跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/20 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張綱峰
研究生(外文):Chang, Kang-Feng
論文名稱:設計正極支撐複合固態電解質以提升鋰電池倍率性能及循環壽命
論文名稱(外文):Enhancing High-Rate Capability and Cyclic Performance of Lithium Batteries with Cathode-Supported Composite Solid-State Electrolytes
指導教授:謝建德謝建德引用關係
指導教授(外文):Hsieh, Chien-Te
口試委員:林秀芬黃裕豪謝建德
口試委員(外文):Lin, Hsiu FenHuang, Yu-haoHsieh, Chien-Te
口試日期:2023-12-18
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:78
中文關鍵詞:複合固態電解質鋰金屬電池石榴石型粉末NASICON型粉末LLZTO粉末LATP 粉末
外文關鍵詞:Composite solid electrolytesLithium metal batteriesGarnet-type powdersNASICON-type powdersLLZTO powdersLATP powders
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究的重點是開發用於高性能鋰金屬電池的複合固態電解質的穩健設計。複合固態電解質由軟聚合物主體聚環氧乙烷(PEO)加入鋰離子導體陶瓷填料Li1.5Al0.5Ti1.5(PO4)3(LATP)和Li6.4La3Zr1.4Ta0.6O12 (LLZTO),和鋰鹽,雙(三氟甲磺酰基)亞胺 (LiTFSI)所組成。 目的是提高電解質的離子電導率和電化學穩定性。通過摻入LATP 和LLZTO填料,複合固態電解質的離子電導率分別達到2.08 × 10-4 和 1.64 × 10-4 S·cm-1。實驗結果表明,複合固態電解質在超過 4.25 V vs. Li/Li+ 的電壓下保持電化學穩定。與凝膠電解質相比,複合固態電解質的設計顯著降低了內阻。這種減少可歸因於大量電解質、電荷轉移和界面電解質/電極阻抗的減輕。當將具有 LATP 的複合固態電解質應用於LiFePO4正極片時,所得鋰金屬電池在5C時表現出高容量(與0.2 C時的原始容量相比,容量保持率為65.2%)和優異的循環穩定性以及優異的庫侖效率(> 99.5%超過200個循環)。 這些結果證實,複合固態電解質起到了保護層的作用,阻止了鋰枝晶的生長。因此,可以設計複合電解質配置,以實現鋰金屬電池的高能量/功率密度和穩定的循環性能。
This research is dedicated to developing a robust design for composite solid electrolytes utilized in high-performance Li-metal batteries. The composite solid-state electrolyte is composed of a soft polymer matrix, poly(ethylene oxide) (PEO), with added superionic conductor ceramic fillers, Li1.5Al0.5Ti1.5(PO4)3 (LATP), and Li6.4La3Zr1.4Ta0.6O12 (LLZTO), along with lithium salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The primary objective is to augment the ionic conductivity and electrochemical stability of the electrolytes. The inclusion of LATP and LLZTO fillers results in ionic conductivities of 2.08 × 10-4 and 1.64 × 10-4 S·cm-1, respectively, demonstrating enhanced performance.
Experimental findings indicate that the composite solid electrolytes maintain electrochemical stability even at voltages exceeding 4.25 V vs. Li/Li+. Compared to gel electrolytes, this composite design effectively reduces internal resistance by addressing bulk electrolyte, charge-transfer, and interfacial electrolyte/electrode impedance. When the composite solid electrolyte containing LATP is applied to LiFePO4 cathode sheets, the Li-metal battery exhibits considerable capacity at 5 C, retaining 65.2% of its original capacity compared to the performance at 0.2 C. Furthermore, it demonstrates exceptional cyclic stability, coupled with superb Coulombic efficiency (>99.5% over 200 cycles). Affirming the composite solid electrolyte's role as a protective layer that inhibits Li dendrite formation, these results suggest that the engineered composite electrolyte holds potential for achieving both high power/energy density and stable cycling performance in Li-metal batteries.

