跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林崇聖
研究生(外文):LIN,CHUNG-SHENG
論文名稱:鎢摻雜氫氧化鎳觸媒於尿素電解的機理研究
論文名稱(外文):Unraveling the catalytic mechanism of tungsten-doped nickel hydroxide catalyst in urea electrolysis
指導教授:吳子和林春強林春強引用關係
指導教授(外文):Wu, Tzu-HoLIN, CHUEN-CHANG
口試委員:王迪彥簡彰胤吳子和林春強
口試委員(外文):WANG, DI-YANCHIEN, CHANG-YINWu, Tzu-HoLIN, CHUEN-CHANG
口試日期:2024-07-04
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:78
中文關鍵詞:尿素電解鎢摻雜氫氧化鎳臨場拉曼光譜分析
外文關鍵詞:urea electrolysistungsten dopingnickel hydroxidein situ Raman spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用簡單的一步驟電沉積合成出鎢摻雜氫氧化鎳,將之做為尿素電解的觸媒進行催化機制的探討,綜合材料鑑定分析,發現樣品為α結晶型態的氫氧化鎳(Nickel hydroxide, Ni(OH)2),在鎢摻雜之後可觀察到鎳金屬的存在以及電子組態的改變;電化學分析發現鎢摻雜氫氧化鎳展現出較為出色的尿素氧化表現,對比未改質的樣品,有著較高的催化電流(332 vs 108 mA cm-2 at 1.48 V)、較低的塔弗斜率(71 vs 162 mV dec-1)、較高的週轉頻率(0.14 vs 0.07 s-1)以及較大的反應速率常數(6.0 x 105 vs 3.2 x 104 cm3 mol-1 s-1),更重要的是在大電流100 mA cm-2的操作下表現48小時良好的穩定性。至於陰極析氫反應,鎢摻雜前後並未有顯著差異,說明鎢摻雜的材料改質主要應用於陽極催化尿素氧化反應。本研究後續運用交流阻抗頻譜分析與臨場拉曼光譜分析,搭配非臨場的X射線光電子能譜與高解度電子顯微鏡分析進行催化機制的探討,可以觀察到鎢摻雜氫氧化鎳能在較低的電壓產出Ni3+活性位點,進行直接與間接尿素氧化反應,實驗結果顯示間接尿素氧化反應為主要的催化路徑。
This study adopts a simple and one-step electrodeposition method to prepare tungsten-doped nickel hydroxide for the applications in urea electrolysis. Based on the experimental data, the W-doped sample belongs to α-Ni(OH)2 with the presence of metallic nickel clusters. Moreover, W-doping is found to modulate the electronic configuration of nickel hydroxide, which is beneficial to induce the formation of Ni3+ active site. The results show that the W-doped sample exhibits superior electrochemical performance for urea oxidation, exhibiting higher catalytic current (332 vs 108 mA cm-2 at 1.48 V), lower Tafel slope (71 vs 162 mV dec-1), higher turnover frequency (0.14 vs 0.07 s-1), and larger reaction rate constant (6.0 x 105 vs 3.2 x 104 cm3 mol-1 s-1) compared with the unmodified sample. More importantly, W-doped α-Ni(OH)2 demonstrates stable electro-oxidation of urea even at high current density of 100 mA cm-2 for 48 hours. In regard to the hydrogen evolution reaction, the modified sample exhibits comparable electrochemical performance to the pristine sample. The results illustrate that the W-doping strategy mainly facilitates urea oxidation but not hydrogen evolution. Combining the data from electrochemical impedance spectroscopy, in-situ Raman spectroscopy, ex situ X-ray photoelectron spectroscopy, and ex situ transmission electron microscopy, it is found that W-doping can effectively induce the formation of Ni3+ active site at low overpotential for direct and indirect urea oxidation.
