跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宗翰
研究生(外文):WU, ZONG-HAN
論文名稱:以集群分析法探討智慧型手機產品規格之因素研究
論文名稱(外文):Cluster Analysis of Product Factors of Specification in Smart Phone
指導教授:鄭元杰鄭元杰引用關係
指導教授(外文):TSENG, YUAN-JYE
口試委員:林真如陳振明
口試委員(外文):LIN, CHEN-JUCHEN, JEN-MING
口試日期:2024-06-13
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:87
中文關鍵詞:產品設計評估集群分析機器學習顧客分類
外文關鍵詞:Product Design EvaluationCluster AnalysisMachine LearningCustomer Classification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於製造技術進步和消費者需求的轉變,產品方案逐漸往多樣化發展。製造商為了因應不同需求,使每種產品在規格、功能或售價上有不同差別,以適應不同的製造技術以及消費者需求。由於多樣化的產品模式發展,造成產品相關的詳細資料量呈現增加的趨勢,包含產品設計、零件規格、價格、銷售量以及消費者評分等特徵資料。製造商透過蒐集這些資訊可以評估消費者的各類需求以及產品設計與製造之方向,並可依此調整產品設計以及其銷售策略。
因此本研究提出從網路蒐集產品開放資料,根據產品規格資訊等重要參數,使用集群分析法對產品進行分群分析,從不同的因素與特徵,了解產品間分群關係,可以作為未來產品設計的參考以及建議。完成集群分析後,再對分群結果加以檢定,以確定分群分析之方法為有意義的;且各群間有顯著差異性,未來產品設計時便可針對特定分群之特性,找出最重要之影響力因素,不僅在規格面向可以設計製造出具有特定功能及特性之產品,在顧客面向也可以規劃出較符合其期望之產品。設計與製造者可以根據分群分析結果了解不同消費者的偏好與需求,來改善及調整未來產品設計方案。在本研究中,研究方法模式經由實務驗證,比較各分群方法之差異,顯示研究方法模式為可行及有效,可以將分群模式應用於產品設計評估。
In recent years, due to technological advancements and shifts in consumer demands, product offerings have gradually diversified. Producers, in response to varied needs, differentiate each product in terms of specifications, features, or pricing to adapt to different manufacturing techniques and consumer demands. The diversification of product offerings has led to an increasing trend in the amount of detailed data, including product designs, component specifications, prices, sales volumes, and consumer ratings, being available as open data. Producers can use this information to assess various consumer needs and the direction of product design and manufacturing, adjusting product designs and marketing strategies accordingly.
Therefore, this study proposes collecting product data from the internet, conducting cluster analysis on products based on important parameters such as product specifications, to understand product clustering relationships from different factors and features. This analysis can serve as a reference and recommendation for future product design. After completing the cluster analysis and testing the clustering results, it is confirmed that the clustering analysis method is meaningful, and there are significant differences between groups. In future product design, specific characteristics of particular clusters can be
targeted to identify the most influential factors, allowing for the design and manufacture of products with specific functions and characteristics, meeting customer expectations. Designers and manufacturers can improve and adjust future product design schemes based on understanding the preferences and needs of different customers revealed through cluster analysis.
In this study, the research methodology model is validated through practical
experiments, comparing different clustering methods, demonstrating that the research methodology model is feasible and effective, and can be applied to product design evaluation.