中文摘要 I
英文摘要 II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII

第一章 緒論 1
1.1 前言 1
1.2 鋰離子電池 1
1.3 固態電解質 3
1.4 研究動機 5
第二章 文獻回顧 7
2.1 鋰離子電池正極材料 7
2.2 鋰離子電池負極材料 12
2.3 有機聚合物電解質 14
2.3.1 聚環氧乙烷基固態電解質PEO-based SPEs 14
2.3.2 聚偏二氟乙烯基固態電解質 PVDF-based SPEs 20
2.3.3 聚碳酸酯基固態電解質 Polycarbonate-based SPEs 21
2.3.4 聚矽氧烷基固態電解質 Polysiloxane-based SPEs 22
2.4 無機陶瓷電解質 23
2.4.1 鋰超離子導體型電解質LISICON type electrolytes 23
2.4.2 鈉超離子導體型電解質 NASICON type electrolyte 25
2.4.3 石榴石型電解質 Garnet type electrolyte 28
2.4.4 鈣鈦礦型電解質Perovskite electrolyte 30
第三章 實驗方法 32
3.1 實驗藥品與儀器 32
3.2 實驗流程圖 34
3.2.1 複合固態電解質製備 34
3.2.2 LFP正極製備 35
3.2.3 電解質塗布 36
3.3 實驗步驟 37
3.3.1 複合固態電解質製備 37
3.3.2 LFP正極製備 39
3.3.3 電解質塗布 39
3.3.4 材料表徵和電化學測量 40
第四章 結果與討論 42
4.1 SEM分析 42
4.2 XRD分析 44
4.3 電化學分析 46
第五章 結論及未來工作 58
5.1 結論 58
5.2 未來工作 60
第六章 參考文獻 63

[1]何冠廷、陳弘源、陳燦耀、方冠榮、張家欽, 儲能發展的勁旅─鋰離子電池, 科學發展2019年5月557期
[2]M. Armand, Polymer solid electrolytes - an overview, Solid State Ionics 9-10 (1983) 745–754.
[3]Z.G. Xue, D. Heb, X.L. Xie, Poly(ethylene oxide)-based electrolytes for lithiumion batteries, J. Mater. Chem. A 3 (2015) 19218–19253.
[4]S. Wang, L. Ben, H. Li, L. Chen, Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range, Solid State Ion. 268 (2014) 110–116.
[5]Z. Zhang, Y. Zhao, S. Chen, D. Xie, X. Yao, P. Cui, X. Xu, An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life, J. Mater. Chem. A 5 (2017) 16984–16993.
[6]D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam, H.A. Lee, S.M. Lee, Y.S. Jung, Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries, Nano Lett. 17 (2017) 3013–3020.
[7]R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier, J. Janek, Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater. 29 (2017) 5574–5582.
[8]B. Zhang, R. Tan, L. Yang, J. Zheng, K. Zhang, S. Mo, Z. Lin, F. Pan, Mechanisms and properties of ion-transport in inorganic solid electrolytes, Energy Storage Mater. 10 (2018) 139–159.
[9]LiFePO4 – The Unexpected Battery Success Story https://crystallography365.wordpress.com/2014/04/29/lifepo4-the-unexpected-battery-success-story/ (accessed Jun 19, 2023)
[10]M. Dixit, M. Kosa, O.S. Lavi, B. Markovsky, D. Aurbach, D.T. Major, Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles. Phys, Chem. Chem. Phys. 18 (2016) 6799–6812.
[11]S.K. Martha, H. Sclar, Z.S. Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky, D. Aurbach, A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds, J. Power Sources 189 (2009) 248–255.
[12]M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev. 104 (2004) 4271–4301.
[13]D. Li, C. Yuan, J. Dong, Z. Peng, Y. Zhou, Synthesis and electrochemical properties of LiNi0.85−xCoxMn0.15O2 as cathode materials for lithium-ion batteries, J. Solid State Electrochem. 12 (2008) 323–327.