摘要...i
Abstract...ii
目錄...iii
表目錄...v
圖目錄...vi
第一章 緒論...1
1.1前言...1
1.2研究動機...5
第二章文獻回顧...6
2.1氫氧化鎳用於尿素氧化反應...6
2.2氫氧化鎳應用於析氫反應...10
2.3金屬離子摻雜氫氧化鎳對電化學催化表現的影響...12
2.4含有鎳金屬異質結構對電化學催化表現的影響...17
2.5親水性與電極表面氣泡脫附對電化學催化表現的影響...20
2.6臨場拉曼光譜偵測尿素電解反應機制...22
2.6.1臨場拉曼光譜偵測尿素反應機制...22
2.6.2臨場拉曼光譜偵測析氫反應機制...24
第三章 實驗步驟與設備...26
3.1實驗藥品...26
3.2實驗儀器...27
3.3實驗步驟...28
3.3.1泡沫鎳前處理...28
3.3.2電沉積合成鎢摻雜氫氧化鎳...28
3.4材料分析...29
3.4.1接觸角...29
3.4.2 X光繞射分析儀...29
3.4.3共軛拉曼光譜分析儀...29
3.4.4掃描電子顯微鏡...30
3.4.5穿透式電子顯微鏡...30
3.4.6 X射線電子能譜儀...30
3.5電化學分析...31
3.5.1三極式設備操作...31
3.5.2循環伏安法與線性掃描伏安法...31
3.5.3 iR校正方程式...31
3.5.4塔弗方程式...32
3.5.5週轉頻率計算...32
3.5.6電化學活性表面積...32
3.5.7電化學阻抗譜...33
3.5.8電化學電極表面氣泡脫附...33
3.5.9計時電流法...34
3.5.10穩定性測試...34
3.5.11全裝置電池測試...34
第四章 鎢摻雜氫氧化鎳提升尿素催化表現...35
4.1 材料分析...35
4.1.1 XRD分析...35
4.1.2 Raman分析...36
4.1.3 XPS分析...37
4.1.4 TEM分析...38
4.1.5 SEM分析...41
4.1.6親水性分析...42
4.2 電化學表現...43
4.2.1 UOR/OER線性掃描伏安法...43
4.2.2 UOR Tafel分析...44
4.2.3 TOF分析...45
4.2.4電化學活性表面積分析...46
4.2.5計時電流法與速率常數分析...47
4.2.6電極表面氣泡脫附分析...48
4.2.7電化學阻抗譜分析...49
4.2.8 UOR穩定性測試...51
4.2.9 HER分析...51
4.2.10全裝置電化學分析...53
4.2.11尿素氧化電化學觸媒比較表...54
4.3 臨場拉曼光譜分析...57
4.3.1臨場拉曼光譜探討尿素氧化反應機制...57
4.3.2臨場拉曼光譜探討析氫反應機制...60
第五章 總結...61
參考文獻...62

[1] J.L. Holechek, H.M. Geli, M.N. Sawalhah, R. Valdez, A global assessment: can renewable energy replace fossil fuels by 2050?, Sustainability, 14 (2022) 4792.
[2] P.P. Edwards, V.L. Kuznetsov, W.I. David, Hydrogen energy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365 (2007) 1043-1056.
[3] S. Mekhilef, R. Saidur, A. Safari, Comparative study of different fuel cell technologies, Renewable and Sustainable Energy Reviews, 16 (2012) 981-989.
[4] L. Yao, H. Zhang, M. Humayun, Y. Fu, X. Xu, C. Feng, C. Wang, Constructing nanoporous crystalline/amorphous NiFe2O4/NiO electrocatalyst for high efficiency OER/UOR, Journal of Alloys and Compounds, 936 (2023) 168206.
[5] B. Zhu, Z. Liang, R. Zou, Designing advanced catalysts for energy conversion based on urea oxidation reaction, Small, 16 (2020) 1906133.
[6] P.M. Glibert, J. Harrison, C. Heil, S. Seitzinger, Escalating worldwide use of urea–a global change contributing to coastal eutrophication, Biogeochemistry, 77 (2006) 441-463.
[7] M. Wala, A. Blacha–Grzechnik, A. Stolarczyk, S. Bajkacz, P. Dydo, W. Simka, Unexpected electrochemical oxidation of urea on a new NiCuGO composite catalyst, International Journal of Hydrogen Energy, 48 (2023) 34229-34243.
