跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝淳致
研究生(外文):Hsieh,Chun-Chih
論文名稱:木材餘料廢棄物之再生利用與永續發展的探討
論文名稱(外文):A Study of the Recycling, Reuse and Sustainable Development of Wood Waste Materials
指導教授:周金枚
指導教授(外文):Chou, Chin-Mei
口試委員:任恒毅陳慶忠
口試委員(外文):Jen, Hen-YiChen, Ching-Chung
口試日期:2024-06-14
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:107
中文關鍵詞:木材餘料廢棄物再生利用永續
外文關鍵詞:Wood WasteRecyclingSustainability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
全球暖化已經是必須去面對及解決的問題,以木材餘料廢棄物的再生利用使其能與永續環境發展相連結,木製產品的使用在生活中息息相關,但鮮少有關於木材餘料廢棄物的資源再生利用作探討,本研究將整合出木材餘料廢棄物的再生利用程度與永續環境的發展是可以呈現正向發展。
本研究首先將一些過往的文獻進行整理,並將收集現有的一些相關數據進行探討其中包含我國木材的進口量,加工所產生的損耗作統計以利碳足跡的計算,另外再將再生利用與燃料化所蒐集的資料作比較試圖找尋木材餘料的最佳處理方式,另外進行專家訪談並進行問卷訪談,將所收集的數據資訊進行統計資訊分析,最後針對燃料化所產生問題進行探討,木材為固碳物質,但其燃燒過程中所產生的飛灰可能產生顆粒物(如PM2.5),對人類與生態環境的危害是不容小覷。
最後針對我國現有的木材餘料廢棄物作數量的彙整,並以目前常態的處理方式進行探討,針對木材運輸所產生的碳排放作計算,以木材生命週期而言再生利用可以減少運輸碳排放,並非直接進行燃料化,最後以木材餘料再生利用及燃料化方向進行專家訪談的問卷資訊彙整,以進行統計分析獲得的相關數據再進行雷達圖的繪製,來顯現木材餘料再生利用優勢,並得到永續發展相關的正面論述。
木材餘料廢棄物的再生利用是促進資源節約、環境保護與永續發展的關鍵方針,有效管理和利用,使木材餘料再生利用達到永續發展目標提供有力支持。

Global warming is an issue that must be addressed and resolved. The recycling and reuse of wood waste can be linked to sustainable environmental development. Wood products are integral to our daily lives, yet there is limited research on the resource recycling and reuse of wood waste. This study aims to demonstrate that the recycling and reuse of wood waste can positively contribute to sustainable environmental development.

First, this study will review past literature and collect relevant data, including the import volume of wood in our country and the loss generated during processing, to facilitate the calculation of the carbon footprint. Additionally, we will compare the data collected on recycling and reuse versus fuel conversion to find the best treatment method for wood waste. Expert interviews and surveys will be conducted to collect data, which will then be statistically analyzed. The study will also address issues related to fuel conversion, particularly the particulate matter (e.g., PM2.5) generated during the combustion process, which poses significant risks to human health and the ecological environment.

Finally, we will compile the quantities of existing wood waste in our country and explore the current standard treatment methods. We will calculate the carbon emissions generated from wood transportation. From the perspective of the wood lifecycle, recycling can reduce transportation-related carbon emissions, unlike direct fuel conversion. We will conduct expert interviews and surveys on the recycling and fuel conversion of wood waste, compile the collected data, and perform statistical analysis. The results will be illustrated using radar charts to highlight the advantages of wood waste recycling. This will provide positive arguments related to sustainable development.

Recycling and reusing wood waste is crucial for promoting resource conservation, environmental protection, and sustainable development. Effective management and utilization of wood waste will provide strong support for achieving sustainable development goals.