[14]A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J. Goodenough, Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates, J. Electrochem. Soc. 144 (5) (1997) 1609–1613.
[15]P. Axmann, C. Stinner, M. Wohlfahrt-Mehrens, A. Mauger, F. Gendron, C.M. Julien, Nonstoichiometric LiFePO4: defects and related properties, Chem. Mater. 21 (8) (2009) 1636–1644.
[16]J. Akimoto, Y. Gotoh, Y. Oosawa, Synthesis and structure refinement of LiCoO2 single crystals, J. Solid State Chem. 141 (1998) 298–302.
[17]C.-H. Doh, D.-H. Kim, H.-S. Kim, H.-M. Shin, Y.-D. Jeong, S.-I. Moon, B.-S. Jin, S.W. Eom, H.-S. Kim, K.-W. Kim, D.-H. Oh, A. Veluchamy, Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test, J. Power Sources 175 (2008) 881–885.
[18]Y. Takahashi, S. Tode, A. Kinoshita, H. Fujimoto, I. Nakane, S. Fujitani, Development of lithium-ion batteries with a LiCoO2 cathode toward high capacity by elevating charging potential, J. Electrochem. Soc. 155 (7) (2008) A537–A541.
[19]A. Rougier, P. Bravereau, D. Delmas, Optimization of the composition of the Li1−zNi1+zO2 electrode materials: Structural, magnetic, and electrochemical studies, J. Electrochem. Soc. 143 (4) (1996) 1168–1175.
[20]X. Shi, C. Wang, X. Ma, J. Sun, Synthesis and electrochemical properties of LiNi0.9Co0.1O2 cathode material for lithium secondary battery, Mater. Chem. Phys. 113 (2009) 780–783.
[21]T. Latychevskaia, S.K. Son, Y. Yang, D. Chancellor, M. Brown, S. Ozdemir, I. Madan, G. Berruto, F. Carbone, A. Mishchenko, K.S. Novoselov Stacking transition in rhombohedral graphite, Front. Phys. 14 (13608) (2019).
[22]A.K. Shukla, T. Prem Kumar, Materials for Next Generation Lithium Batteries, Current Science 94 (3) (2008) 317–327
[23]J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources 195(15) (2010) 4554–4569.
[24]M. Echeverri, N. Kim, T. Kyu, Ionic conductivity in relation to ternary phase diagram of poly(ethylene oxide), succinonitrile, and lithium bis(trifluorome-thane)sulfonimide blends, Macromo-lecules 45 (15) (2012) 6068–6077.
[25]H.M.J.C. Pitawala, M.A.K.L. Dissanayake, V.A. Seneviratne, B.E. Mellander, I. Albinson, Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO)9LiTf: Al2O3 nanocomposite polymer electrolyte system, J. Solid State Electrochem. 12 (2008) 783–789.
[26]C. Shen, J. Wang, Z. Tang, H. Wang, H. Lian, J. Zhang, C.N. Cao, All-solid-state flexible nanocomposite polymer electrolytes based on poly(ethylene oxide): Lithium perchlorate using functionalized graphene, Electrochim. Acta 54 (2009) 3490–3494.
[27]S.U Patil, S.S. Yawale, S.P Yawale, Conductivity study of PEO-LiClO4 polymer electrolyte doped with ZnO nanocomposite ceramic filler, Bull. Mater. Sci. 37 (2014) 1403–1409.
[28]P. Dhatarwal, R.J. Sengwa, Influence of solid polymer electrolyte preparation methods on the performance of (PEO–PMMA)–LiBF4 films for lithium-ion battery applications, Polym. Bull. 75 (2018) 5645–5666.
[29]R. Prasanth, V. Aravindan, M. Srinivasan, Novel polymer electrolyte based on Cob-Web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries¬-Preparation and electrochemical characterization, J. Power Sources 202 (2012) 299–307.
