|
中文部分 1. SOGI手機王 (https://www.sogi.com.tw/) 2. 工研院 IT IS計畫. (2010). 手機的世代更替帶給PCB硬板更多商機 3. 王翊馨. (2005). 以產品屬性定義消費者購買訴求及顧客分類之研究. 臺灣大學商學研究所學位論文, 2005, 1-59. 4. 王祥戎. (2023). 結合顧客分群和顧客趨勢分析尋找目標顧客-以物流業J公司為例 5. 尤克熙. (2002). Smart Phone 發展現況與趨勢分析,資策會研究報告 6. 李維平, 吳澤民, & 王美淳. (2007). 利用共生詞彙特性發展一個二階段文件群集法.Journal of Science and Engineering Technology, 3(1), 9-18. 7. 何元君. (2018). 機器學習在顧客關係管理之應用: 以汽車服務個案為例 8. 亞馬遜 (https://www.amazon.com/) 9. 周文賢, & 張欽富. (2000). 聯合分析在產品設計之運用. 華泰. 10. 邱皓政 (2000)。量化研究與統計分析-SPSS 中文視窗版資料分析範例解析(初版)。台北:五南圖書出版股份有限公司。 11. 邱皓政 (2010)。量化研究與統計分析:SPSS/PASW 資料分析範例解析 (五版)。台北:五南圖書出版股份有限公司。 12. 林傑斌,陳湘,&劉明德.(2002).SPSS11統計分析實務設計寶典,台北 : 博碩文化 13. 原價屋 (https://coolpc.com.tw/tw/) 14. 孫鴻葉 (2007)。2006年我國家庭寬頻、行動與無線應用現況與需求調查分析報告,經濟部工業局 15. 張意珮 (2003). 真的很smart的smartphone-談智慧型手機定義及未來趨勢,拓墣產業研究所焦點報告 16. 張尹齊, & 蔡璧徽. (2006). 智慧型手機消費者行為及市場區隔之研究—以大台北地區有購買意願之消費者為例 (Doctoral dissertation). 17. 張佑瑋 (2007). 應用集群分析於顧客關係管理之研究─ 以汽車電子資訊產品個案公司為例 18. 陳文華 (2000,01 月)。運用資料倉儲技術於顧客關係管理。能力雜誌, (527),頁 132-138。 19. 陳宜伶. (2006),智慧型手機與高階相機手機之消費者行為分析,國立成功大 學電信管理學系碩士論文 20. 陳東和 (2008). 應用資料探勘技術於基金客戶風險承受度之分群與預測. 21. 陳鴻烈, & 蔡大偉. (2009). 以多變量分析法探討水庫優養化之動力研究. 坡地防災學報, 8(3), 1-22. 22. 陳德富(2013)。顧客關係管理:整合觀點與創新思維(二版)。台中:滄海書局。 23. 黃巧頻. (2015). 應用資料探勘技術於顧客價值與消費行為之研究─ 以某直銷公司為例. 朝陽科技大學企業管理系學位論文, 2015, 1-102. 24. 黃騰. (2016). 以 IPA 分析法探討顧客價值對忠誠度之影響-以宏達電為例. 25. 楊俊隆. (2017). 機器學習分類方法 DCG 與其他方法比較 (以紅酒為例) (Doctoral dissertation, 楊俊隆). 26. 劉玉培. (2009). 應用混合分群技術於顧客分群-以汽車經銷商為例. 27. 簡唯倫. (2012). 智慧型手機功能發展趨勢與造形風格演變之研究-以 Apple iPhone 為例. 大同大學工業設計學系所學位論文, 2012, 1-128. 28. 蕭力文, 汪進財, & 鍾易詩. (2008). 年輕機車族群高風險駕駛行為異質性研究 (Doctoral dissertation). 29. 盧可茵. (2014). 在物聯網中探討電子商務模型與顧客關係管理. 朝陽科技大學資訊管理系學位論文, 2014, 1-142. 30. 羅文坤. (1986). 行銷傳播學, 臺北, 三民書局. 英文部分 1. Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philosophical transactions of the Royal Society of London, (53), 370-418. 2. Breimann, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984).Classification and regression trees. Pacific Grove, Wadsworth. 3. Bunn, M. D. (1993). Taxonomy of buying decision approaches. Journal of marketing, 57(1), 38-56. 4. Brown, S., & Gulycz, M. (2006). Performance driven CRM: How to make your customer relationship management vision a reality. John Wiley & Sons. 5. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2), 179-188. 6. Fix, E., & Neyman, J. (1951). A simple stochastic model of recovery, relapse, death and loss of patients. Human Biology, 23(3), 205-241. 7. FLOREK, J., LUKASZEWICZ, J., PERKAL, J., STEINHAUS, H., and ZYBRZYCKI, S. (1951), "Sur la liaison et la division des points d'un ensemble fini," Colloquia Mathematicae, 2, 282-285, 319. 8. Fern, E. F., & Brown, J. R. (1984). The industrial/consumer marketing dichotomy: A case of insufficient justification. Journal of Marketing, 48(2), 68-77. 9. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.. 10. Gower, J. C. (1967). A comparison of some methods of cluster analysis. Biometrics, 623-637. 11. Hartigan, J. A. (1975). Printer graphics for clustering. Journal of Statistical Computation and Simulation, 4(3), 187-213. 12. Hartigan, J. A. (1981). Consistency of single linkage for high-density clusters. Journal of the American Statistical Association, 76(374), 388-394. 13. Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer. 14. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254. 15. Kotler, P. (1997). Marketing management: Analysis, planningimplementation and control, (9th ed.). New Jersey:Prentice-Hall. 16. Lassar, W., Mittal, B., & Sharma, A. (1995). Measuring customer‐based brand equity. Journal of consumer marketing, 12(4), 11-19. 