目錄
摘要 ................................................................................................................... ii
ABSTRACT ..................................................................................................... iv
誌謝 ................................................................................................................... v
圖目錄 .............................................................................................................. xi
表目錄 ............................................................................................................ xiii
第一章 緒論 ..................................................................................................... 1
1.1研究背景與動機 ...................................................................................... 3
1.2研究目的.................................................................................................. 5
1.3研究流程.................................................................................................. 6
第二章 文獻探討 .............................................................................................. 7
2.1 智慧型手機 (Smartphone) ...................................................................... 7
2.1.1 手機的發展 ...................................................................................... 7
2.1.2 定義.................................................................................................. 8
2.2 產品屬性 (Product Attribute).................................................................. 9
2.2.1 定義.................................................................................................. 9
2.2.2 產品屬性之分類 .............................................................................. 9
2.2.2.1 依消費者需求層面分類 .......................................................... 10
2.2.2.2 依產品表現方式分類 .............................................................. 10
2.2.2.3 依內隱及外顯程度分類 .......................................................... 11
2.3 顧客關係管理 (CRM) .......................................................................... 11
2.3.1 定義................................................................................................ 12
2.3.2 顧客分類 ........................................................................................ 12
2.3.3 顧客關係管理架構 ........................................................................ 13

2.3.4 顧客關係管理於機器學習方面之應用 .......................................... 13
2.4 機器學習 (Machine Learning, ML) ...................................................... 14
2.4.1 K-Means .......................................................................................... 15
2.5 集群分析 (Cluster Analysis) ................................................................. 17
2.5.1 階層式集群分析 (Hierarchical Clustering) .................................... 20
2.5.2 非階層式集群分析 (Non-Hierarchical Clustering) ........................ 22
2.5.3 二階段方法分群分析 ..................................................................... 22
2.6 文獻小結 ............................................................................................... 23
第三章 研究方法 ............................................................................................ 24
3.1 研究架構 ............................................................................................... 24
3.1.1 研究範圍與限制 ............................................................................ 25
3.2 資料來源以及前處理 ........................................................................... 25
3.2.1 蒐集產品數據 ................................................................................ 25
3.2.2 數據前處理 .................................................................................... 26
3.3研究方法................................................................................................ 26
3.3.1 集群分析 (Cluster Analysis) .......................................................... 30
3.3.2 各演算法分群結果評量準則 ......................................................... 32
3.3.3 K-Means .......................................................................................... 33
3.3.4 區別分析 (Discriminant Analysis) ................................................. 33
3.3.5 混淆矩陣 ........................................................................................ 36
3.3.6 單因子變異數分析 (One-Way ANOVA) ....................................... 36
第四章 資料分析與結果 ................................................................................ 37
4.1 實驗設計 ............................................................................................... 37
4.1.1 資料蒐集 ........................................................................................ 39
4.1.2 資料前處理 .................................................................................... 39

4.1.2.1 資料文字轉換 ......................................................................... 40
4.2 資料標準化 ............................................................................................... 41
4.3 產品分群 .................................................................................................. 41
4.3.1 各集群分析法最適之分群數 ......................................................... 64
4.3.2 機器學習演算法最適之分群數 ..................................................... 67
4.4 集群分析 .................................................................................................. 67
4.4.1 集群分析演算法決定分群數目 ..................................................... 69
4.4.2 K-Means 集群分析 ......................................................................... 69
4.4.3 區別分析 (Discriminant Analysis) ................................................. 69
4.4.3.1 混淆矩陣 ................................................................................. 70
4.4.3.2 決定成員應於何群之設定 ...................................................... 72
4.5 單因子變異數分析 ................................................................................... 72
4.5.1 單因子變異數分析 ........................................................................ 75
4.6 分群結果整理 ........................................................................................... 75
4.6.1 價值取向型 .................................................................................... 76
4.6.2 經濟實惠型 .................................................................................... 77
4.6.3 低價型 ............................................................................................ 77
4.6.4 精緻型 ............................................................................................ 77
4.6.5 限量型 ............................................................................................ 78
4.7 本章小結 .................................................................................................. 78
第五章 結論與未來建議 ........................................................................................ 80
5.1 研究結論 .................................................................................................. 80
5.2 行銷建議 .................................................................................................. 81
5.3 研究限制 .................................................................................................. 81
5.3.1 取得研究資料之限制 ..................................................................... 81

5.3.2 分群變數之限制 ............................................................................ 82
5.4 未來研究建議 ........................................................................................... 82
5.4.1 資料探勘技術及研究主題方面 ..................................................... 82
5.4.2 資料範圍方面 ................................................................................ 82
5.4.3 購買策略方面 ................................................................................ 82
參考文獻 ................................................................................................................. 87

中文部分
1. SOGI手機王 (https://www.sogi.com.tw/)
2. 工研院 IT IS計畫. (2010). 手機的世代更替帶給PCB硬板更多商機
3. 王翊馨. (2005). 以產品屬性定義消費者購買訴求及顧客分類之研究. 臺灣大學商學研究所學位論文, 2005, 1-59.
4. 王祥戎. (2023). 結合顧客分群和顧客趨勢分析尋找目標顧客-以物流業J公司為例
5. 尤克熙. (2002). Smart Phone 發展現況與趨勢分析,資策會研究報告
6. 李維平, 吳澤民, & 王美淳. (2007). 利用共生詞彙特性發展一個二階段文件群集法.Journal of Science and Engineering Technology, 3(1), 9-18.