[30]J.L. Olmedo-Martínez, L. Porcarelli, G. Guzmán-González, I. Calafel, M. Forsyth, D. Mecerreyes, A.J. Müller, Ternary poly(ethylene oxide)/poly(l,l-lactide) PEO/PLA blends as high-temperature solid polymer electrolytes for lithium batteries, ACS Appl. Polym. Mater. 3(12) (2021) 6326–6337.
[31]F. Yuan, H.Z. Chen, H.Y. Yang, H.Y. Li, M. Wang, PAN–PEO solid polymer electrolytes with high ionic conductivity, Mater. Chem. Phys. 89(2–3) (2005) 390–394.
[32]L.Chen, Y. Li, S.P. Li, L.Z. Fan, C.W. Nan, J.B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”, Nano Energy 46 (2018) 176–184.
[33]M. Watanabe, T. Endo, A. Nishimoto, K. Miura, M. Yanagida, High ionic conductivity and electrode interface properties of polymer electrolytes based on high molecular weight branched polyether, J. Power Sources 81–82 (1999) 786–789.
[34]M. Watanabe, M. Kanba, High lithium ionic conductivity ofpolymeric solid electrolytes. Makromol, Chem., Rapid Commun. 2 (1981) 741.
[35]M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, I. Shinohara, High lithium ionic conductivity of polymeric solid electrolytes, Electrochim. Acta 28 (1983) 591–595.
[36]R. Gonçalves, D. Miranda, A.M. Almeida, M.M. Silva, J.M. Meseguer-Dueñas, J.L. Gomez Ribelles, S. Lanceros-Méndez, C.M. Costa, Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(viny-lidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries, Sustainable Mater. Technol. 21 (2019) e00104.
[37]B. Sun, J. Mindemark, K. Edström, D. Brandell, Polycarbonate-based solid polymer electrolytes for Li-ion batteries, Solid State Ionics 262 (2014) 738–742.
[38]J. Zhang, J. Zhao, L. Yue, Q. Wang, J. Chai, Z. Liu, X. Zhou, H. Li, Y. Guo, G. Cui, L. Chen,. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries, Adv. Energy Mater. 5 (2015) 1501082.
[39]J. Zhang, J. Yang, T. Dong, M. Zhang, J. Chai, S. Dong, T. Wu, X. Zhou, G. Cui, Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: Advances and Perspective, Small. 14(36) (2018) e1800821.
[40]B. Oh, D. Vissers, Z. Zhang, R. West, H. Tsukamoto, K. Amine, New interpenetrating network type poly(siloxane-g-ethyleneoxide) polymer electrolyte for lithium battery, J. Power Sources 119–121 (2003) 442–447.
[41]Z.C. Zhang, D. Sherlock, R. West, R. West, K. Amine, L.J. Lyons, Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains:  Synthesis and Conductivity, Macromolecules 36(24) (2003) 9176–9180.
[42]H.Y-P. Hong, Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors, Materials Research Bulletin. 13(2) (1978) 117–124.
[43]LISICON – Solid Electrolyte example
https://www.chemtube3d.com/lib_lisicon-2/ (accessed Jun 19, 2023)
[44]P.G. Bruce, A.R. West, The A‐C conductivity of polycrystalline LISICON, Li2 + 2x Zn1 − xGeO4, and a model for intergranular constriction resistances, J. Electrochem. Soc. 130 (1983) 662.
[45]A.D Robertson, A.R West, A.G Ritchie, Review of crystalline lithium-ion conductors suitable for high temperature battery applications, Solid State Ionics 104 (1997) 1–11.
[46]R. Kanno, T. Hata, Y. Kawamoto, M. Irie, Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system, Solid State Ionics, 130 (2000) 97–104.
[47]Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, H. Zhu, Sulfide-based solid-state electrolytes: synthesis, stability, and potential for allsolid-state batteries, Adv Mater 31 (2019) e1901131.
[48]H.Y.-P. Hong,. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12, Mater.Res.Bull. 11 (1976) 173–182.
