跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/19 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:古凱元
研究生(外文):KU, KAI-YUAN
論文名稱:應用於MIPI A-PHY之8-Gb/s 四階脈衝振幅調變接收 機於28奈米CMOS製程
論文名稱(外文):A 8-Gb/s PAM-4 Receiver in 28-nm CMOS for MIPI A-PHY Application
指導教授:彭朋瑞林鴻文林鴻文引用關係
指導教授(外文):PENG, PEN-JUILIN, HUNG-WEN
口試委員:彭朋瑞林鴻文謝秉璇郭岳芳
口試委員(外文):PENG, PEN-JUILIN, HUNG-WENHSIEH, PING-HSUANKUO, YUE-FANG
口試日期:2024-07-18
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系甲組
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:80
中文關鍵詞:接收機四階脈衝振幅調變同步雙向線性等化器資料時脈回授電路寬線性範圍混合電路反射消除器
外文關鍵詞:Receiverpulse amplitude modulation-4Simultaneous BidirectionalCTLECDRWLR HybridEcho cancel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文設計了一個符合MIPI A-PHY規範的非對稱同步雙向收發器。在MIPI A-PHY
的規範中,非對稱同步雙向收發器僅使用一條通道來傳輸資料,而通道兩端都各有
一個傳送機和接收器,因此來自通道兩側的傳送機信號以及由通道產生的信號反
射會同時被接收器接收。上述兩個問題會導致接收器無法接收到正確的資料並還
原,所以使用了一種具寬線性範圍且帶有調整迴轉率功能的混合電路,以分離兩個
傳送機的信號,確保接收機不會被同一側傳送機的訊號干擾,並採用回波消除器來
去除通道反射。
此外,A-PHY推出的主旨也在於解決長距離數據傳輸的問題。像是車用的系統
中,兩端資料傳輸通常會使用較長的通道,這可能會有嚴重的通道損耗及干擾導致
訊號失真等問題,所以本文使用了前端電路以補償長距離傳輸中的通道損耗,並調
節訊號增益。也使用三標記決策回饋等化器來消除前端電路沒有完全消除的通道
損耗,在調整時鐘訊號相位的部分加入時脈資料恢復電路來確保時鐘訊號取樣的
穩定和準確性,使整個系統更完整。最終,在28-nm CMOS製程下,實現一個符合
MIPI A-PHY規範的 8-Gb/s 四階脈衝振幅調變非對稱同步雙向接收器,以及一個
100-Mb/s 不歸零發射器,以滿足當前MIPI A-PHY對於資料傳輸需求。
量測時類比前端電路的VDD使用1.2V,其餘電路使用0.9V。量測結果也有達到
A-PHY規定的速度8Gb/s和4Gb/s 。
This thesis presents the design of an asymmetric simultaneous bidirectional
transceiver that complies with the MIPI A-PHY standard. According to the MIPI A-PHYspecification, the asymmetric simultaneous bidirectional transceiver uses a single channel for data transmission, with a transmitter and receiver at each end of the channel. As a result, the receiver simultaneously receives signals from both transmitters and reflections caused by the channel. These issues can lead to the receiver being unable to correctly receive and reconstruct the data. To address these problems, we implemented a hybrid circuit with a wide linear range and adjustable slew rate to separate the signals from the two transmitters, ensuring that the receiver is not affected by the signal from the
transmitter on the same side. Additionally, an echo canceller is employed to eliminate channel reflections.
Moreover, the primary goal of A-PHY is to tackle the challenges of long-distance
data transmission. In automotive systems, for example, data transmission often occurs over long channels, which can result in significant channel loss and interference, leading to signal distortion. To mitigate these problems, this thesis uses a front-end circuit to compensate for channel loss over long-distance transmission and to adjust signal gain. A three-tap decision feedback equalizer is also used to eliminate residual channel loss that the front-end circuit does not fully address. Clock and data recovery circuits are incorporated to ensure the stability and accuracy of clock signal sampling, thereby enhancing the overall system integrity. Finally, a 28-nm CMOS process was used to implement an 8-Gb/s four-level pulse amplitude modulation (PAM-4) asymmetric simultaneous bidirectional receiver and a 100-Mb/s non-return-to-zero (NRZ) transmitter that comply with the MIPI A-PHY standard to meet current data transmission requirements.