7. 何元君. (2018). 機器學習在顧客關係管理之應用: 以汽車服務個案為例
8. 亞馬遜 (https://www.amazon.com/)
9. 周文賢, & 張欽富. (2000). 聯合分析在產品設計之運用. 華泰.
10. 邱皓政 (2000)。量化研究與統計分析-SPSS 中文視窗版資料分析範例解析(初版)。台北:五南圖書出版股份有限公司。
11. 邱皓政 (2010)。量化研究與統計分析:SPSS/PASW 資料分析範例解析 (五版)。台北:五南圖書出版股份有限公司。
12. 林傑斌,陳湘,&劉明德.(2002).SPSS11統計分析實務設計寶典,台北 : 博碩文化
13. 原價屋 (https://coolpc.com.tw/tw/)
14. 孫鴻葉 (2007)。2006年我國家庭寬頻、行動與無線應用現況與需求調查分析報告,經濟部工業局
15. 張意珮 (2003). 真的很smart的smartphone-談智慧型手機定義及未來趨勢,拓墣產業研究所焦點報告
16. 張尹齊, & 蔡璧徽. (2006). 智慧型手機消費者行為及市場區隔之研究—以大台北地區有購買意願之消費者為例 (Doctoral dissertation).
17. 張佑瑋 (2007). 應用集群分析於顧客關係管理之研究─ 以汽車電子資訊產品個案公司為例
18. 陳文華 (2000,01 月)。運用資料倉儲技術於顧客關係管理。能力雜誌, (527),頁 132-138。
19. 陳宜伶. (2006),智慧型手機與高階相機手機之消費者行為分析,國立成功大
學電信管理學系碩士論文
20. 陳東和 (2008). 應用資料探勘技術於基金客戶風險承受度之分群與預測.
21. 陳鴻烈, & 蔡大偉. (2009). 以多變量分析法探討水庫優養化之動力研究. 坡地防災學報, 8(3), 1-22.
22. 陳德富(2013)。顧客關係管理:整合觀點與創新思維(二版)。台中:滄海書局。
23. 黃巧頻. (2015). 應用資料探勘技術於顧客價值與消費行為之研究─ 以某直銷公司為例. 朝陽科技大學企業管理系學位論文, 2015, 1-102.
24. 黃騰. (2016). 以 IPA 分析法探討顧客價值對忠誠度之影響-以宏達電為例.
25. 楊俊隆. (2017). 機器學習分類方法 DCG 與其他方法比較 (以紅酒為例) (Doctoral dissertation, 楊俊隆).
26. 劉玉培. (2009). 應用混合分群技術於顧客分群-以汽車經銷商為例.
27. 簡唯倫. (2012). 智慧型手機功能發展趨勢與造形風格演變之研究-以 Apple iPhone 為例. 大同大學工業設計學系所學位論文, 2012, 1-128.
28. 蕭力文, 汪進財, & 鍾易詩. (2008). 年輕機車族群高風險駕駛行為異質性研究 (Doctoral dissertation).
29. 盧可茵. (2014). 在物聯網中探討電子商務模型與顧客關係管理. 朝陽科技大學資訊管理系學位論文, 2014, 1-142.
30. 羅文坤. (1986). 行銷傳播學, 臺北, 三民書局.
英文部分
1. Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine of
chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philosophical transactions of the Royal Society of London, (53), 370-418.
2. Breimann, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984).Classification and regression trees. Pacific Grove, Wadsworth.
3. Bunn, M. D. (1993). Taxonomy of buying decision approaches. Journal of marketing, 57(1), 38-56.
4. Brown, S., & Gulycz, M. (2006). Performance driven CRM: How to make your customer relationship management vision a reality. John Wiley & Sons.
5. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Annals of eugenics, 7(2), 179-188.
6. Fix, E., & Neyman, J. (1951). A simple stochastic model of recovery, relapse, death and loss of patients. Human Biology, 23(3), 205-241.
7. FLOREK, J., LUKASZEWICZ, J., PERKAL, J., STEINHAUS, H., and ZYBRZYCKI, S. (1951), "Sur la liaison et la division des points d'un ensemble fini," Colloquia Mathematicae, 2, 282-285, 319.
8. Fern, E. F., & Brown, J. R. (1984). The industrial/consumer marketing dichotomy: A case of insufficient justification. Journal of Marketing, 48(2), 68-77.
9. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Annals of statistics, 1189-1232..