[49]L.O. Hagman, P. Kierkegaard, The crystal structure of NaMe_2^IV (PO4)3; MeIV = Ge, Ti, Zr, Acta Chem. Scand. 22 (1968) 1822–1832.
[50]Y. Ishado, A. Inoishi, S. Okada, Exploring factors limiting three-Na+ extraction from Na3V2(PO4)3, Electrochemistry 88 (2020) 457–462.
[51]H. Aono, E. Sugimoto,Y. Sadaoka, N. Imanaka, G.-Y.Adachi, Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3), Solid State Ionics 47 (1991) 257.
[52]V. Epp, Q. Ma, E.M. Hammer, F. Tietzcd, M. Wilkening, Very fast bulk Li ion diffusivity in crystalline Li1.5Al0.5Ti1.5(PO4)3 as seen using NMR relaxometry, Phys. Chem. Chem. Phys. 17 (2015) 32115.
[53]B. Key, D.J. Schroeder, B.J. Ingram, J.T. Vaughey, Solution-based synthesis and characterization of lithium-ion conducting phosphate ceramics for lithium metal batteries, Chem. Mater. 24 (2) (2012) 287–293.
[54]H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G.Y. Adachi, Ionic conductivity and sinterability of lithium titanium phosphate system, Solid State Ionics 40–41(1) (1990) 38–42.
[55]V. Thangadurai, W. Weppner, Li6ALa2Nb2O12 (A=Ca, Sr, Ba): A new class of fast lithium ion conductors with garnet-like structure, J. Am. Ceram. Soc. 88 (2005) 411–418.
[56]K. Takada, Electrolytes: solid oxide, Enc. Electrochem. Power Sources 5 (2009) 328–336.
[57]V. Thangadurai, W. Weppner, Li6ALa2Ta2O12 (A = Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction, Adv. Funct. Mater. 15 (2005) 107–112.
[58]R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angew. Chem., Int. Ed. 46 (2007) 7778–7781.
[59]J.L. Allen, J. Wolfenstine, E. Rangasamy, J. Sakamoto, Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12, J. Power Sources 206 (2012) 315–319.
[60]S. Stramare, V. Thangadurai, W. Weppner, Lithium lanthanum titanates:  A review, Chem. Mater. 15(21) (2003) 3974–3990
[61]O. Bohnke, The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application, Solid State Ionics 179 (2008) 9–15.
[62]C.W. Ban, G.M. Choi, The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates, Solid State Ionics 140 (2001) 285–292.
[63]A. Mei, X.L. Wang, J.L. Lan, Y.C. Feng, H.X. Geng, Y.H. Lin, C.W. Nan, Role of amorphous boundary layer in enhancing ionic conductivity of lithium–lanthanum–titanate electrolyte, Electrochim. Acta 55(8) (2010) 2958–2963.
[64]K. Chen, M. Huang, Y. Shen, Y. Lin, C.W. Nan, Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12, Electrochim. Acta 80 (2012) 133–139.
[65]M. Wang, Y. Xue, K. Zhang, Y. Zhang, Synthesis of FePO4·2H2O nanoplates and their usage for fabricating superior high-rate performance LiFePO4, Electrochim. Acta 56 (2011) 4294–4298.
[66]C.T. Hsieh, C.T. Pai, Y.F. Chen, I L. Chen, W.Y. Chen, Preparation of lithium iron phosphate cathode materials with different carbon contents using glucose additive for Li-ion batteries, J. Taiwan Inst. Chem. Eng. 45 (2014) 1501–1508.
[67]A.R. Polu, R. Kumar, H.W. Rhe, Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries[J], Ionics 21(1) (2015) 125–132.
[68]H. Marceau, C.S. Kim, A. Paolella, S. Ladouceur, M. Lagacé, M. Chaker, A. Vijh, A. Guerfi, C. M. Julien, A. Mauger, M. Armand, P. Hovington, K. Zaghib, In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte[J], J. Power Sources 319 (2016) 247–254.
