati-Rojo, A., Hatzell, M., MacFarlane, D. R., Makepeace, J. W., Mastorakos, E., Mauss, F., Medford, A., Mounaïm-Rousselle, C., Nowicki, D. A., Picciani, M. A., . . . Valera-Medina, A. (2024). 2023 roadmap on ammonia as a carbon-free fuel. Journal of Physics: Energy, 6(2), 021501. https://doi.org/10.1088/2515-7655/ad0a3a
[17] de Vooys, A. C. A., Koper, M. T. M., van Santen, R. A., & van Veen, J. A. R. (2001). The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes. Journal of Electroanalytical Chemistry, 506(2), 127-137. https://doi.org/10.1016/S0022-0728(01)00491-0
[18] Dekel, D. R. (2018). Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources, 375, 158-169. https://doi.org/10.1016/j.jpowsour.2017.07.117
[19] Ding, D., & Wu, X.-Y. (2024). Hydrogen fuel cell electric trains: Technologies, current status, and future. Applications in Energy and Combustion Science, 17, 100255. https://doi.org/10.1016/j.jaecs.2024.100255
[20] El-Shafie, M., & Kambara, S. (2023). Recent advances in ammonia synthesis technologies: Toward future zero carbon emissions. International Journal of Hydrogen Energy, 48(30), 11237-11273. https://doi.org/10.1016/j.ijhydene.2022.09.061
[21] Fang, H., Liao, C., Ying, Y., Cheng, J., Wang, Q., Huang, H., Luo, Y., & Jiang, L. (2023). Creating metal-carbide interactions to boost ammonia oxidation activity for low-temperature direct ammonia fuel cells. Journal of Catalysis, 417, 129-139. https://doi.org/10.1016/j.jcat.2022.11.028
[22] Feng, Z., Gupta, G., & Mamlouk, M. (2023). A review of anion exchange membranes prepared via Friedel-Crafts reaction for fuel cell and water electrolysis. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.03.299
[23] Fu, Z., Lu, L., Zhang, C., Xu, Q., Zhang, X., Gao, Z., & Li, J. (2023). Fuel cell and hydrogen in maritime application: A review on aspects of technology, cost and regulations. Sustainable Energy Technologies and Assessments, 57, 103181. https://doi.org/10.1016/j.seta.2023.103181
[24] Gerischer, H., & Mauerer, A. (1970). Untersuchungen Zur anodischen Oxidation von Ammoniak an Platin-Elektroden. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 25(3), 421-433. https://doi.org/10.1016/S0022-0728(70)80103-6
[25] Ghavam, S., Taylor, C. M., & Styring, P. (2021). The life cycle environmental impacts of a novel sustainable ammonia production process from food waste and brown water. Journal of Cleaner Production, 320, 128776. https://doi.org/10.1016/j.jclepro.2021.128776
[26] Gottesfeld, S. (2018). The Direct Ammonia Fuel Cell and a Common Pattern of Electrocatalytic Processes. Journal of The Electrochemical Society, 165(15), J3405. https://doi.org/10.1149/2.0431815jes
[27] Grew, K. N., & Chiu, W. K. S. (2010). A Dusty Fluid Model for Predicting Hydroxyl Anion Conductivity in Alkaline Anion Exchange Membranes. Journal of The Electrochemical Society, 157(3), B327. https://doi.org/10.1149/1.3273200
[28] Hren, M., Božič, M., Fakin, D., Kleinschek, K. S., & Gorgieva, S. (2021). Alkaline membrane fuel cells: anion exchange membranes and fuels [10.1039/D0SE01373K]. Sustainable Energy & Fuels, 5(3), 604-637. https://doi.org/10.1039/D0SE01373K
[29] Hu, Z., Lu, S., Tang, F., Yang, D., Zhang, C., Xiao, Q., & Ming, P. (2023). High-performance precious metal-free direct ammonia fuel cells endowed by Co-doped Ni4Cu1 anode catalysts. Applied Catalysis B: Environmental, 334, 122856. https://doi.org/10.1016/j.apcatb.2023.122856
[30] Hui, C. L., Li, X. G., & Hsing, I. M. (2005). Well-dispersed surfactant-stabilized Pt/C nanocatalysts for fuel cell application: Dispersion control and surfactant removal. Electrochimica Acta, 51(4), 711-719. https://doi.org/10.1016/j.electacta.2005.05.024