[8] Y. Zheng, P. Tang, X. Xu, X. Sang, POM derived UOR and HER bifunctional NiS/MoS2 composite for overall water splitting, Journal of Solid State Chemistry, 292 (2020) 121644.
[9] E. Urbańczyk, M. Sowa, W. Simka, Urea removal from aqueous solutions—a review, Journal of Applied Electrochemistry, 46 (2016) 1011-1029.
[10] H.K. Srour, N.F. Atta, M.W. Khalil, A. Galal, Ionic liquid crystals/nano-nickel oxide-decorated carbon nanotubes composite for electrocatalytic treatment of urea-contaminated water, Journal of Water Process Engineering, 48 (2022) 102823.
[11] J. Li, Y. Li, Q. Xue, Y. Gao, Y. Ma, Phytate-coordination triggered enrichment of surface NiOOH species on nickel foam for efficient urea electrooxidation, Chinese Journal of Structural Chemistry, 41 (2022) 2207035-2207039.
[12] M. Zhong, W. Li, C. Wang, X. Lu, Synthesis of hierarchical nickel sulfide nanotubes for highly efficient electrocatalytic urea oxidation, Applied Surface Science, 575 (2022) 151708.

[13] J. Yu, Z. Li, C. Wang, X. Xu, T. Liu, D. Chen, Z. Shao, M. Ni, Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis, Journal of Colloid and Interface Science, (2024).
[14] W. Iqbal, A. Hameed, I. Tariq, S.S.A. Shah, M.A. Nadeem, Cobalt hydroxide supported nickel nanoparticles for an efficient electrocatalytic urea oxidation reaction, Electrochimica Acta, 467 (2023) 143055.
[15] N. Wu, R. Guo, X. Zhang, N. Gao, X. Chi, D. Cao, T. Hu, Nickel/nickel oxide nanocrystal nitrogen-doped carbon composites as efficient electrocatalysts for urea oxidation, Journal of Alloys and Compounds, 870 (2021) 159408.
[16] V. Maheskumar, A. Min, C.J. Moon, R.A. Senthil, M.Y. Choi, Modulating the Electronic Structure of Ni/NiO Nanocomposite with High‐Valence Mo Doping for Energy‐Saving Hydrogen Production via Boosting Urea Oxidation Kinetics, Small Structures, 4 (2023) 2300212.
[17] Q. Cao, Y. Yuan, K. Wang, W. Huang, Y. Zhao, X. Sun, R. Ding, W. Lin, E. Liu, P. Gao, Phase and crystallinity regulations of Ni (OH) 2 by vanadium doping boost electrocatalytic urea oxidation reaction, Journal of Colloid and Interface Science, 618 (2022) 411-418.
[18] W. Zhang, Y. Tang, L. Yu, X.-Y. Yu, Activating the alkaline hydrogen evolution performance of Mo-incorporated Ni (OH) 2 by plasma-induced heterostructure, Applied Catalysis B: Environmental, 260 (2020) 118154.
[19] J. Ge, J. Kuang, Y. Xiao, M. Guan, C. Yang, Recent Development of Nickel-based Catalysts and In situ Characterization Techniques for Mechanism Understanding of the Urea Oxidation Reaction, Surfaces and Interfaces, (2023) 103230.
[20] V. Vedharathinam, G.G. Botte, Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium, Electrochimica Acta, 81 (2012) 292-300.
[21] D. Wang, G.G. Botte, In situ X-ray diffraction study of urea electrolysis on nickel catalysts, ECS Electrochemistry Letters, 3 (2014) H29.
[22] F. Guo, K. Ye, M. Du, X. Huang, K. Cheng, G. Wang, D. Cao, Electrochemical impedance analysis of urea electro-oxidation mechanism on nickel catalyst in alkaline medium, Electrochimica Acta, 210 (2016) 474-482.
[23] Q. Xu, H. Jiang, H. Zhang, Y. Hu, C. Li, Heterogeneous interface engineered atomic configuration on ultrathin Ni (OH) 2/Ni3S2 nanoforests for efficient water splitting, Applied Catalysis B: Environmental, 242 (2019) 60-66.