During measurement, the analog front-end circuit used a VDD of 1.2 volts, while
the remaining circuits used 0.9 volts. The measurement results also achieved the speeds specified by the A-PHY standard, reaching 8Gb/s and 4Gb/s.
Contents
摘要...................................................................................................................................ii
Abstract...........................................................................................................................iii
誌謝...................................................................................................................................v
Contents ..........................................................................................................................vi
List of Figures...............................................................................................................viii
List of Tables .................................................................................................................xii
Chapter1 Introduction.............................................................................................1
1.1 Motivation........................................................................................................1
1.2 Recent Research ..............................................................................................6
Chapter2 Basic Theory ..........................................................................................11
2.1 Bidirectional Receiver Architecture............................................................11
2.2 Hybrid Circuit...............................................................................................12
2.3 Continuous Time Linear Equalizer.............................................................13
2.4 Decision Feedback Equalizer .......................................................................14
2.5 Clock and Data Recovery (CDR).................................................................15
2.5.1 Bang-Bang Phase Detector (BBPD).........................................................15
2.5.2 Digital Loop Filter.....................................................................................17
2.5.3 Phase Interpolator.....................................................................................18
Chapter3 Design of the Asymmetric Simultaneous Bidirectional Transceivers ..
.................................................................................................................18
3.1 Overview ........................................................................................................19
3.2 Uplink & WLR Hybrid Building Block ......................................................21
3.3 Analog Front-End .........................................................................................26
3.3.1 CTLE..........................................................................................................27
3.3.2 VGA............................................................................................................31
3.3.3 Echo Cancel ...............................................................................................36
vii
3.4 Decision Feedback Equalizer .......................................................................43
3.5 Clock path......................................................................................................48
3.5.1 IQ divider...................................................................................................49
3.5.2 Phase Interpolator.....................................................................................50
3.5.3 Uplink Clock Path.....................................................................................53
Chapter4 Measurement .........................................................................................56
4.1 Measurement SetUp......................................................................................56
4.2 Experimental Results....................................................................................57
Chapter5 Conclusion and Future work ...............................................................63
5.1 Conclusion......................................................................................................63
5.2 Future work ...................................................................................................64
Chapter6 Reference................................................................................................65
Chapter6 Reference
[1] IEEE Draft Standard for Adoption of MIPI Alliance Specification for A-PHY
Interface (A-PHY) Version 1.0, Apr. 2021.
[2] B. Casper, A. Martin, J. Jaussi, J. Kennedy, and R. Mooney, “An 8 Gb/s simultaneous
bidirectional link with on-die waveform capture,” IEEE J. Solid-State Circuits, vol.
38, no. 12, pp. 2111–2120,December 2003.
[3] Y. Tomita, H. Tamura, M. Kibune, J. Ogawa, K. Gotoh and T. Kuroda, ”A 20-Gb/s
Simultaneous Bidirectional Transceiver Using a ResistorTransconductor Hybrid in
0.11- µm CMOS,” in IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 627-
636, March 2007
66
[4] Y. Lee, W. Lee, M. Shim, S. Shin, W.-S. Choi, and D.-K. Jeong, ‘‘0.41-pJ/b/dB
asymmetric simultaneous bidirectional transceivers with PAM-4 forward and PAM2 back channels for 5-m automotive camera link,’’ in Proc. IEEE Symp. VLSI
Technol. Circuits (VLSI Technol. Circuits), Jun. 2022, pp. 30–31.
[5] R. J. Drost and B. A. Wooley, “An 8-Gb/s/pin simultaneously bidirectional
transceiver in 0.35-μ/m CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp.
1894–1908, Nov. 2004.
[6] H. Tamura et al., “5 Gb/s bidirectional balanced-line link compliant with
plesiochronous clocking,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2001, pp. 64–65.