[31] Hyun, J., Jo, W., Yang, S. H., Shin, S.-H., Doo, G., Choi, S., Lee, D.-H., Lee, D. W., Oh, E., Lee, J. Y., & Kim, H.-T. (2022). Tuning of water distribution in the membrane electrode assembly of anion exchange membrane fuel cells using functionalized carbon additives. Journal of Power Sources, 543, 231835. https://doi.org/10.1016/j.jpowsour.2022.231835
[32] Hyun, J., Yang, S. H., Doo, G., Choi, S., Lee, D.-H., Lee, D. W., Kwen, J., Jo, W., Shin, S.-H., Lee, J. Y., & Kim, H.-T. (2021). Degradation study for the membrane electrode assembly of anion exchange membrane fuel cells at a single-cell level [10.1039/D1TA05801K]. Journal of Materials Chemistry A, 9(34), 18546-18556. https://doi.org/10.1039/D1TA05801K
[33] Ishaq, H., & Dincer, I. (2020). Design and simulation of a new cascaded ammonia synthesis system driven by renewables. Sustainable Energy Technologies and Assessments, 40, 100725. https://doi.org/10.1016/j.seta.2020.100725
[34] Jeerh, G., Zhang, M., & Tao, S. (2021). Recent progress in ammonia fuel cells and their potential applications [10.1039/D0TA08810B]. Journal of Materials Chemistry A, 9(2), 727-752. https://doi.org/10.1039/D0TA08810B
[35] Jeerh, G., Zou, P., Zhang, M., & Tao, S. (2022). Perovskite oxide LaCr0.25Fe0.25Co0.5O3-δ as an efficient non-noble cathode for direct ammonia fuel cells. Applied Catalysis B: Environmental, 319, 121919. https://doi.org/10.1016/j.apcatb.2022.121919
[36] Jia, C., Zhou, J., He, H., Li, J., Wei, Z., Li, K., & Shi, M. (2023). A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness. Energy, 271, 127105. https://doi.org/10.1016/j.energy.2023.127105
[37] Jones, A. W. (2016). Forensic Journals: Bibliometrics and Journal Impact Factors. In J. Payne-James & R. W. Byard (Eds.), Encyclopedia of Forensic and Legal Medicine (Second Edition) (pp. 528-538). Elsevier. https://doi.org/10.1016/B978-0-12-800034-2.00181-6
[38] Juangsa, F. B., Irhamna, A. R., & Aziz, M. (2021). Production of ammonia as potential hydrogen carrier: Review on thermochemical and electrochemical processes. International Journal of Hydrogen Energy, 46(27), 14455-14477. https://doi.org/10.1016/j.ijhydene.2021.01.214
[39] Kamarudin, M. Z. F., Kamarudin, S. K., Masdar, M. S., & Daud, W. R. W. (2013). Review: Direct ethanol fuel cells. International Journal of Hydrogen Energy, 38(22), 9438-9453. https://doi.org/10.1016/j.ijhydene.2012.07.059
[40] Kanaan, R., Affonso Nóbrega, P. H., Achard, P., & Beauger, C. (2023). Economical assessment comparison for hydrogen reconversion from ammonia using thermal decomposition and electrolysis. Renewable and Sustainable Energy Reviews, 188, 113784. https://doi.org/10.1016/j.rser.2023.113784
[41] Katsounaros, I., Figueiredo, M. C., Calle-Vallejo, F., Li, H., Gewirth, A. A., Markovic, N. M., & Koper, M. T. M. (2018). On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(1 0 0) in alkaline environment. Journal of Catalysis, 359, 82-91. https://doi.org/10.1016/j.jcat.2017.12.028
[42] Kibria, M. A., McManus, D. E., & Bhattacharya, S. (2023). Options for net zero emissions hydrogen from Victorian lignite. Part 2: Ammonia production. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.06.098
[43] Kim, H., Hong, S., Kim, H., Jun, Y., Kim, S. Y., & Ahn, S. H. (2022). Recent progress in Pt-based electrocatalysts for ammonia oxidation reaction. Applied Materials Today, 29, 101640. https://doi.org/10.1016/j.apmt.2022.101640
[44] Kim, J., Huh, C., & Seo, Y. (2022). End-to-end value chain analysis of isolated renewable energy using hydrogen and ammonia energy carrier. Energy Conversion and Management, 254, 115247. https://doi.org/10.1016/j.enconman.2022.115247
[45] Kismartini, K., Yusuf, I. M., Sabilla, K. R., & Roziqin, A. (2024). A bibliometric analysis of maritime security policy: Research trends and future agenda. Heliyon, 10(8), e28988. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e28988