目錄
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 VII
第一章、 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 研究限制 6
1.4 研究流程 7
第二章、文獻探討 9
2.1 木材定義 9
2.2 木材餘料定義 13
2.2.1 木材餘料的價值 14
2.2.2 木材餘料利用 16
2.3 木材廢棄物定義 18
2.4 再生利用 20
2.4.1 再生利用特性分類處理 21
2.4.2 物質流分析 (MFA) 24
2.4.3 級聯利用 (Cascading Utilization) 28
2.4.4 廢棄物再生性 (Recyclability) 30
2.4.5 廢棄物再用性 (Reusability) 31
2.5 永續發展 32
2.5.1 永續的定義 35
2.5.2 永續領域的認知與學習 36
2.5.3 永續的實踐與執行 37
2.6 碳足跡指標 39
2.6.1 生命周期評估 (LCA) 41
2.6.2 碳足跡計算 42
2.6.3 碳中和 (Carbon Neutral) 44
2.6.4 淨零排放 (Net Zero Emissions) 45
2.7 文獻彙整與分析方法 47
2.7.1文獻分析法 49
2.7.2專家訪談法 50
2.7.3比較分析法 51
第三章、研究方法 52
3.1 研究步驟 53
3.2 文獻資料比較分析 55
3.2.1 再生利用相關研究文獻 56
3.2.2 廢木材燃料化相關研究文獻 59
3.3 研究資料收集 64
3.3.1 我國木材進口數量 65
3.3.2 木材加工損耗率 67
3.3.3 木材餘料廢棄物流向 68
3.3.4 木材運輸的碳足跡 71
3.4 木質燃料對環境的影響 73
第四章、研究結果 75
4.1 木材餘料廢棄物的來源與數量 75
4.2 處理方式之現狀 77
4.3 碳足跡分析 78
4.4 再生利用與燃料化比較 79
第五章、結論與建議 89
5.1 結論 90
5.2 後續研究建議 92
參考文獻 94
英文部分 94
中文部分 97
附錄 ㄧ 99


