|
[1] J.L. Holechek, H.M. Geli, M.N. Sawalhah, R. Valdez, A global assessment: can renewable energy replace fossil fuels by 2050?, Sustainability, 14 (2022) 4792. [2] P.P. Edwards, V.L. Kuznetsov, W.I. David, Hydrogen energy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365 (2007) 1043-1056. [3] S. Mekhilef, R. Saidur, A. Safari, Comparative study of different fuel cell technologies, Renewable and Sustainable Energy Reviews, 16 (2012) 981-989. [4] L. Yao, H. Zhang, M. Humayun, Y. Fu, X. Xu, C. Feng, C. Wang, Constructing nanoporous crystalline/amorphous NiFe2O4/NiO electrocatalyst for high efficiency OER/UOR, Journal of Alloys and Compounds, 936 (2023) 168206. [5] B. Zhu, Z. Liang, R. Zou, Designing advanced catalysts for energy conversion based on urea oxidation reaction, Small, 16 (2020) 1906133. [6] P.M. Glibert, J. Harrison, C. Heil, S. Seitzinger, Escalating worldwide use of urea–a global change contributing to coastal eutrophication, Biogeochemistry, 77 (2006) 441-463. [7] M. Wala, A. Blacha–Grzechnik, A. Stolarczyk, S. Bajkacz, P. Dydo, W. Simka, Unexpected electrochemical oxidation of urea on a new NiCuGO composite catalyst, International Journal of Hydrogen Energy, 48 (2023) 34229-34243. [8] Y. Zheng, P. Tang, X. Xu, X. Sang, POM derived UOR and HER bifunctional NiS/MoS2 composite for overall water splitting, Journal of Solid State Chemistry, 292 (2020) 121644. [9] E. Urbańczyk, M. Sowa, W. Simka, Urea removal from aqueous solutions—a review, Journal of Applied Electrochemistry, 46 (2016) 1011-1029. [10] H.K. Srour, N.F. Atta, M.W. Khalil, A. Galal, Ionic liquid crystals/nano-nickel oxide-decorated carbon nanotubes composite for electrocatalytic treatment of urea-contaminated water, Journal of Water Process Engineering, 48 (2022) 102823. [11] J. Li, Y. Li, Q. Xue, Y. Gao, Y. Ma, Phytate-coordination triggered enrichment of surface NiOOH species on nickel foam for efficient urea electrooxidation, Chinese Journal of Structural Chemistry, 41 (2022) 2207035-2207039. [12] M. Zhong, W. Li, C. Wang, X. Lu, Synthesis of hierarchical nickel sulfide nanotubes for highly efficient electrocatalytic urea oxidation, Applied Surface Science, 575 (2022) 151708. [13] J. Yu, Z. Li, C. Wang, X. Xu, T. Liu, D. Chen, Z. Shao, M. Ni, Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis, Journal of Colloid and Interface Science, (2024). [14] W. Iqbal, A. Hameed, I. Tariq, S.S.A. Shah, M.A. Nadeem, Cobalt hydroxide supported nickel nanoparticles for an efficient electrocatalytic urea oxidation reaction, Electrochimica Acta, 467 (2023) 143055. [15] N. Wu, R. Guo, X. Zhang, N. Gao, X. Chi, D. Cao, T. Hu, Nickel/nickel oxide nanocrystal nitrogen-doped carbon composites as efficient electrocatalysts for urea oxidation, Journal of Alloys and Compounds, 870 (2021) 159408. [16] V. Maheskumar, A. Min, C.J. Moon, R.A. Senthil, M.Y. Choi, Modulating the Electronic Structure of Ni/NiO Nanocomposite with High‐Valence Mo Doping for Energy‐Saving Hydrogen Production via Boosting Urea Oxidation Kinetics, Small Structures, 4 (2023) 2300212. [17] Q. Cao, Y. Yuan, K. Wang, W. Huang, Y. Zhao, X. Sun, R. Ding, W. Lin, E. Liu, P. Gao, Phase and crystallinity regulations of Ni (OH) 2 by vanadium doping boost electrocatalytic urea oxidation reaction, Journal of Colloid and Interface Science, 618 (2022) 411-418. [18] W. Zhang, Y. Tang, L. Yu, X.