[46] Kurien, C., & Mittal, M. (2023). Utilization of green ammonia as a hydrogen energy carrier for decarbonization in spark ignition engines. International Journal of Hydrogen Energy, 48(74), 28803-28823. https://doi.org/10.1016/j.ijhydene.2023.04.073
[47] Lan, R., & Tao, S. (2010). Direct Ammonia Alkaline Anion-Exchange Membrane Fuel Cells. Electrochemical and Solid-State Letters, 13(8), B83. https://doi.org/10.1149/1.3428469
[48] Lee, H.-Y., Yu, T. H., Shin, C.-H., Fortunelli, A., Ji, S. G., Kim, Y., Kang, T.-H., Lee, B.-J., Merinov, B. V., Goddard, W. A., Choi, C. H., & Yu, J.-S. (2023). Low temperature synthesis of new highly graphitized N-doped carbon for Pt fuel cell supports, satisfying DOE 2025 durability standards for both catalyst and support. Applied Catalysis B: Environmental, 323, 122179. https://doi.org/10.1016/j.apcatb.2022.122179
[49] Li, T., Ling, Y., Lin, B., Ou, X., & Wang, S. (2022). A simple, feasible, and non-hazardous laboratory evaluation of direct ammonia solid oxide fuel cells fueled by aqueous ammonia. Separation and Purification Technology, 297, 121511. https://doi.org/10.1016/j.seppur.2022.121511
[50] Lim, I. S., Lee, Y. I., Kang, B., Park, J. Y., & Kim, M. S. (2022). Electrochemical performance and water management investigation of polymer electrolyte membrane fuel cell (PEMFC) using gas diffusion layer with polytetrafluoroethylene (PTFE) content gradients in through-plane direction. Electrochimica Acta, 421, 140509. https://doi.org/10.1016/j.electacta.2022.140509
[51] Lomocso, T. L., & Baranova, E. A. (2011). Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M=Ir, Pd, SnOx) nanoparticles. Electrochimica Acta, 56(24), 8551-8558. https://doi.org/10.1016/j.electacta.2011.07.041
[52] Lyu, Z.-H., Fu, J., Tang, T., Zhang, J., & Hu, J.-S. (2023). Design of ammonia oxidation electrocatalysts for efficient direct ammonia fuel cells. EnergyChem, 5(3), 100093. https://doi.org/10.1016/j.enchem.2022.100093
[53] Mao, X., Sang, J., Xi, C., Liu, Z., Yang, J., Guan, W., Wang, J., Xia, C., & Singhal, S. C. (2022). Performance evaluation of ammonia-fueled flat-tube solid oxide fuel cells with different build-in catalysts. International Journal of Hydrogen Energy, 47(55), 23324-23334. https://doi.org/10.1016/j.ijhydene.2022.04.185
[54] Mendez, C., Contestabile, M., & Bicer, Y. (2023). Hydrogen fuel cell vehicles as a sustainable transportation solution in Qatar and the Gulf cooperation council: a review. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.04.194
[55] Nazir, H., Muthuswamy, N., Louis, C., Jose, S., Prakash, J., Buan, M. E., Flox, C., Chavan, S., Shi, X., Kauranen, P., Kallio, T., Maia, G., Tammeveski, K., Lymperopoulos, N., Carcadea, E., Veziroglu, E., Iranzo, A., & Kannan, A. M. (2020). Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution. International Journal of Hydrogen Energy, 45(41), 20693-20708. https://doi.org/10.1016/j.ijhydene.2020.05.241
[56] Ogawa, T., & Kajikawa, Y. (2017). Generating novel research ideas using computational intelligence: A case study involving fuel cells and ammonia synthesis. Technological Forecasting and Social Change, 120, 41-47. https://doi.org/https://doi.org/10.1016/j.techfore.2017.04.004
[57] Olabi, A. G., Elsaid, K., Obaideen, K., Abdelkareem, M. A., Rezk, H., Wilberforce, T., Maghrabie, H. M., & Sayed, E. T. (2023). Renewable energy systems: Comparisons, challenges and barriers, sustainability indicators, and the contribution to UN sustainable development goals. International Journal of Thermofluids, 20, 100498. https://doi.org/10.1016/j.ijft.2023.100498
