|
英文部分 [1] Baldo, G. L., Marino, M., Montani, M., & Ryding, S. O. (2009). The carbon footprint measurement toolkit for the EU Ecolabel. The International Journal of Life Cycle Assessment, 14, 591-596. [2] Banaś, J., & Utnik-Banaś, K. (2022). Using timber as a renewable resource for energy production in sustainable forest management. Energies, 15(6), 2264. [3] Besserer, A., Troilo, S., Girods, P., Rogaume, Y., & Brosse, N. (2021). Cascading recycling of wood waste: A review. Polymers, 13(11), 1752. [4] Bovea, M. D., & Vidal, R. (2004). Materials selection for sustainable product design: a case study of wood based furniture eco-design. Materials & design, 25(2), 111-116. [5] Bringezu, S., & Moriguchi, Y. (2002). Material Flow Analysis In: A handbook of Industrial Ecology. RU Ayres and WA Ayres.(RU Ayres and WA Ayres) Cheltenham, UK. [6] Brunner, P. H., & Rechberger, H. (2016). Handbook of material flow analysis: For environmental, resource, and waste engineers. CRC press. [7] Burnley, S., Coleman, T., & Peirce, A. (2015). Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste. Waste management, 39, 295-304. [8] Campbell-Johnston, K., Vermeulen, W. J., Reike, D., & Brullot, S. (2020). The circular economy and cascading: towards a framework. Resources, Conservation & Recycling: X, 7, 100038. [9] Chapman, L. (2007). Transport and climate change: a review. Journal of transport geography, 15(5), 354-367. [10] Chembessi, C., Beaurain, C., & Cloutier, G. (2023). Narrating the Interplay between circular economy (CE) and ecological transition: a social and cultural perspective from CE experiments in Kamouraska (Quebec) and La Rochelle (France). Circular Economy, 1(2), 1-27. [11] Corona, B., Shen, L., Sommersacher, P., & Junginger, M. (2020). Consequential Life Cycle Assessment of energy generation from waste wood and forest residues: The effect of resource-efficient additives. Journal of Cleaner Production, 259, 120948. [12] Fankhauser, S., Smith, S. M., Allen, M., Axelsson, K., Hale, T., Hepburn, C., ... & Wetzer, T. (2022). The meaning of net zero and how to get it right. Nature Climate Change, 12(1), 15-21. [13] Garcia, C. A., & Hora, G. (2017). State-of-the-art of waste wood supply chain in Germany and selected European countries. Waste management, 70, 189-197. [14] Goldhahn, C., Cabane, E., & Chanana, M. (2021). Sustainability in wood materials science: An opinion about current material development techniques and the end of lifetime perspectives. Philosophical Transactions of the Royal Society A, 379(2206), 20200339. [15] Graedel, T. E. (2019). Material flow analysis from origin to evolution. Environmental Science & Technology, 53(21), 12188-12196. [16] Gulbrandsen, L. H. (2014). Dynamic governance interactions: Evolutionary effects of state responses to non‐state certification programs. Regulation & Governance, 8(1), 74-92. [17] Hamadyk, E., Amado, M., & de Brito, J. (2020). Use of timber for the sustainable city growth and its role in the climate change. In IOP Conference Series: Earth and Environmental Science (Vol. 410, No. 1, p. 012034). IOP Publishing. [18] Harte, A. M., Chúláin, C. U., Nasiri, B., Hughes, M., Llana, D. F., Íñiguez-González, G., ... & Hogan, P. (2020). Recovered timber in Europe: sources, classification, existing and potential reuse and recycling. National University of Ireland Galway 2020. [19] International Organization for Standardization. (2006). Environmental management: life cycle assessment; Principles and Framework. ISO. [20] Jahan, I., Zhang, G., Bhuiyan, M., & Navaratnam, S. (2022). Circular economy of construction and demolition wood waste—A theoretical framework approach. Sustainability, 14(17), 10478. [21] Kharazipour, A., & Kües, U. (2007). 20. Recycling of Wood Composites and Solid Wood Products. Wood production, wood technology, and biotechnological impacts. [22] Legard, R., Keegan, J., & Ward, K. (2003). In-depth interviews. Qualitative research practice: A guide for social science students and researchers, 6(1), 138-169. [23] Leyder, C., Klippel, M., Bartlomé, O., Heeren, N., Kissling, S., Goto, Y., & Frangi, A. (2021). Investigations on the sustainable resource use of swiss timber. Sustainability, 13(3), 1237. [24] Maier, D. (2021). Building materials made of wood waste a solution to achieve the sustainable development goals. Materials, 14(24), 7638. [25] Neuman, W. L. (2000). Neuman, WL (2000). Social research methods: Qualitative and quantitative approaches. [26] Niero, M., & Olsen, S. I. (2016). Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements. Resources, Conservation and Recycling, 114, 18-31. [27] Niu, Y., Rasi, K., Hughes, M., Halme, M., & Fink, G. (2021). Prolonging life cycles of construction materials and combating climate change by cascading: The case of reusing timber in Finland. Resources, Conservation and Recycling, 170, 105555. [28] Niyommaneerat, W., Suwanteep, K., & Chavalparit, O. (2023). Sustainability indicators to achieve a circular economy: A case study of renewable energy and plastic waste recycling corporate social responsibility (CSR) projects in Thailand. Journal of Cleaner Production, 391, 136203. [29] Ozili, P. K. (2022). Sustainability and sustainable development research around the world. Managing Global Transitions. [30] Papadopoulos, A. N. (2019). Advances in wood composites. Polymers, 12(1), 48. [31] Pronk, A., Brancart, S., & Sanders, F. (2022). Reusing timber formwork in building construction: Testing, redesign, and socio-economic reflection. Urban Planning, 7(2), 81-96. [32] Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., ... & Scherman, O. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333-359. [33] Raza, S., Ghasali, E., Raza, M., Chen, C., Li, B., Orooji, Y., ... & Erk, N. (2023). Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment. Environmental Research, 220, 115135. [34] Schimmelfennig, F. (2001). The community trap: Liberal norms, rhetorical action, and the eastern enlargement of the European Union. International organization, 55(1), 47-80. [35] Talagai, N., Marcu, M. V., Zimbalatti, G., Proto, A. R., & Borz, S. A. (2020). Productivity in partly mechanized planting operations of willow short rotation coppice. Biomass and Bioenergy, 138, 105609. [36] Thormark, C. (2006). The effect of material choice on the total energy need and recycling potential of a building. Building and environment, 41(8), 1019-1026. [37] Vefago, L. H. M., & Avellaneda, J. (2013). Recycling concepts and the index of recyclability for building materials. Resources, conservation and recycling, 72, 127-135. [38] Vicente, E. D., Vicente, A. M., Evtyugina, M., Oduber, F. I., Amato, F., Querol, X., & Alves, C. (2020). Impact of wood combustion on indoor air quality. Science of The Total Environment, 705, 135769. [39] Will, M. (2019). Towards a Sustainable Circular Economy–Remarks on plastics and wood-waste sector. The Central European Review of Economics and Management, 3(4), 149-183.