17. Michener, C. D., & Sokal, R. R. (1957). A quantitative approach to a problem in classification. Evolution, 130-162 18. McQuitty, L. L. (1966). Similarity analysis by reciprocal pairs for discrete and continuous data. Educational and Psychological measurement, 26(4), 825-831. 19. MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297). 20. Myers, J. H., & Tauber, E. (2011). Market structure analysis. Marketing Classics Press. 21. Milligan, G. W., & Sokol, L. M. (1980). A two-stage clustering algorithm with robust recovery characteristics. Educational and psychological measurement, 40(3), 755-759. 22. Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. psychometrika, 45, 325-342. 23. Massart, D. L., Kaufman, L., Rousseeuw, P. J., & Leroy, A. (1986). Least median of squares: a robust method for outlier and model error detection in regression and calibration. Analytica Chimica Acta, 187, 171-179. 24. Mitchell, T. M. (1997). Machine learning. 25. Omdia (https://omdia.tech.informa.com/) 26. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11), 559-572. 27. Peter, J. P., & Churchill Jr, G. A. (1986). Relationships among research design choices and psychometric properties of rating scales: A meta-analysis. Journal of marketing research, 23(1), 1-10. 28. Peppers, D., Rogers, M., & Dorf, B. (1999). Is your company ready for one-to-one marketing. Harvard business review, 77(1), 151-160. 29. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386. 30. R. Sibson, SLINK: An optimally efficient algorithm for the single-link cluster method, The Computer Journal, Volume 16, Issue 1, 1973, Pages 30–34. 31. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386. 32. SOKAL, R. R., & Michener, C. D. (1967, January). The effects of different numerical techniques on the phenetic classification of bees of the Hoplitis complex (Megachilidae). In Proceedings of the Linnean society of London (Vol. 178, No. 1, pp. 59-74). Oxford, UK: Blackwell Publishing Ltd. 33. Sorensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol Skrifter 5:1–34 34. Symons, M. J. (1981). Clustering criteria and multivariate normal mixtures. Biometrics, 35-43. 35. Sarle, W. S. (1991). Finding Groups in Data: An Introduction to Cluster Analysis. 36. Sharma, A., & Levy, M. (1995). Categorization of customers by retail salespeople. Journal of Retailing, 71(1), 71-81. 37. Tang, P. C., LaRosa, M. P., & Gorden, S. M. (1999). Use of computer-based records, completeness of documentation, and appropriateness of documented clinical decisions. Journal of the American Medical Informatics Association, 6(3), 245-251. 38. Wendell, R. S. (1956). Product differentiation and market segmentation as alternative marketing strategies. Journal of Marketing, 21(1), 3-8. 39. Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244. 40. Wong, K. Y., Casey, R. G., & Wahl, F. M. (1982). Document analysis system. IBM journal of research and development, 26(6), 647-656. 41. Wong, M. A., & Lane, T. (1983). A kth nearest neighbour clustering procedure. Journal of the Royal Statistical Society: Series B (Methodological), 45(3), 362-368. 42. Winer, R. S. (2001). A framework for customer relationship management. California management review, 43(4), 89-105. 43. Wilkinson, L. (2004). Classification and regression trees. Systat, 11, 35-56. 44. Yan, X., & Su, X. (2009). Linear regression analysis: theory and computing. world scientific. 45. Zeithaml, V. A. (1988). Consumer Perceptions of Price, Qualityand Value : A Means-End Model and Synthesis of Evidence.Journal of Marketing, 52(July), 2-22.
|