[58] Oroujizad, S., Almasi Kashi, M., & Montazer, A. H. (2023). Fine-tuning magnetic and hyperthermia properties of magnetite (Fe3O4) nanoparticles by using ammonia as a reducing agent. Physica B: Condensed Matter, 671, 415393. https://doi.org/10.1016/j.physb.2023.415393
[59] Pan, G., Bai, Y., Song, H., Qu, Y., Wang, Y., & Wang, X. (2023). Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies. Energies, 16(6), 2680. https://www.mdpi.com/1996-1073/16/6/2680
[60] Pan, Z., Liu, Y., Tahir, A., Christopher Esan, O., Zhu, J., Chen, R., & An, L. (2022). A discrete regenerative fuel cell mediated by ammonia for renewable energy conversion and storage. Applied Energy, 322, 119463. https://doi.org/10.1016/j.apenergy.2022.119463
[61] Pan, Z. F., Chen, R., An, L., & Li, Y. S. (2017). Alkaline anion exchange membrane fuel cells for cogeneration of electricity and valuable chemicals. Journal of Power Sources, 365, 430-445. https://doi.org/10.1016/j.jpowsour.2017.09.013
[62] Park, S., Lee, J.-W., & Popov, B. N. (2008). Effect of PTFE content in microporous layer on water management in PEM fuel cells. Journal of Power Sources, 177(2), 457-463. https://doi.org/10.1016/j.jpowsour.2007.11.055
[63] Parker, S. F., Frost, C. D., Telling, M., Albers, P., Lopez, M., & Seitz, K. (2006). Characterisation of the adsorption sites of hydrogen on Pt/C fuel cell catalysts. Catalysis Today, 114(4), 418-421. https://doi.org/10.1016/j.cattod.2006.02.043
[64] Peng, P., Su, J., & Breunig, H. (2023). Benchmarking plasma and electrolysis decomposition technologies for ammonia to power generation. Energy Conversion and Management, 288, 117166. https://doi.org/10.1016/j.enconman.2023.117166
[65] Peng, X., Kulkarni, D., Huang, Y., Omasta, T. J., Ng, B., Zheng, Y., Wang, L., LaManna, J. M., Hussey, D. S., Varcoe, J. R., Zenyuk, I. V., & Mustain, W. E. (2020). Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nature Communications, 11(1), 3561. https://doi.org/10.1038/s41467-020-17370-7
[66] Peng, Y., Choi, J.-Y., Tian, L., Bai, K., Zhang, Y., Chen, D., Zeng, J., & Banham, D. (2022). Impact of Pt spatial distribution on the relative humidity tolerance of Pt/C catalysts for fuel cell applications. Journal of Power Sources, 545, 231906. https://doi.org/10.1016/j.jpowsour.2022.231906
[67] Pingkuo, L., & Xue, H. (2022). Comparative analysis on similarities and differences of hydrogen energy development in the World's top 4 largest economies: A novel framework. International Journal of Hydrogen Energy, 47(16), 9485-9503. https://doi.org/10.1016/j.ijhydene.2022.01.038
[68] Pramuanjaroenkij, A., & Kakaç, S. (2023). The fuel cell electric vehicles: The highlight review. International Journal of Hydrogen Energy, 48(25), 9401-9425. https://doi.org/10.1016/j.ijhydene.2022.11.103
[69] Pu, L., Yu, H., Dai, M., He, Y., Sun, R., & Yan, T. (2022). Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation. Chinese Science Bulletin, 67(19), 2172-2191. https://doi.org/10.1360/TB-2022-0063
[70] Qian, J., Zhou, X., Liu, L., Liu, J., Zhao, L., Shen, H., Hu, X., Qian, X., Chen, H., Zhou, X., & Wei, Z. (2022). Direct ammonia low-temperature symmetrical solid oxide fuel cells with composite semiconductor electrolyte. Electrochemistry Communications, 135, 107216. https://doi.org/10.1016/j.elecom.2022.107216
[71] Roberge, D., Raj, A., Kaliaguine, S., On, D. T., Iwamoto, S., & Inui, T. (1996). Selective catalytic reduction of NO under ambient conditions using ammonia as reducing agent and MFI zeolites as catalysts. Applied Catalysis B: Environmental, 10(4), L237-L243. https://doi.org/10.1016/S0926-3373(96)00062-8
[72] Seo, J. H., Baik, K. D., Kim, D. K., Kim, S., Choi, J. W., Kim, M., Song, H. H., & Kim, M. S. (2013). Effects of anisotropic bending stiffness of gas diffusion layer on the MEA degradation of polymer electrolyte membrane fuel cells by wet/dry gas. International Journal of Hydrogen Energy, 38(36), 16245-16252. https://doi.org/10.1016/j.ijhydene.2013.09.043