-Y. Yu, Activating the alkaline hydrogen evolution performance of Mo-incorporated Ni (OH) 2 by plasma-induced heterostructure, Applied Catalysis B: Environmental, 260 (2020) 118154. [19] J. Ge, J. Kuang, Y. Xiao, M. Guan, C. Yang, Recent Development of Nickel-based Catalysts and In situ Characterization Techniques for Mechanism Understanding of the Urea Oxidation Reaction, Surfaces and Interfaces, (2023) 103230. [20] V. Vedharathinam, G.G. Botte, Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium, Electrochimica Acta, 81 (2012) 292-300. [21] D. Wang, G.G. Botte, In situ X-ray diffraction study of urea electrolysis on nickel catalysts, ECS Electrochemistry Letters, 3 (2014) H29. [22] F. Guo, K. Ye, M. Du, X. Huang, K. Cheng, G. Wang, D. Cao, Electrochemical impedance analysis of urea electro-oxidation mechanism on nickel catalyst in alkaline medium, Electrochimica Acta, 210 (2016) 474-482. [23] Q. Xu, H. Jiang, H. Zhang, Y. Hu, C. Li, Heterogeneous interface engineered atomic configuration on ultrathin Ni (OH) 2/Ni3S2 nanoforests for efficient water splitting, Applied Catalysis B: Environmental, 242 (2019) 60-66. [24] C. Hu, Q. Ma, S.-F. Hung, Z.-N. Chen, D. Ou, B. Ren, H.M. Chen, G. Fu, N. Zheng, In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis, Chem, 3 (2017) 122-133. [25] Q. Ma, C. Hu, K. Liu, S.-F. Hung, D. Ou, H.M. Chen, G. Fu, N. Zheng, Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction, Nano Energy, 41 (2017) 148-153. [26] R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH)2-Pt interfaces, Science, 334 (2011) 1256-1260. [27] L. Wang, C. Lin, D. Huang, J. Chen, L. Jiang, M. Wang, L. Chi, L. Shi, J. Jin, Optimizing the volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum, ACS Catalysis, 5 (2015) 3801-3806. [28] Y. Rao, Y. Wang, H. Ning, P. Li, M. Wu, Hydrotalcite-like Ni (OH)2 nanosheets in situ grown on nickel foam for overall water splitting, ACS Applied Materials & Interfaces, 8 (2016) 33601-33607. [29] J. Xie, W. Liu, F. Lei, X. Zhang, H. Qu, L. Gao, P. Hao, B. Tang, Y. Xie, Iron‐Incorporated α‐Ni (OH)2 Hierarchical Nanosheet Arrays for Electrocatalytic Urea Oxidation, Chemistry–A European Journal, 24 (2018) 18408-18412. [30] F. Chen, F. Yang, C. Sheng, J. Li, H. Xu, Y. Qing, S. Chen, Y. Wu, X. Lu, Electronic structure modulation of nickel hydroxide porous nanowire arrays via manganese doping for urea-assisted energy-efficient hydrogen generation, Journal of Colloid and Interface Science, 626 (2022) 445-452. [31] T. Kang, K. Kim, M. Kim, J. Kim, Electronic structure modulation of nickel hydroxide and tungsten nanoparticles for fast structure transformation and enhanced oxygen evolution reaction activity, Chemical Engineering Journal, 418 (2021) 129403. [32] M. Chhetri, S. Sultan, C. Rao, Electrocatalytic hydrogen evolution reaction activity comparable to platinum exhibited by the Ni/Ni(OH)2/graphite electrode, Proceedings of the National Academy of Sciences, 114 (2017) 8986-8990. [33] L. Dai, Z.N. Chen, L. Li, P. Yin, Z. Liu, H. Zhang, Ultrathin Ni(0)‐embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting, Advanced materials, 32 (2020) 1906915. [34] H. Liu, J. Luo, S. Zhu, Z. Cui, Y. Liang, S. Yu, J. Wei, Endowing nickel nitride with moderate amount of Ni0 species for the enhanced urea oxidation reaction reactivity, Journal of Electroanalytical Chemistry, 948 (2023) 117821. [35] Y. Liao, S. Deng, Y. Qing, H. Xu, C. Tian, Y. Wu, Hierarchically wood-derived integrated electrode with tunable superhydrophilic/superaerophobic surface for efficient urea electrolysis, Journal of Energy Chemistry, 76 (2023) 566-575. [36] R. Andaveh, A.S. Rouhaghdam, J. Ai, M. Maleki, K. Wang, A. Seif, G.B. Darband, J. Li, Boosting the electrocatalytic activity of NiSe by introducing MnCo as an efficient heterostructured electrocatalyst for large-current-density alkaline seawater splitting, Applied Catalysis B: Environmental, 325 (2023) 122355. [37] V. Vedharathinam, G.G. Botte, Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium, Electrochimica Acta, 108 (2013) 660-665. [38] Z. Tu, X. Liu, D. Xiong, J. Wang, S. Gong, C. Xu, D. Wu, Z. Chen, Ultrafast room-temperature activation of nickel foams as highly efficient electrocatalysts, Chemical Engineering Journal, 475 (2023) 146253. [39] X. Gao, X. Bai, P. Wang, Y. Jiao, K. Davey, Y. Zheng, S.