[7] B. Casper, A. Martin, J. E. Jaussi, J. Kennedy, and R. Mooney, “An 8-Gb/s
simultaneous bidirectional link with on-die waveform capture,” IEEE J. Solid-State
Circuits, vol. 38, no. 12, pp. 2111–2120, Dec. 2003.
[8] Jri Lee, "Communication Integrated Circuits."
[9] B. Razavi, "Challenges in the design high-speed clock and data recovery circuits,"
in IEEE Communications Magazine, vol. 40, no. 8, pp. 94-101, Aug. 2002.
[10] S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for
10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 9,
pp. 1999–2011, Sep. 2007.
[11] Y.-H. Fan et al., ”A 32-Gb/s Simultaneous Bidirectional SourceSynchronous
Transceiver With Adaptive Echo Cancellation Techniques,” in IEEE Journal of
Solid-State Circuits, vol. 55, no. 2, pp. 439-451, Feb. 2020
[12] Bo Zhang et al., “A 28 Gb/s Multistandard Serial Link Transceiver for Backplane
Applications in 28 nm CMOS,” IEEE JOURNAL OF SOLID-STATE CIRCUITS,
VOL. 50, NO. 12, DECEMBER 2015.
[13] B. Casper, A. Martin, J. E. Jaussi, J. Kennedy, and R. Mooney, “An 8-Gb/s
simultaneous bidirectional link with on-die waveform capture,” IEEE J. Solid-State
Circuits, vol. 38, no. 12, pp. 2111–2120, Dec. 2003.
[14] S. Mashhadi et al., “Analysis and Design of a Low-Voltage Low-Power Double-Tail
Comparator,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 22, no. 2, pp. 343-352, Feb. 2014.
[15] A. Manian, A. Rane, and Y. Koh, “A Simultaneous Bidirectional Single-Ended
Coaxial Link with 24-Gb/s Forward and 312.5-Mb/s Back Channels,” in ESSCIRC
2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC), Sep. 2018,
pp. 178–181.
[16] Razavi, Design of Analog CMOS Integrated Circuit., Second Edition, McGraw-Hill
Education, 2017.
67
[17] Jri Lee, Ken Kundert and Behzad Razavi, Analysis and Modeling of Bang-Bang
Clock and Data Recovery Circuits, IEEE Journal of Solid-State Circuits, vol. 39, pp.
1571-1580, Sept. 2004.
電子全文 電子全文(網際網路公開日期:20290725)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 112-Gb/s四階脈衝振幅調變傳送機 於二十八奈米CMOS與十二奈米FinFET製程
2. 一個以40奈米CMOS製程實現之20 Gb/s不歸零編碼誤碼測試小晶片和一個以12奈米FinFET製程實現之64 Gb/s四階脈衝振幅調變接收機
3. 一個56-Gb/四階脈衝振幅調變重定時器於四十奈米CMOS製程與一個64-Gb/s四階脈衝振幅調變六標記決策回饋等化器於十二奈米FinFET製程
4. 應用於微波與毫米波之影像及車用雷達系統
5. 一個十位元每秒二億次取樣帶冗餘容錯連續漸進式類比數位轉換器
6. 一個十二位元每秒一億次取樣的連續漸進式類比數位轉換器使用數位錯誤校正系統與回切電容架構
7. 具有三階前饋式等化器及時脈校正之三階振幅脈衝之45-Gb/s電壓模式傳送機於四十奈米CMOS製程
8. 應用於微波與毫米波之相移器的研製
9. 超高速四階脈衝振幅調變電壓模態傳送機以及一個超低相位雜訊分數型次採樣鎖相迴路於四十奈米CMOS製程
10. 操作在16Gb/s的類比式時脈資料回復電路與1:8解串器
11. 應用於有線通訊13.6Gb/s全速率全數位式時脈與資料回復電路
12. 一個涵蓋每秒六億位元至每秒兩百億位元寬頻多模式有線傳輸發射機
13. 一個十一位元每秒一億五千萬次取樣次階連續漸進式類比數位轉換器
14. 32Gb/s 使用四分之一線性相位偵測器之無參考時脈資料回復電路於四十奈米CMOS製程
15. 一個離散時間二階前饋三角積分類比數位轉換器