[73] Siddiqui, O., & Dincer, I. (2018). A review and comparative assessment of direct ammonia fuel cells. Thermal Science and Engineering Progress, 5, 568-578. https://doi.org/10.1016/j.tsep.2018.02.011
[74] Siddiqui, O., & Dincer, I. (2019a). Development and evaluation of a new hybrid ammonia fuel cell system with solar energy. Energy, 189, 116185. https://doi.org/10.1016/j.energy.2019.116185
[75] Siddiqui, O., & Dincer, I. (2019b). Development and performance evaluation of a direct ammonia fuel cell stack. Chemical Engineering Science, 200, 285-293. https://doi.org/10.1016/j.ces.2019.01.059
[76] Siddiqui, O., & Dincer, I. (2021). Optimization of a new renewable energy system for producing electricity, hydrogen and ammonia. Sustainable Energy Technologies and Assessments, 44, 101023. https://doi.org/10.1016/j.seta.2021.101023
[77] Squadrito, G., Andaloro, L., Ferraro, M., & Antonucci, V. (2014). 16 - Hydrogen fuel cell technology. In A. Basile & A. Iulianelli (Eds.), Advances in Hydrogen Production, Storage and Distribution (pp. 451-498). Woodhead Publishing. https://doi.org/10.1533/9780857097736.3.451
[78] Steinberg, M. (1994). Fossil fuel and greenhouse gas mitigation technologies. International Journal of Hydrogen Energy, 19(8), 659-665. https://doi.org/10.1016/0360-3199(94)90150-3
[79] Su, H., Sita, C., & Pasupathi, S. (2016). The Effect of Gas Diffusion Layer PTFE Content on The Performance of High Temperature Proton Exchange Membrane Fuel Cell. International Journal of Electrochemical Science, 11(4), 2919-2926. https://doi.org/10.1016/S1452-3981(23)16151-7
[80] Suzuki, S., Muroyama, H., Matsui, T., & Eguchi, K. (2012). Fundamental studies on direct ammonia fuel cell employing anion exchange membrane. Journal of Power Sources, 208, 257-262. https://doi.org/10.1016/j.jpowsour.2012.02.043
[81] Tarhan, C., & Çil, M. A. (2021). A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 40, 102676. https://doi.org/10.1016/j.est.2021.102676
[82] Uddin, M. A., Park, J., Bonville, L., & Pasaogullari, U. (2016). Effect of hydrophobicity of gas diffusion layer in calcium cation contamination in polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 41(33), 14909-14916. https://doi.org/10.1016/j.ijhydene.2016.06.188
[83] Vidal-Iglesias, F. J., Solla-Gullón, J., Pérez, J. M., & Aldaz, A. (2006). Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes. Electrochemistry Communications, 8(1), 102-106. https://doi.org/10.1016/j.elecom.2005.11.002
[84] Wang, B., Li, T., Gong, F., Othman, M. H. D., & Xiao, R. (2022). Ammonia as a green energy carrier: Electrochemical synthesis and direct ammonia fuel cell - a comprehensive review. Fuel Processing Technology, 235, 107380. https://doi.org/10.1016/j.fuproc.2022.107380
[85] Wang, T., Zhao, Y., Setzler, B. P., Abbasi, R., Gottesfeld, S., & Yan, Y. (2022). A high-performance 75 W direct ammonia fuel cell stack. Cell Reports Physical Science, 3(4), 100829. https://doi.org/10.1016/j.xcrp.2022.100829
[86] Wang, X., Zhang, Z., Zhou, G., Zhang, Y., Zhao, X., Han, D., Chen, T., Huang, Z., & Lin, H. (2023). Synergistic effect between electric field and Ce-doped catalysts to promote hydrogen production from ammonia decomposition. Fuel, 351, 128796. https://doi.org/10.1016/j.fuel.2023.128796
[87] Wang, Y., Cao, Q., Liu, L., Wu, Y., Liu, H., Gu, Z., & Zhu, C. (2022). A review of low and zero carbon fuel technologies: Achieving ship carbon reduction targets. Sustainable Energy Technologies and Assessments, 54, 102762. https://doi.org/10.1016/j.seta.2022.102762