[24] C. Hu, Q. Ma, S.-F. Hung, Z.-N. Chen, D. Ou, B. Ren, H.M. Chen, G. Fu, N. Zheng, In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis, Chem, 3 (2017) 122-133.
[25] Q. Ma, C. Hu, K. Liu, S.-F. Hung, D. Ou, H.M. Chen, G. Fu, N. Zheng, Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction, Nano Energy, 41 (2017) 148-153.
[26] R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH)2-Pt interfaces, Science, 334 (2011) 1256-1260.
[27] L. Wang, C. Lin, D. Huang, J. Chen, L. Jiang, M. Wang, L. Chi, L. Shi, J. Jin, Optimizing the volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum, ACS Catalysis, 5 (2015) 3801-3806.
[28] Y. Rao, Y. Wang, H. Ning, P. Li, M. Wu, Hydrotalcite-like Ni (OH)2 nanosheets in situ grown on nickel foam for overall water splitting, ACS Applied Materials & Interfaces, 8 (2016) 33601-33607.
[29] J. Xie, W. Liu, F. Lei, X. Zhang, H. Qu, L. Gao, P. Hao, B. Tang, Y. Xie, Iron‐Incorporated α‐Ni (OH)2 Hierarchical Nanosheet Arrays for Electrocatalytic Urea Oxidation, Chemistry–A European Journal, 24 (2018) 18408-18412.
[30] F. Chen, F. Yang, C. Sheng, J. Li, H. Xu, Y. Qing, S. Chen, Y. Wu, X. Lu, Electronic structure modulation of nickel hydroxide porous nanowire arrays via manganese doping for urea-assisted energy-efficient hydrogen generation, Journal of Colloid and Interface Science, 626 (2022) 445-452.
[31] T. Kang, K. Kim, M. Kim, J. Kim, Electronic structure modulation of nickel hydroxide and tungsten nanoparticles for fast structure transformation and enhanced oxygen evolution reaction activity, Chemical Engineering Journal, 418 (2021) 129403.
[32] M. Chhetri, S. Sultan, C. Rao, Electrocatalytic hydrogen evolution reaction activity comparable to platinum exhibited by the Ni/Ni(OH)2/graphite electrode, Proceedings of the National Academy of Sciences, 114 (2017) 8986-8990.
[33] L. Dai, Z.N. Chen, L. Li, P. Yin, Z. Liu, H. Zhang, Ultrathin Ni(0)‐embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting, Advanced materials, 32 (2020) 1906915.
[34] H. Liu, J. Luo, S. Zhu, Z. Cui, Y. Liang, S. Yu, J. Wei, Endowing nickel nitride with moderate amount of Ni0 species for the enhanced urea oxidation reaction reactivity, Journal of Electroanalytical Chemistry, 948 (2023) 117821.

[35] Y. Liao, S. Deng, Y. Qing, H. Xu, C. Tian, Y. Wu, Hierarchically wood-derived integrated electrode with tunable superhydrophilic/superaerophobic surface for efficient urea electrolysis, Journal of Energy Chemistry, 76 (2023) 566-575.
[36] R. Andaveh, A.S. Rouhaghdam, J. Ai, M. Maleki, K. Wang, A. Seif, G.B. Darband, J. Li, Boosting the electrocatalytic activity of NiSe by introducing MnCo as an efficient heterostructured electrocatalyst for large-current-density alkaline seawater splitting, Applied Catalysis B: Environmental, 325 (2023) 122355.
[37] V. Vedharathinam, G.G. Botte, Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium, Electrochimica Acta, 108 (2013) 660-665.
[38] Z. Tu, X. Liu, D. Xiong, J. Wang, S. Gong, C. Xu, D. Wu, Z. Chen, Ultrafast room-temperature activation of nickel foams as highly efficient electrocatalysts, Chemical Engineering Journal, 475 (2023) 146253.
[39] X. Gao, X. Bai, P. Wang, Y. Jiao, K. Davey, Y. Zheng, S.-Z. Qiao, Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation, Nature Communications, 14 (2023) 5842.