英文部分
[1] Baldo, G. L., Marino, M., Montani, M., & Ryding, S. O. (2009). The carbon footprint measurement toolkit for the EU Ecolabel. The International Journal of Life Cycle Assessment, 14, 591-596.
[2] Banaś, J., & Utnik-Banaś, K. (2022). Using timber as a renewable resource for energy production in sustainable forest management. Energies, 15(6), 2264.
[3] Besserer, A., Troilo, S., Girods, P., Rogaume, Y., & Brosse, N. (2021). Cascading recycling of wood waste: A review. Polymers, 13(11), 1752.
[4] Bovea, M. D., & Vidal, R. (2004). Materials selection for sustainable product design: a case study of wood based furniture eco-design. Materials & design, 25(2), 111-116.
[5] Bringezu, S., & Moriguchi, Y. (2002). Material Flow Analysis In: A handbook of Industrial Ecology. RU Ayres and WA Ayres.(RU Ayres and WA Ayres) Cheltenham, UK.
[6] Brunner, P. H., & Rechberger, H. (2016). Handbook of material flow analysis: For environmental, resource, and waste engineers. CRC press.
[7] Burnley, S., Coleman, T., & Peirce, A. (2015). Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste. Waste management, 39, 295-304.
[8] Campbell-Johnston, K., Vermeulen, W. J., Reike, D., & Brullot, S. (2020). The circular economy and cascading: towards a framework. Resources, Conservation & Recycling: X, 7, 100038.
[9] Chapman, L. (2007). Transport and climate change: a review. Journal of transport geography, 15(5), 354-367.
[10] Chembessi, C., Beaurain, C., & Cloutier, G. (2023). Narrating the Interplay between circular economy (CE) and ecological transition: a social and cultural perspective from CE experiments in Kamouraska (Quebec) and La Rochelle (France). Circular Economy, 1(2), 1-27.
[11] Corona, B., Shen, L., Sommersacher, P., & Junginger, M. (2020). Consequential Life Cycle Assessment of energy generation from waste wood and forest residues: The effect of resource-efficient additives. Journal of Cleaner Production, 259, 120948.
[12] Fankhauser, S., Smith, S. M., Allen, M., Axelsson, K., Hale, T., Hepburn, C., ... & Wetzer, T. (2022). The meaning of net zero and how to get it right. Nature Climate Change, 12(1), 15-21.
[13] Garcia, C. A., & Hora, G. (2017). State-of-the-art of waste wood supply chain in Germany and selected European countries. Waste management, 70, 189-197.
[14] Goldhahn, C., Cabane, E., & Chanana, M. (2021). Sustainability in wood materials science: An opinion about current material development techniques and the end of lifetime perspectives. Philosophical Transactions of the Royal Society A, 379(2206), 20200339.
[15] Graedel, T. E. (2019). Material flow analysis from origin to evolution. Environmental Science & Technology, 53(21), 12188-12196.
[16] Gulbrandsen, L. H. (2014). Dynamic governance interactions: Evolutionary effects of state responses to non‐state certification programs. Regulation & Governance, 8(1), 74-92.
[17] Hamadyk, E., Amado, M., & de Brito, J. (2020). Use of timber for the sustainable city growth and its role in the climate change. In IOP Conference Series: Earth and Environmental Science (Vol. 410, No. 1, p. 012034). IOP Publishing.
[18] Harte, A. M., Chúláin, C. U., Nasiri, B., Hughes, M., Llana, D. F., Íñiguez-González, G., ... & Hogan, P. (2020). Recovered timber in Europe: sources, classification, existing and potential reuse and recycling. National University of Ireland Galway 2020.
[19] International Organization for Standardization. (2006). Environmental management: life cycle assessment; Principles and Framework. ISO.
[20] Jahan, I., Zhang, G., Bhuiyan, M., & Navaratnam, S. (2022). Circular economy of construction and demolition wood waste—A theoretical framework approach. Sustainability, 14(17), 10478.
[21] Kharazipour, A., & Kües, U. (2007). 20. Recycling of Wood Composites and Solid Wood Products. Wood production, wood technology, and biotechnological impacts.
[22] Legard, R., Keegan, J., & Ward, K. (2003). In-depth interviews. Qualitative research practice: A guide for social science students and researchers, 6(1), 138-169.
[23] Leyder, C., Klippel, M., Bartlomé, O., Heeren, N., Kissling, S., Goto, Y., & Frangi, A. (2021). Investigations on the sustainable resource use of swiss timber. Sustainability, 13(3), 1237.
[24] Maier, D. (2021). Building materials made of wood waste a solution to achieve the sustainable development goals. Materials, 14(24), 7638.
[25] Neuman, W. L. (2000). Neuman, WL (2000). Social research methods: Qualitative and quantitative approaches.
[26] Niero, M., & Olsen, S. I. (2016). Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements. Resources, Conservation and Recycling, 114, 18-31.
[27] Niu, Y., Rasi, K., Hughes, M., Halme, M., & Fink, G. (2021). Prolonging life cycles of construction materials and combating climate change by cascading: The case of reusing timber in Finland. Resources, Conservation and Recycling, 170, 105555.
[28] Niyommaneerat, W., Suwanteep, K., & Chavalparit, O. (2023). Sustainability indicators to achieve a circular economy: A case study of renewable energy and plastic waste recycling corporate social responsibility (CSR) projects in Thailand. Journal of Cleaner Production, 391, 136203.
[29] Ozili, P. K. (2022). Sustainability and sustainable development research around the world. Managing Global Transitions.
[30] Papadopoulos, A. N. (2019). Advances in wood composites. Polymers, 12(1), 48.
[31] Pronk, A., Brancart, S., & Sanders, F. (2022). Reusing timber formwork in building construction: Testing, redesign, and socio-economic reflection. Urban Planning, 7(2), 81-96.
[32] Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., ... & Scherman, O. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333-359.
[33] Raza, S., Ghasali, E., Raza, M., Chen, C., Li, B., Orooji, Y., ... & Erk, N. (2023). Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment. Environmental Research, 220, 115135.
[34] Schimmelfennig, F. (2001). The community trap: Liberal norms, rhetorical action, and the eastern enlargement of the European Union. International organization, 55(1), 47-80.
[35] Talagai, N., Marcu, M. V., Zimbalatti, G., Proto, A. R., & Borz, S. A. (2020). Productivity in partly mechanized planting operations of willow short rotation coppice. Biomass and Bioenergy, 138, 105609.
[36] Thormark, C. (2006). The effect of material choice on the total energy need and recycling potential of a building. Building and environment, 41(8), 1019-1026.
[37] Vefago, L. H. M., & Avellaneda, J. (2013). Recycling concepts and the index of recyclability for building materials. Resources, conservation and recycling, 72, 127-135.
[38] Vicente, E. D., Vicente, A. M., Evtyugina, M., Oduber, F. I., Amato, F., Querol, X., & Alves, C. (2020). Impact of wood combustion on indoor air quality. Science of The Total Environment, 705, 135769.
[39] Will, M. (2019). Towards a Sustainable Circular Economy–Remarks on plastics and wood-waste sector. The Central European Review of Economics and Management, 3(4), 149-183.