[88] Wei, J., Ning, F., Bai, C., Zhang, T., Lu, G., Wang, H., Li, Y., Shen, Y., Fu, X., Li, Q., Jin, H., & Zhou, X. (2020). An ultra-thin, flexible, low-cost and scalable gas diffusion layer composed of carbon nanotubes for high-performance fuel cells [10.1039/C9TA13944C]. Journal of Materials Chemistry A, 8(12), 5986-5994. https://doi.org/10.1039/C9TA13944C
[89] Xi, X., Fan, Y., Zhang, K., Liu, Y., Nie, F., Guan, H., & Wu, J. (2022). Carbon-free sustainable energy technology: Electrocatalytic ammonia oxidation reaction. Chemical Engineering Journal, 435, 134818. https://doi.org/10.1016/j.cej.2022.134818
[90] Yan, M., Ren, J., Dong, S., Li, X., & Shen, Q. (2023). A bibliometric and content analysis of membrane electrode assemblies for proton exchange membrane fuel cells. International Journal of Electrochemical Science, 18(12), 100350. https://doi.org/10.1016/j.ijoes.2023.100350
[91] Yang, Y. H., Lin, Q., Zhang, C. F., & Li, G. Q. (2023). Study of the influence under different operating conditions on the performance of hydrogen fuel cell system for a bus. Process Safety and Environmental Protection, 177, 1027-1034. https://doi.org/10.1016/j.psep.2023.07.044
[92] Yu, K.-C., Kim, W.-J., & Chung, C.-H. (2006). Utilization of Pt/Ru catalysts in MEA for fuel cell application by breathing process of proton exchange membrane. Journal of Power Sources, 163(1), 34-40. https://doi.org/10.1016/j.jpowsour.2006.06.038
[93] Zeng, S., Xue, R., & Sabetvand, R. (2022). Molecular dynamics study on the effect of external electric field on thermal properties of ammonia/copper nano-refrigerant in a nanochannel equipped with different types of cavities. International Communications in Heat and Mass Transfer, 130, 105802. https://doi.org/10.1016/j.icheatmasstransfer.2021.105802
[94] Zhang, H. M., Wang, Y. F., Kwok, Y. H., Wu, Z. C., Xia, D. H., & Leung, D. Y. C. (2018). A Direct Ammonia Microfluidic Fuel Cell using NiCu Nanoparticles Supported on Carbon Nanotubes as an Electrocatalyst. ChemSusChem, 11(17), 2889-2897. https://doi.org/10.1002/cssc.201801232
[95] Zhang, J. Z., Hongsirikarn, K., & Goodwin, J. G. (2011). Effect and siting of Nafion® in a Pt/C proton exchange membrane fuel cell catalyst. Journal of Power Sources, 196(19), 7957-7966. https://doi.org/10.1016/j.jpowsour.2011.05.052
[96] Zhang, S., Yuan, X., Wang, H., Mérida, W., Zhu, H., Shen, J., Wu, S., & Zhang, J. (2009). A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy, 34(1), 388-404. https://doi.org/10.1016/j.ijhydene.2008.10.012
[97] Zhang, W., Fang, X., & Sun, C. (2023). The alternative path for fossil oil: Electric vehicles or hydrogen fuel cell vehicles? Journal of Environmental Management, 341, 118019. https://doi.org/10.1016/j.jenvman.2023.118019
[98] Zhou, H., Dai, J., Chen, X., Hu, B., Wei, H., & Cai, H. H. (2023). Understanding innovation of new energy industry: Observing development trend and evolution of hydrogen fuel cell based on patent mining. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.07.032
[99] Zhou, S., Xie, G., Hu, H., & Ni, M. (2023). Simulation on water transportation in gas diffusion layer of a PEM fuel cell: Influence of non-uniform PTFE distribution. International Journal of Hydrogen Energy, 48(28), 10644-10658. https://doi.org/10.1016/j.ijhydene.2022.12.063
[100] Zou, P., Chen, S., Lan, R., Humphreys, J., Jeerh, G., & Tao, S. (2019). Investigation of perovskite oxide SrFe0.8Cu0.1Nb0.1O3-δ as cathode for a room temperature direct ammonia fuel cell. International Journal of Hydrogen Energy, 44(48), 26554-26564. https://doi.org/10.1016/j.ijhydene.2019.08.097
[101] Zou, P., Chen, S., Lan, R., & Tao, S. (2019). Investigation of Perovskite Oxide SrCo0.8Cu0.1Nb0.1O3–δ as a Cathode Material for Room Temperature Direct Ammonia Fuel Cells. ChemSusChem, 12(12), 2788-2794. https://doi.org/10.1002/cssc.201900451


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top