|
[1]M. P. Gutiérrez-Salazar and J. Reyes-Gasga, Microhardness and chemical composition of human tooth. Mater. Res. 2003, 6, 367. [2]G. S. Penmetsa and C. D. Dwarakanath, Comparative evaluation of the efficacy of novamin and pro-argin in reducing dentinal hypersensitivity: a double blind randomized controlled clinical trial. J. Adv. Med. Dent. Sci. Res. [3]M. S. J. Lee, M. Monsef, and M. Torabinejad, Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J. Endod. 1993, 11, 541. [4]M.Parirokh and M.Torabinejad, Mineral Trioxide Aggregate: A Comprehensive Literature Review—Part I: Chemical, Physical, and Antibacterial Properties. J. Endod. 2010, 1, 16. [5]S. H. Kang, Y. S. Shin, H. S. Lee, S. O. Kim, Y. Shin, Y. I. Jung and J. S. Song, Color Changes of Teeth after Treatment with Various Mineral Trioxide Aggregate–based Materials: An Ex Vivo Study. J. Endod. 2015, 5, 737. [6]P. C. Aïtcin, Portland cement. in Science and Technology of Concrete Admixtures, Elsevier Inc., 2016, 27. [7]N. Roussel, From industrial testing to rheological parameters for concrete. Elsevier Ltd., 2011. [8]W. Zhao and J. Chang, Sol–gel synthesis and in vitro bioactivity of tricalcium silicate powders. Mater. Lett. 2004, 19, 2350. [9]J. Camilleri, F. E. Montesin, K. Brady, R. Sweeney, R. V. Curtis and T. R. P. Ford, The constitution of mineral trioxide aggregate. Dent. Mater. 2005, 4, 297. [10]S. Sakka, History of the Sol–Gel Chemistry and Technology. Handb. Sol-Gel Sci. Technol. 2016, 1. [11]S. Skink, Encyclopedia of Nanotechnology. 2012. [12]T. Thi Be Lan, Y.C. Tsai, Z.Y. Huang, Y.L. Chen, G.C. Hermosa, K.W. Lu, C.C. Chien, A.C.A. Sun, Modification and characterization of tricalcium silicate bio-ceramic powders synthesized by sol-gel process for potential application in dental treatment. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 690, 133743. [13]E. Yilmaz and M. Soylak, Functionalized nanomaterials for sample preparation methods. Handb. Nanomater. Anal. Chem. Mod. Trends Anal. 2020, 375.
[14]G. Migliau, Classification review of dental adhesive systems: from the IV generation to the universal type. Ann. Stomatol. (Roma).2017, 1, 1. [15]B. S. Lee and D. M. Wang, 牙齒黏合劑及塗層劑. 2012. [16]J. Perdigão, S. Geraldeli, and J. S. Hodges, Total-etch versus self-etch adhesive: Effect on postoperative sensitivity. J. Am. Dent. Assoc. 2003, 12, 1621. [17]M. G. BUONOCORE, Principles of adhesive retention and adhesive restorative materials. J. Am. Dent. Assoc. 1963, 67, 382. [18]A. D. Wilson and B. E. Kent, The glass-ionomer cement, a new translucent dental filling material. J. Appl. Chem. Biotechnol. 1971, 21, 313. [19]S. K. Sidhu and J. W. Nicholson, A Review of Glass-Ionomer Cements for Clinical Dentistry. J. Funct. Biomater. 2016, 7, 16. [20]L.FORSTEN, Fluoride release and uptake by glass ionomers. Scand. J. Dent. Res. 1991, 99, 241. [21]M. John, T. Bds, and M. J. Tyas, Clinical evaluation of glass-ionomer cement restorations. J. Appl. Oral Sci. 2006, 14, 10. [22]B. S. CHONG and T. R. P. FORD, Root-end filling materials: rationale and tissue response. Endod. Top. 2005, 11, 114. [23]陳奕倫, 矽酸三鈣之製備及其應用於臨床之潛力探討 2021. [24]H. Çolak, U. Tokay, R. Uzgur, Z. Uzgur, E. Ercan, and M. M. Hamidi, The effect of different adhesives and setting times on bond strength between Biodentine and composite. J. Appl. Biomater. Funct. Mater. 2016, 14, 217. [25]P. Neelakantan, D. Grotra, C. V. Subbarao, and F. Garcia-Godoy, The shear bond strength of resin-based composite to white mineral trioxide aggregate. J. Am. Dent. Assoc. 