中文部分
[1] 內政部建築研究所研究計畫(2000)木質建材回收系統及再利用技術之研發
[2] 王松永, & 羅盛峰. (2016). 木質材料生命週期之二氧化碳排出量及碳足跡評估. 林產工業, 35(2), 67-79.
[3] 王順美. (2016). 臺灣永續發展教育現況探討及行動策略之芻議. 環境教育研究, 12(1), 111-139.
[4] 行政院環境部產品碳足跡資訊網 (查詢日期2024/1月)
[5] 行政院環境部資源循環署 (查詢日期2023/12月)
[6] 何明錦, 王松永, 蔡明哲, 彭武財, 楊德新, 黃亮熾, ... & 林麗英. (2003). 木質廢料回收再利用之策略性探討. 林產工業, 22(3), 155-166.
[7] 林公孚. (2021). 認識 ESG 及其實施之道. 品質月刊, 57(8), 4-7.
[8] 林俊成, 陳溢宏, 王培蓉, 陳幸君, & 吳孟珊. (2017). 臺灣主要實木產品進口運輸之碳排放量估算. 臺灣林業科學, 32(3), 191-201.
[9] 林俊成, 詹為巽, 陳溢宏, & 林柏亨. (2019). 臺灣製材廠木質廢料量與處理現況調查分析. 臺灣林業科學, 34(3), 197-206.
[10] 林振榮, 李志璇, 林柏亨, & 廖和順. (2019). 舊木料回收再應用-以木再生工作室為例. 林業研究專訊, 26(3), 19-21.
[11] 林裕仁, 劉瓊霦, & 林俊成. (2002). 台灣地區主要用材比重與碳含量測定. 臺灣林業科學, 17(3), 291-299.
[12] 姚品全, & 侯雪娟. (2011). [能源科技與環境永續] 之重要議題初探. 大葉大學通識教育學報, (8), 133-146.
[13] 財政部頒訂製造業政策白皮書
[14] 張珍悅, & 徐勝一. (2010). 永續發展教育脈絡探討:[聯合國永續發展教育十年計畫] 之回顧. 地理研究, (52), 1-26.
[15] 張耿豪. (2020). 加強台灣生質能源供應管理策略之研究.
[16] 張郡宜. (2007). 都市垃圾物理化學特性分析方法之比較探討.
[17] 陳本源, 趙家民, & 蔡博全. (2012). 廢木製家具回收之二氧化碳排放當量估算與分析── 以嘉義縣再生家具展示館為例. 環境教育學刊, (第 12), 17-36.
[18] 陳勁豪, 薛惠今, 郭佩鈺, 王松永, & 林法勤. (2006). 含水率與密度對柳杉縱向抗壓強度之影響. 中華林學季刊, 39(3), 367-376.
[19] 陳瑩達, 鄭欽龍, & 陳重銘. (2011). 柳杉疏伐減碳效果之成本效能與不確定性評估. 中華林學季刊, 44(2), 207-215.
[20] 彭文俊. (2014). 從臺灣木質家具工業二氧化碳排放量探討封存二氧化碳之可行性.
[21] 黃韋堯. (2023). 我國廢木材燃料化之策略探討 (Doctoral dissertation).
[22] 塗三賢. (2007). 台灣地區木構造住宅對碳貯存與二氧化碳減量之貢獻.
[23] 楊舜堯. (2019). 循環經濟與台灣廢棄物法規之現況探討. 臺灣經濟研究月刊, 42(6), 120-127.
[24] 葉心寧. (2021). 永續發展下運用 CLT 於被動式住宅設計之創作研究.
[25] 農業部林業及自然保育署政策白皮書 (2018) 殘餘木材創值之活化利用及其商品開發計畫
[26] 賴意升. (2008). 臺灣地區古蹟與歷史建築木構造原用樹種木材之替代木材.
[27] 環境部氣候變遷署政策白皮書
[28] 顏婉婷. (2014). 林產品碳足跡之研究-以木製板凳為例.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top