[40] Y. Wu, Y. Li, M. Yuan, H. Hao, X. San, Z. Lv, L. Xu, B. Wei, Operando capturing of surface self-reconstruction of Ni3S2/FeNi2S4 hybrid nanosheet array for overall water splitting, Chemical Engineering Journal, 427 (2022) 131944.
[41] W. Lai, L. Ge, H. Li, Y. Deng, B. Xu, B. Ouyang, E. Kan, In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure, International Journal of Hydrogen Energy, 46 (2021) 26861-26872.
[42] A.Y. Faid, A.O. Barnett, F. Seland, S. Sunde, Ni/NiO nanosheets for alkaline hydrogen evolution reaction: In situ electrochemical-Raman study, Electrochimica Acta, 361 (2020) 137040.
[43] T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A.M. Asiri, Enhanced electrocatalysis for energy‐efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter, Advanced Energy Materials, 7 (2017) 1700020.
[44] C. Chen, L. Jin, L. Hu, T. Zhang, J. He, P. Gu, Q. Xu, J. Lu, Urea-oxidation-assisted electrochemical water splitting for hydrogen production on a bifunctional heterostructure transition metal phosphides combining metal–organic frameworks, Journal of Colloid and Interface Science, 628 (2022) 1008-1018.
[45] S. Anantharaj, P.E. Karthik, S. Noda, The significance of properly reporting turnover frequency in electrocatalysis research, Angewandte Chemie International Edition, 60 (2021) 23051-23067.

[46] M. Toufani, H. Besic, W. Tong, P. Farràs, Exploring the role of different morphologies of β–Ni (OH)2 for electrocatalytic urea oxidation and the effects of electrochemically active surface area, Results in Chemistry, 6 (2023) 101031.
[47] M.C. CL, J. Suho, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, (2013).
[48] R.K. Singh, A. Schechter, Electrochemical investigation of urea oxidation reaction on β Ni(OH)2 and Ni/Ni(OH)2, Electrochimica Acta, 278 (2018) 405-411.
[49] L. Qiao, A. Zhu, D. Liu, J. Feng, Y. Chen, M. Chen, P. Zhou, L. Yin, R. Wu, K.W. Ng, Crystalline phosphides/amorphous oxides composite for energy-saving hydrogen production assisted by efficient urea oxidation reaction, Chemical Engineering Journal, 454 (2023) 140380.
[50] H. Liu, P. Wang, X. Qi, J. Liu, A. Yin, Y. Wang, Y. Ye, J. Luo, Z. Ren, S. Yu, An amorphous nickel carbonate catalyst for superior urea oxidation reaction, Journal of Electroanalytical Chemistry, 949 (2023) 117856.
[51] X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors, Nano Energy, 11 (2015) 154-161.
[52] D.S. Hall, D.J. Lockwood, S. Poirier, C. Bock, B.R. MacDougall, Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel, The Journal of Physical Chemistry A, 116 (2012) 6771-6784.
[53] F. Wang, K. Zhang, S. Li, Q. Zha, Y. Ni, W-doped α-Ni(OH)2 honeycomb-like microstructures for promoted electrochemical oxygen evolution, ACS Sustainable Chemistry & Engineering, 10 (2022) 10383-10392.
[54] S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud, A.T. Bell, Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity, The Journal of Physical Chemistry C, 119 (2015) 7243-7254.
[55] T.-H. Wu, B.-W. Hou, Superior catalytic activity of α-Ni(OH)2 for urea electrolysis, Catalysis Science & Technology, 11 (2021) 4294-4300.
[56] H.-Y. Wang, J.-T. Ren, L. Wang, M.-L. Sun, H.-M. Yang, X.-W. Lv, Z.-Y. Yuan, Synergistically enhanced activity and stability of bifunctional nickel phosphide/sulfide heterointerface electrodes for direct alkaline seawater electrolysis, Journal of Energy Chemistry, 75 (2022) 66-73.
[57] S. Song, M. Guo, S. Zhang, K. Zhan, Y. Yan, J. Yang, B. Zhao, M. Xu, Plasma-assisted synthesis of hierarchical NiCoxPy nanosheets as robust and stable electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media, Electrochimica Acta, 331 (2020) 135431.