[69]Y. Liang, Z. Lin, Y. Qiu, X. Zhang, Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators, Electrochim. Acta 56 (2011) 6474–6480.
[70]J. Kumar, P. Kichambare, A.K. Rai, R. Bhattacharya, S. Rodrigues, G.A. Subramanyam, A high performance ceramic-polymer separator for lithium batteries, J. Power Sources 301 (2016) 194–198.
[71]S.A Yoon, N.R. Oh, A.R. Yoo, H.G. Lee, H.C. Lee, Preparation and characterization of Ta-substituted Li7La3Zr2-xO12 garnet solid electrolyte by sol-gel processing, J. Korean Ceram. Soc. 54 (2017) 278–284.
[72]H. Xie, C. Li, W.H. Kan, M. Avdeev, C. Zhu, Z. Zhao, X. Chu, D. Mu, F. Wu, Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0.8Co0.1Mn0.1O2/LiFePO4 hybrid solid batteries, J. Mater. Chem. A 7 (2019) 20633.
[73]K. Prasanna, T. Subburaj, W.J. Lee, C.W. Lee, Polyethylene separator: Stretched and coated with porous nickel oxide nanoparticles for enhancement of its efficiency in Li-ion batteries, Electrochim. Acta 137 (2014) 273–279.
[74]X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Highly fluorinated interphases enable high-voltage Li-metal batteries, Chem 4 (2018) 174–185.
[75]G.M.A. Girard, M. Hilder, D. Nucciarone, K. Whitbread, S. Zavorine, M. Moser, M. Forsyth, D.R. MacFarlane, P.C. Howlett, Role of Li concentration and the SEI layer in enabling high performance Li metal electrodes using a phosphonium bis(fluorosulfonyl)imide ionic liquid, J. Phys. Chem. C 121 (2017) 21087–21095.
[76]C.T. Hsieh, C.T. Pai, Y.F. Chen, I.L. Chen, W.Y. Chen, Preparation of lithium iron phosphate cathode materials with different carbon contents using glucose additive for Li-ion batteries, J. Taiwan Inst. Chem. Eng. 45 (2014) 1501–1508.
[77]C.T. Hsieh, C.T. Pai, Y.F. Chen, P.Y. Yu, R.S. Juang, Electrochemical performance of lithium iron phosphate cathodes at various temperatures, Electrochim. Acta 115 (2014) 96–102.
[78]Y.H. Nien, J.R. Carey, J.S. Chen, Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors, J. Power Sources 193 (2009) 822.
[79]H.C. Wu, H.C. Wu, E. Lee, N.L. Wu, High-temperature carbon-coated aluminum current collector for enhanced power performance of LiFePO4 electrode of Li-ion batteries, Electrochem. Commun. 12 (2010) 488.
[80]J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu, X. Guo, Z. Di, X. Wang, H. Li, Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide, Nano Energy 28 (2016) 447–454.
[81]W. Wang, E. Yi, A.J. Fici, R.M. Laine, J. Kieffer, Lithium ion conducting poly(ethylene oxide)-based solid electrolytes contain-ing active or passive ceramic nanoparticles, J. Phys. Chem. C 121 (2017) 2563–2573.
[82]G. Xu, F. Li, Z. Tao, X. Wei, Y. Liu, X. Li, Z. Ren, G. Shen, G. Han, Monodispersed LiFePO4@C core–shell nanostructures for a high power Li-ion battery cathode, J. Power Sources. 246 (2014) 696–702.
[83]S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, D.J. Siegel, Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO), Chem. Mater. 28 (2015) 197.
[84]G. Yan, J. Malzbender, S. Fu, J.P. Gross, S. Yu, R.-A. Eichel, R. Schwaiger, Fracture behavior of solid electrolyte LATP material based on micro-pillar splitting method, J. Eur. Ceram. Soc. 41 (2021) 5240–5247.
[85]H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo, X. Sun, Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries, Adv. Energy Mater. 9 (2019) 1804004.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top