中文部分 [1] 內政部建築研究所研究計畫(2000)木質建材回收系統及再利用技術之研發 [2] 王松永, & 羅盛峰. (2016). 木質材料生命週期之二氧化碳排出量及碳足跡評估. 林產工業, 35(2), 67-79. [3] 王順美. (2016). 臺灣永續發展教育現況探討及行動策略之芻議. 環境教育研究, 12(1), 111-139. [4] 行政院環境部產品碳足跡資訊網 (查詢日期2024/1月) [5] 行政院環境部資源循環署 (查詢日期2023/12月) [6] 何明錦, 王松永, 蔡明哲, 彭武財, 楊德新, 黃亮熾, ... & 林麗英. (2003). 木質廢料回收再利用之策略性探討. 林產工業, 22(3), 155-166. [7] 林公孚. (2021). 認識 ESG 及其實施之道. 品質月刊, 57(8), 4-7. [8] 林俊成, 陳溢宏, 王培蓉, 陳幸君, & 吳孟珊. (2017). 臺灣主要實木產品進口運輸之碳排放量估算. 臺灣林業科學, 32(3), 191-201. [9] 林俊成, 詹為巽, 陳溢宏, & 林柏亨. (2019). 臺灣製材廠木質廢料量與處理現況調查分析. 臺灣林業科學, 34(3), 197-206. [10] 林振榮, 李志璇, 林柏亨, & 廖和順. (2019). 舊木料回收再應用-以木再生工作室為例. 林業研究專訊, 26(3), 19-21. [11] 林裕仁, 劉瓊霦, & 林俊成. (2002). 台灣地區主要用材比重與碳含量測定. 臺灣林業科學, 17(3), 291-299. [12] 姚品全, & 侯雪娟. (2011). [能源科技與環境永續] 之重要議題初探. 大葉大學通識教育學報, (8), 133-146. [13] 財政部頒訂製造業政策白皮書 [14] 張珍悅, & 徐勝一. (2010). 永續發展教育脈絡探討:[聯合國永續發展教育十年計畫] 之回顧. 地理研究, (52), 1-26. [15] 張耿豪. (2020). 加強台灣生質能源供應管理策略之研究. [16] 張郡宜. (2007). 都市垃圾物理化學特性分析方法之比較探討. [17] 陳本源, 趙家民, & 蔡博全. (2012). 廢木製家具回收之二氧化碳排放當量估算與分析── 以嘉義縣再生家具展示館為例. 環境教育學刊, (第 12), 17-36. [18] 陳勁豪, 薛惠今, 郭佩鈺, 王松永, & 林法勤. (2006). 含水率與密度對柳杉縱向抗壓強度之影響. 中華林學季刊, 39(3), 367-376. [19] 陳瑩達, 鄭欽龍, & 陳重銘. (2011). 柳杉疏伐減碳效果之成本效能與不確定性評估. 中華林學季刊, 44(2), 207-215. [20] 彭文俊. (2014). 從臺灣木質家具工業二氧化碳排放量探討封存二氧化碳之可行性. [21] 黃韋堯. (2023). 我國廢木材燃料化之策略探討 (Doctoral dissertation). [22] 塗三賢. (2007). 台灣地區木構造住宅對碳貯存與二氧化碳減量之貢獻. [23] 楊舜堯. (2019). 循環經濟與台灣廢棄物法規之現況探討. 臺灣經濟研究月刊, 42(6), 120-127. [24] 葉心寧. (2021). 永續發展下運用 CLT 於被動式住宅設計之創作研究. [25] 農業部林業及自然保育署政策白皮書 (2018) 殘餘木材創值之活化利用及其商品開發計畫 [26] 賴意升. (2008). 臺灣地區古蹟與歷史建築木構造原用樹種木材之替代木材. [27] 環境部氣候變遷署政策白皮書 [28] 顏婉婷. (2014). 林產品碳足跡之研究-以木製板凳為例.
|