-Z. Qiao, Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation, Nature Communications, 14 (2023) 5842. [40] Y. Wu, Y. Li, M. Yuan, H. Hao, X. San, Z. Lv, L. Xu, B. Wei, Operando capturing of surface self-reconstruction of Ni3S2/FeNi2S4 hybrid nanosheet array for overall water splitting, Chemical Engineering Journal, 427 (2022) 131944. [41] W. Lai, L. Ge, H. Li, Y. Deng, B. Xu, B. Ouyang, E. Kan, In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure, International Journal of Hydrogen Energy, 46 (2021) 26861-26872. [42] A.Y. Faid, A.O. Barnett, F. Seland, S. Sunde, Ni/NiO nanosheets for alkaline hydrogen evolution reaction: In situ electrochemical-Raman study, Electrochimica Acta, 361 (2020) 137040. [43] T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A.M. Asiri, Enhanced electrocatalysis for energy‐efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter, Advanced Energy Materials, 7 (2017) 1700020. [44] C. Chen, L. Jin, L. Hu, T. Zhang, J. He, P. Gu, Q. Xu, J. Lu, Urea-oxidation-assisted electrochemical water splitting for hydrogen production on a bifunctional heterostructure transition metal phosphides combining metal–organic frameworks, Journal of Colloid and Interface Science, 628 (2022) 1008-1018. [45] S. Anantharaj, P.E. Karthik, S. Noda, The significance of properly reporting turnover frequency in electrocatalysis research, Angewandte Chemie International Edition, 60 (2021) 23051-23067. [46] M. Toufani, H. Besic, W. Tong, P. Farràs, Exploring the role of different morphologies of β–Ni (OH)2 for electrocatalytic urea oxidation and the effects of electrochemically active surface area, Results in Chemistry, 6 (2023) 101031. [47] M.C. CL, J. Suho, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, (2013). [48] R.K. Singh, A. Schechter, Electrochemical investigation of urea oxidation reaction on β Ni(OH)2 and Ni/Ni(OH)2, Electrochimica Acta, 278 (2018) 405-411. [49] L. Qiao, A. Zhu, D. Liu, J. Feng, Y. Chen, M. Chen, P. Zhou, L. Yin, R. Wu, K.W. Ng, Crystalline phosphides/amorphous oxides composite for energy-saving hydrogen production assisted by efficient urea oxidation reaction, Chemical Engineering Journal, 454 (2023) 140380. [50] H. Liu, P. Wang, X. Qi, J. Liu, A. Yin, Y. Wang, Y. Ye, J. Luo, Z. Ren, S. Yu, An amorphous nickel carbonate catalyst for superior urea oxidation reaction, Journal of Electroanalytical Chemistry, 949 (2023) 117856. [51] X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors, Nano Energy, 11 (2015) 154-161. [52] D.S. Hall, D.J. Lockwood, S. Poirier, C. Bock, B.R. MacDougall, Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel, The Journal of Physical Chemistry A, 116 (2012) 6771-6784. [53] F. Wang, K. Zhang, S. Li, Q. Zha, Y. Ni, W-doped α-Ni(OH)2 honeycomb-like microstructures for promoted electrochemical oxygen evolution, ACS Sustainable Chemistry & Engineering, 10 (2022) 10383-10392. [54] S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud, A.T. Bell, Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity, The Journal of Physical Chemistry C, 119 (2015) 7243-7254. [55] T.-H. Wu, B.-W. Hou, Superior catalytic activity of α-Ni(OH)2 for urea electrolysis, Catalysis Science & Technology, 11 (2021) 4294-4300. [56] H.-Y. Wang, J.-T. Ren, L. Wang, M.-L. Sun, H.-M. Yang, X.-W. Lv, Z.