參考文獻
中文文獻
1.王筱雯. (2021). 台灣高壓用電趨勢視覺化分析. 淡江大學淡江大學暨澳洲昆士蘭理工大學財金全英語雙碩士學位學程學位論文, 2021, 1-104.2.林洋慶. (2022). 使用 XGboost 預測加密貨幣價格及設計交易策略. 國立臺灣大學資訊工程學系學位論文, 2022, 1-58.
3.張哲瑜. (2017). 使用電力資訊進行主動式學習以應用於家電異常偵測. 國立臺灣大學工程科學及海洋工程學系學位論文, 2017, 1-46.
4.廖思閔(2023)。應用機器學習於預測桃園市房價。﹝碩士論文。元智大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/4ggwu2。5.駱景堯, & 楊其龍. (1998). 製程間具相關數據之趨勢模型偵測探討. 大葉學報, 7(1), 103-115.
外文文獻
1.Aljubran, J., Nwosu, C., Okoroafor, E., Smith, C., & Gudmundsdottir, H. (2022). Recent Trends in Artificial Intelligence for Subsurface Geothermal Applications. In 47th Workshop on Geothermal Reservoir Engineering Stanford University, California.
2.Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Systems with Applications, 173, 114598.
3.Chen, C., Duan, S., Cai, T., Liu, B., & Hu, G. (2011). Smart energy management system for optimal microgrid economic operation. IET renewable power generation, 5(3), 258-267.
4.Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
5.Chou, J. S., & Telaga, A. S. (2014). Real-time detection of anomalous power consumption. Renewable and Sustainable Energy Reviews, 33, 400-411.
6.Chu, Z., Yu, J., & Hamdulla, A. (2021). Throughput prediction based on Extra Tree for stream processing tasks. Computer Science and Information Systems, 18(1), 1-22.
7.Jiang, H., Yin, Z., & Kaynak, O. (2021). Predictive maintenance in smart factories: An AI-based approach. IEEE transactions on industrial informatics, 17(1), 664-673.
8.Li, Z., Shahidehpour, M., Alabdulwahab, A., & Abusorrah, A. (2016). Anomaly detection in energy consumption: A machine learning perspective. Electric Power Systems Research, 140, 524-538.
9.Ma, Y., Borrelli, F., Hencey, B., Coffey, B., Bengea, S., & Haves, P. (2011). Model predictive control for the operation of building cooling systems. IEEE Transactions on control systems technology, 20(3), 796-803.
10.Md. Akbar Hossain , Nawrin Zaman & Mahmuda Begum (2022,November) Explainable Artificial Intelligence to Improve Human Decision Support in Heart Disease - Scientific Figure on ResearchGate., 3658-414.
11.Mitchell, T. M., & Mitchell, T. M. (1997). Machine learning (Vol. 1, No. 9). New York: McGraw-hill.
12.Montgomery, D. C. (2019). Introduction to statistical quality control. John wiley & sons.
13.Nasteski, V. (2017). An overview of the supervised machine learning methods. Horizons. b, 4(51-62), 56.
14.Oprea, S. V., Bâra, A., Puican, F. C., & Radu, I. C. (2021). Anomaly detection with machine learning algorithms and big data in electricity consumption. Sustainability, 13(19), 10963.
15.Singh, S., Yassine, A., & Benlamri, R. (2018, August). Towards hybrid energy consumption prediction in smart grids with machine learning. In 2018 4th International Conference on Big Data Innovations and Applications (Innovate-Data) (pp. 44-50). IEEE.
16.Tranmer, M., & Elliot, M. (2008). Multiple linear regression. The Cathie Marsh Centre for Census and Survey Research (CCSR), 5(5), 1-5.
17.Tan, W., Zhao, X., & Ji, Y. (2012). Industrial energy management system for energy-intensive enterprises. IEEE Transactions on Industrial Informatics, 8(3), 310-320.
18.Vidyullatha, P., & Rao, D. R. (2016). Machine learning techniques on multidimensional curve fitting data based on R-square and chi-square methods. International Journal of Electrical and Computer Engineering, 6(3), 974.
19.Ware, C. (2019). Information visualization: perception for design. Morgan Kaufmann.
其他文獻
1.工業技術研究院EPCIO(2015) ,IEC 68-2可靠度測試。檢自 https://www.epcio.com.tw/quality/reliability.aspx//www.epcio.com.tw/quality/reliability.aspx
2.台積電。(2021)。110年台積電永續發展報告書。檢自 https://esg.tsmc.com/download/file/2021_sustainabilityReport/chinese/c-all.pdf
3.台電公司。(2022)。歷年電價統計。檢自 https://www.taipower.com.tw/upload/43/43_04/%E6%AD%B7%E5%B9%B4%E7%B5%B1%E8%A8%88/%E6%AD%B7%E5%B9%B4%E5%B9%B3%E5%9D%87%E9%9B%BB%E5%83%B9(34-111).pdf
4.聯合國(2015)。永續發展目標(Sustainable development goals)。檢自 https://sdgs.un.org/goals
5.Ivan ,L.(2020)。R數值預估評估方法。檢自https://rpubs.com/ivan0628/numerical_model_evaluation
6.Singh, N.(2023)。Unlocking Bagging’s Power: Achieving‘Low Bias and Low Variance’with Bagging Classifiers and Regressors. AI Mind. 檢自https://www.linkedin.com/pulse/bagging-raji-shanmugam-yp6sc
7.Huang, T.(2018)。交叉驗證。檢自https://chih-sheng-huang821.medium.com/%E4%BA%A4%E5%8F%89%E9%A9%97%E8%AD%89-cross-validation-cv-3b2c714b18db
8.Tableau軟體公司網頁(2024)。檢自 https://www.tableau.com/zh-tw/