[58] X. Chen, X. He, J. Gao, J. Jiang, X. Jiang, C. Wu, Three-dimensional porous Ni, N-codoped C networks for highly sensitive and selective non-enzymatic glucose sensing, Sensors and Actuators B: Chemical, 299 (2019) 126945.
[59] K. Zhang, X. Xia, S. Deng, Y. Zhong, D. Xie, G. Pan, J. Wu, Q. Liu, X. Wang, J. Tu, Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction, Nano-Micro Letters, 11 (2019) 1-11.
[60] Y. Tang, N. Rong, F. Liu, M. Chu, H. Dong, Y. Zhang, P. Xiao, Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment, Applied Surface Science, 361 (2016) 133-140.
[61] D.L. Legrand, H.W. Nesbitt, G.M. Bancroft, X-ray photoelectron spectroscopic study of a pristine millerite (NiS) surface and the effect of air and water oxidation, American Mineralogist, 83 (1998) 1256-1265.
[62] Z. Wei, W. Sun, S. Liu, J. Qi, L. Kang, J. Li, S. Lou, J. Xie, B. Tang, Y. Xie, Lanthanum-doped α-Ni(OH)2 1D-2D-3D hierarchical nanostructures for robust bifunctional electro-oxidation, Particuology, 57 (2021) 104-111.
[63] J. Xie, W. Liu, X. Zhang, Y. Guo, L. Gao, F. Lei, B. Tang, Y. Xie, Constructing hierarchical wire-on-sheet nanoarrays in phase-regulated cerium-doped nickel hydroxide for promoted urea electro-oxidation, ACS Materials Letters, 1 (2019) 103-110.
[64] C. Sun, M. Guo, S. Siwal, Q. Zhang, Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: Cobalt doping effect and mechanism aspect, Journal of catalysis, 381 (2020) 454-461.
[65] J. Zhang, X. Song, L. Kang, J. Zhu, L. Liu, Q. Zhang, D.J. Brett, P.R. Shearing, L. Mai, I.P. Parkin, Stabilizing efficient structures of superwetting electrocatalysts for enhanced urea oxidation reactions, Chem Catalysis, 2 (2022) 3254-3270.
[66] S.L. Fereja, P. Li, Z. Zhang, J. Guo, Z. Fang, Z. Li, S. He, W. Chen, W-doping induced abundant active sites in a 3D NiS2/MoO2 heterostructure as an efficient electrocatalyst for urea oxidation and hydrogen evolution reaction, Chemical Engineering Journal, 432 (2022) 134274.
[67] L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui, F. Ni, Y. Liu, H. Lin, Y. Li, H. Peng, Regulating the local charge distribution of Ni active sites for the urea oxidation reaction, Angewandte Chemie, 133 (2021) 10671-10676.
[68] J. Fan, Y. Dou, R. Jiang, K. Du, B. Deng, D. Wang, Electro-synthesis of tungsten carbide containing catalysts in molten salt for efficiently electrolytic hydrogen generation assisted by urea oxidation, International Journal of Hydrogen Energy, 46 (2021) 14932-14943.

[69] H. Liu, Z. Liu, F. Wang, L. Feng, Efficient catalysis of N doped NiS/NiS2 heterogeneous structure, Chemical Engineering Journal, 397 (2020) 125507.
[70] L. Sha, T. Liu, K. Ye, K. Zhu, J. Yan, J. Yin, G. Wang, D. Cao, heterogeneous interface on NiS@ Ni₃S₂/NiMoO₄ heterostructures for efficient urea electrolysis, (2020).
[71] T.-H. Wu, Z.-T. Qiu, C.-N. Hsieh, Obtaining NiP electrocatalyst in minutes via electroless plating on carbon nanotubes decorated substrate for alkaline urea electrolysis, Applied Surface Science, 645 (2024) 158831.
[72] R. Wang, T. Wnag, C. Feng, H. Wu, Y. Ding, H. Me, Self-growing NiP2/ZnP4 heterostructured bifunctional catalyst towards overall urea-water electrolysis, International Journal of Hydrogen Energy, 46 (2021) 38247-38257.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top