2012, 143, 40. [26]P. J. Palma, J. A. Marques, R. I. Falacho, A. Vinagre, J. M. Santos, and J. C. Ramos, Does Delayed Restoration Improve Shear Bond Strength of Different Restorative Protocols to Calcium Silicate-Based Cements? Mater. (Basel, Switzerland), 2018, 11. [27]P. Barret, D. Ménétrier, and D. Bertrandie, Mechanism of C3S dissolution and problem of the congruency in the very initial period and later on. Cem. Concr. Res. 1983, 13, 728. [28]P. W. Brown, E. Franz, G. Frohnsdorff, and H. F. W. Taylor, Analyses of the aqueous phase during early C3S hydration. Cem. Concr. Res. 1984, 14, 257. [29]M. Torabinejad and M. Parirokh, Mineral Trioxide Aggregate: A Comprehensive Literature Review—Part II: Leakage and Biocompatibility Investigations. J. Endod. 2010, 36, 190. [30]M. Parirokh and M. Torabinejad, Mineral Trioxide Aggregate: A Comprehensive Literature Review—Part III: Clinical Applications, Drawbacks, and Mechanism of Action, J. Endod. 2010, 36, 400. [31]S. W. Chang, W. J. Shon, W. C. Lee, K. Y. Kum, S. H. Baek, and K. S. Bae, Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study, Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology. 2010, 109, 642. [32]S. Ebnesajjad, Theories of Adhesion. Surf. Treat. Mater. Adhes. Bond. 2014, 77. [33]S. Rajasekharan, L. C. Martens, R. G. E. C. Cauwels, and R. M. H. Verbeeck, BiodentineTM material characteristics and clinical applications: A review of the literature. Eur. Arch. Paediatr. Dent. 2014, 15, 147. [34]H. Singh, A. Professsor, M. Kaur, S. Markan, and P. Kapoor, Open Access Biodentine: A Promising Dentin substitute. J Interdiscipl Med Dent Sci, 2014, 2, 5. [35]N. Butt, S. Talwar, S. Chaudhry, R. R. Nawal, S. Yadav, and A. Bali, Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine. Indian J. Dent. Res. 2014, 25, 692. [36]P. Z. Tawil, D. Abe, D. J. Duggan, and J. C. Galicia, MTA: A Clinical Review. [37]H. Çolak, U. Tokay, R. Uzgur, Z. Uzgur, E. Ercan, and M. M. Hamidi, The effect of different adhesives and setting times on bond strength between biodentine and composite. J. Appl. Biomater. Funct. Mater. 2016, 14, 217. [38]M. Kaur, H. Singh, J. S. Dhillon, M. Batra, and M. Saini, MTA versus Biodentine: Review of Literature with a Comparative Analysis. J. Clin. Diagn. Res. 2017, 11. [39]B. S. Lee, H. P. Lin, J. C. C. Chan, W. C. Wang, P. H. Hung, Y. S. Tsai, Y. L. Lee, A novel sol-gel-derived calcium silicate cement with short setting time for application in endodontic repair of perforations. Int. J. Nanomedicine, 2018, 13, 261. [40]M. Wu, T. Wang, Y. Wang, F. Li, M. Zhou, and X. Wu, A novel and facile route for synthesis of fine tricalcium silicate powders. Mater. Lett. 2018, 227, 187. [41]Y. N. Tan, W. J. Chen, Y. Liu, and Y. J. Liu, Preparation of tricalcium silicate and investigation of hydrated cement. J. Cent. South Univ. 2020, 27, 3227. [42]I. Primathena, D. Nurdin, H. Hermawan, and A. Cahyanto, Synthesis, Characterization, and Antibacterial Evaluation of a Cost-Effective Endodontic Sealer Based on Tricalcium Silicate-White Portland Cement. Mater. 2021, Vol. 14, Page 417, 2021, 14, 417. [43]X. Song and A. Díaz-Cuenca, Sol–Gel Synthesis of Endodontic Cements: Post-Synthesis Treatment to Improve Setting Performance and Bioactivity. Mater. 2022, Vol. 15, Page 6051, 2022, 15, 6051. [44]Y. Wei, N. Baskaran, H. Y. Wang, Y. C. Su, S. C. Nabilla, and R. J. Chung, Study of polymethylmethacrylate/tricalcium silicate composite cement for orthopedic application. Biomed. J. 2023, 46, 100540. [45]M. Y. Özata, S. Falakaloğlu, G. Plotino, and Ö. Adıgüzel, The micro-shear bond strength of new endodontic tricalcium silicate-based putty: An in vitro study. Aust. Endod. J. 2023, 49, 124. [46]A. de P. Melo, C. M. P. deRosatto, D. C. Ferraz, G. L. deSouza, and C. C. G. Moura, Evaluation of Cytotoxicity, Cell Attachment, and Elemental Characterization of Three Calcium Silicate-Based Sealers. Mater. 2023, Vol. 16, Page 6705, 2023, 16, 6705. [47]“專利證書:矽酸三鈣的製備方法” . [48]A. Hermansson, Standardization and optimization of index for 28 day strength for cement made from standard clinker. [49]D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis, 7th Editio. Cengage Learning, 2018.
|