10. Gower, J. C. (1967). A comparison of some methods of cluster analysis. Biometrics, 623-637.
11. Hartigan, J. A. (1975). Printer graphics for clustering. Journal of Statistical Computation and Simulation, 4(3), 187-213.
12. Hartigan, J. A. (1981). Consistency of single linkage for high-density clusters. Journal of the American Statistical Association, 76(374), 388-394.
13. Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer.
14. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254.
15. Kotler, P. (1997). Marketing management: Analysis, planningimplementation and control, (9th ed.). New Jersey:Prentice-Hall.
16. Lassar, W., Mittal, B., & Sharma, A. (1995). Measuring customer‐based brand
equity. Journal of consumer marketing, 12(4), 11-19.
17. Michener, C. D., & Sokal, R. R. (1957). A quantitative approach to a problem in classification. Evolution, 130-162
18. McQuitty, L. L. (1966). Similarity analysis by reciprocal pairs for discrete and continuous data. Educational and Psychological measurement, 26(4), 825-831.
19. MacQueen, J. (1967, June). Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297).
20. Myers, J. H., & Tauber, E. (2011). Market structure analysis. Marketing Classics Press.
21. Milligan, G. W., & Sokol, L. M. (1980). A two-stage clustering algorithm with robust recovery characteristics. Educational and psychological
measurement, 40(3), 755-759.
22. Milligan, G. W. (1980). An examination of the effect of six types of error
perturbation on fifteen clustering algorithms. psychometrika, 45, 325-342.
23. Massart, D. L., Kaufman, L., Rousseeuw, P. J., & Leroy, A. (1986). Least median of squares: a robust method for outlier and model error detection in regression and calibration. Analytica Chimica Acta, 187, 171-179.
24. Mitchell, T. M. (1997). Machine learning.
25. Omdia (https://omdia.tech.informa.com/)
26. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11), 559-572.
27. Peter, J. P., & Churchill Jr, G. A. (1986). Relationships among research design choices and psychometric properties of rating scales: A meta-analysis. Journal of marketing research, 23(1), 1-10.
28. Peppers, D., Rogers, M., & Dorf, B. (1999). Is your company ready for one-to-one marketing. Harvard business review, 77(1), 151-160.
29. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6), 386.
30. R. Sibson, SLINK: An optimally efficient algorithm for the single-link cluster method, The Computer Journal, Volume 16, Issue 1, 1973, Pages 30–34.
31. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6), 386.
32. SOKAL, R. R., & Michener, C. D. (1967, January). The effects of different
numerical techniques on the phenetic classification of bees of the Hoplitis complex (Megachilidae). In Proceedings of the Linnean society of London (Vol. 178, No. 1, pp. 59-74). Oxford, UK: Blackwell Publishing Ltd.
33. Sorensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol Skrifter 5:1–34
34. Symons, M. J. (1981). Clustering criteria and multivariate normal mixtures.
Biometrics, 35-43.
35. Sarle, W. S. (1991). Finding Groups in Data: An Introduction to Cluster Analysis.
36. Sharma, A., & Levy, M. (1995). Categorization of customers by retail salespeople. Journal of Retailing, 71(1), 71-81.
37. Tang, P. C., LaRosa, M. P., & Gorden, S. M. (1999). Use of computer-based
records, completeness of documentation, and appropriateness of documented
clinical decisions. Journal of the American Medical Informatics Association, 6(3), 245-251.
38. Wendell, R. S. (1956). Product differentiation and market segmentation as
alternative marketing strategies. Journal of Marketing, 21(1), 3-8.
39. Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244.
40. Wong, K. Y., Casey, R. G., & Wahl, F. M. (1982). Document analysis system. IBM journal of research and development, 26(6), 647-656.
41. Wong, M. A., & Lane, T. (1983). A kth nearest neighbour clustering procedure. Journal of the Royal Statistical Society: Series B (Methodological), 45(3), 362-368.
42. Winer, R. S. (2001). A framework for customer relationship management.
California management review, 43(4), 89-105.
43. Wilkinson, L. (2004). Classification and regression trees. Systat, 11, 35-56.
44. Yan, X., & Su, X. (2009). Linear regression analysis: theory and computing. world scientific.
45. Zeithaml, V. A. (1988). Consumer Perceptions of Price, Qualityand Value : A
Means-End Model and Synthesis of Evidence.Journal of Marketing, 52(July), 2-22.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