-Y. Yuan, Synergistically enhanced activity and stability of bifunctional nickel phosphide/sulfide heterointerface electrodes for direct alkaline seawater electrolysis, Journal of Energy Chemistry, 75 (2022) 66-73. [57] S. Song, M. Guo, S. Zhang, K. Zhan, Y. Yan, J. Yang, B. Zhao, M. Xu, Plasma-assisted synthesis of hierarchical NiCoxPy nanosheets as robust and stable electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media, Electrochimica Acta, 331 (2020) 135431. [58] X. Chen, X. He, J. Gao, J. Jiang, X. Jiang, C. Wu, Three-dimensional porous Ni, N-codoped C networks for highly sensitive and selective non-enzymatic glucose sensing, Sensors and Actuators B: Chemical, 299 (2019) 126945. [59] K. Zhang, X. Xia, S. Deng, Y. Zhong, D. Xie, G. Pan, J. Wu, Q. Liu, X. Wang, J. Tu, Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction, Nano-Micro Letters, 11 (2019) 1-11. [60] Y. Tang, N. Rong, F. Liu, M. Chu, H. Dong, Y. Zhang, P. Xiao, Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment, Applied Surface Science, 361 (2016) 133-140. [61] D.L. Legrand, H.W. Nesbitt, G.M. Bancroft, X-ray photoelectron spectroscopic study of a pristine millerite (NiS) surface and the effect of air and water oxidation, American Mineralogist, 83 (1998) 1256-1265. [62] Z. Wei, W. Sun, S. Liu, J. Qi, L. Kang, J. Li, S. Lou, J. Xie, B. Tang, Y. Xie, Lanthanum-doped α-Ni(OH)2 1D-2D-3D hierarchical nanostructures for robust bifunctional electro-oxidation, Particuology, 57 (2021) 104-111. [63] J. Xie, W. Liu, X. Zhang, Y. Guo, L. Gao, F. Lei, B. Tang, Y. Xie, Constructing hierarchical wire-on-sheet nanoarrays in phase-regulated cerium-doped nickel hydroxide for promoted urea electro-oxidation, ACS Materials Letters, 1 (2019) 103-110. [64] C. Sun, M. Guo, S. Siwal, Q. Zhang, Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: Cobalt doping effect and mechanism aspect, Journal of catalysis, 381 (2020) 454-461. [65] J. Zhang, X. Song, L. Kang, J. Zhu, L. Liu, Q. Zhang, D.J. Brett, P.R. Shearing, L. Mai, I.P. Parkin, Stabilizing efficient structures of superwetting electrocatalysts for enhanced urea oxidation reactions, Chem Catalysis, 2 (2022) 3254-3270. [66] S.L. Fereja, P. Li, Z. Zhang, J. Guo, Z. Fang, Z. Li, S. He, W. Chen, W-doping induced abundant active sites in a 3D NiS2/MoO2 heterostructure as an efficient electrocatalyst for urea oxidation and hydrogen evolution reaction, Chemical Engineering Journal, 432 (2022) 134274. [67] L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui, F. Ni, Y. Liu, H. Lin, Y. Li, H. Peng, Regulating the local charge distribution of Ni active sites for the urea oxidation reaction, Angewandte Chemie, 133 (2021) 10671-10676. [68] J. Fan, Y. Dou, R. Jiang, K. Du, B. Deng, D. Wang, Electro-synthesis of tungsten carbide containing catalysts in molten salt for efficiently electrolytic hydrogen generation assisted by urea oxidation, International Journal of Hydrogen Energy, 46 (2021) 14932-14943. [69] H. Liu, Z. Liu, F. Wang, L. Feng, Efficient catalysis of N doped NiS/NiS2 heterogeneous structure, Chemical Engineering Journal, 397 (2020) 125507. [70] L. Sha, T. Liu, K. Ye, K. Zhu, J. Yan, J. Yin, G. Wang, D. Cao, heterogeneous interface on NiS@ Ni₃S₂/NiMoO₄ heterostructures for efficient urea electrolysis, (2020). [71] T.-H. Wu, Z.-T. Qiu, C.-N. Hsieh, Obtaining NiP electrocatalyst in minutes via electroless plating on carbon nanotubes decorated substrate for alkaline urea electrolysis, Applied Surface Science, 645 (2024) 158831. [72] R. Wang, T. Wnag, C. Feng, H. Wu, Y. Ding, H. Me, Self-growing NiP2/ZnP4 heterostructured bifunctional catalyst towards overall urea-water electrolysis, International Journal of Hydrogen Energy, 46 (2021) 38247-38257.
|