跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 05:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:艾馬坡
研究生(外文):WITHZ AIMABLE
論文名稱:兩篇金融市場動態連通性之研究
論文名稱(外文):Two Essays on Dynamics Connectedness in Financial Markets
指導教授:吳志強吳志強引用關係
指導教授(外文):WU, CHIH-CHIANG
口試委員:吳志強羅懷均詹佳縈黃承祖戴正廷
口試委員(外文):WU, CHIH-CHIANGLO, HUAI-CHUNZHAN, JIA-YINGHUANG, CHENG-TZUTAI, CHENG-TING
口試日期:2024-04-26
學位類別:博士
校院名稱:元智大學
系所名稱:管理學院博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:86
中文關鍵詞:連通性金融市場交易所交易基金非對稱溢外溢效果風險管理市場風險風險衡量投資組合分配定向波動溢外中美貿易戰商品市場加密貨幣金融科技(FinTech)報酬波動性流動性連通性
外文關鍵詞:Asymmetry ConnectednessCryptocurrency MarketDynamic ConnectednessExchanged-Traded FundsFinancial Technology (Fintech)Liquidity ConnectednessPortfolio AllocationRisk ManagementU.S.-China Trade WarVolatility Connectedness
ORCID或ResearchGate:0009-0006-0526-6280
Facebook:Withz Aimable
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
這篇博士論文從不同的角度,利用Diebold和Yilmaz(2009、2012)以及Baruník等人(2017)提出的一系列指標,探討了金融市場的動態聯繫。
在研究的第一部分中,我們利用2013年至2020年的特定國家的股票交易所交易基金,量化並研究了由於美中貿易戰引起的正面和負面波動產生的方向性和非對稱擴散效應對它們的共同貿易夥伴的影響。我們發現美國和日本是擴散傳輸中的顯著貢獻者,具有可觀的淨擴散,而其他貿易夥伴,甚至包括中國,對這些擴散表現出不同程度的脆弱性。我們提供充分的證據表明市場在一個獨特層次上存在非對稱的擴散聯繫。同樣,正面和負面波動的擴散在不同市場中傳播的幅度隨時間顯著變化。我們還展示負面擴散往往具有可觀的幅度,但它們並不總是壓倒正面擴散。我們發現,在研究期間,美中貿易戰及其共同貿易夥伴的一般聯繫顯著增加。
第二部分研究了在不確定時期加密貨幣市場內的擴散效應。我們運用廣義預測誤差方差分解,捕捉回報、波動性和流動性的聯繫。此外,我們分析了這些擴散效應的決定因素,重點關注基於不同類型的不確定性變數的變化。雖然加密貨幣的數據趨勢相似,但流動性聯繫的幅度遠低於回報和波動性。值得注意的是,每日數據趨勢的圖表顯示了加密貨幣相互聯繫程度的提升,這是由它們不斷增長的受歡迎度推動的趨勢。我們顯示Litecoin是回報擴散的主要傳輸者,而Bitcoin是波動性和流動性擴散的最大傳輸者。我們進一步應用迴歸模型來解釋這種聯繫,考慮了經濟和金融市場的共同不確定性。值得注意的是,我們顯示隨著經濟不確定性的降低,加密貨幣之間的聯繫程度增加。這突顯了加密貨幣作為對抗基本不確定性的替代金融工具的潛力。
This dissertation examines the dynamic connectedness within financial markets from different perceptions in two essays using the methods developed by Diebold and Yilmaz (2009, 2012) and Baruník et al. (2017). In the first essay, we quantify and examine the effect of directional and asymmetric spillovers emerging from good and bad volatility due to the United States-China trade war on their common trade partners by using the country-specific equity exchange-traded funds (ETFs) from 2013 to 2020. We show that the United States and Japan emerge as significant contributors to spillover transmission, with substantial net spillovers. Conversely, the other trade partners, and even China, exhibit varying degrees of vulnerability to these spillovers. We offer adequate evidence for asymmetric spillover connectivity of markets at a certain level. Similarly, the spillovers of good and bad volatility vary in size and alter widely as time goes by in different markets. We also show that, while negative spillovers are frequently significant, they do not always outweigh good spillovers. We find that the general connectedness of the United States-China trade war and their common trade partners substantially increased during the period of this study.
The second essay investigates the spillover effects of return, volatility, and liquidity within the cryptocurrency market during uncertain times. Furthermore, we analyze the determinants of these spillover effects, with a focus on their variations based on different types of uncertainty variables. The empirical results show that the scale of liquidity connectedness stays much lower than that of return and volatility. Litecoin is the dominant transmitter of return spillovers while Bitcoin is the largest transmitter of volatility and liquidity spillovers. We further apply a regression model to explain such connectedness with common economic and financial market uncertainty. Notably, we show that as economic uncertainty decreases, the connectedness among cryptocurrencies increases. This underscores the potential of cryptocurrencies as a substitute financial instrument for hedging against essential uncertainties.
Title page i
Letter of Approval ii
Abstract in Chinese iii
Abstract in English v
Acknowledgement vii
Table of Contents viii
List of Tables x
List of Figures xi
Chapter 1. Introduction 1
Chapter 2. Directional and asymmetric spillover connectedness effects of the United States-China trade war on their common trade partners. 3
2.1 Introduction and Literature Review 3
2. 2 Methodology 6
2.2.1 Measure realized variance and semivariances 6
2.2.2 Measure of volatility spillovers 7
2.2.3 Measure of asymmetric spillovers 9
2.2.4 Measure of directional spillover asymmetry 10
2.3 Data description and preliminary analysis 11
2.3.1 Summary statistics 12
2.4 Empirical results 12
2.4.1 Full-sample connectedness matrix of the realized spillover of the country ETFs 13
2.4.2 Net directional and pairwise realized volatility spillover analyses of the country ETFs 15
2.4.3 Spillover asymmetry analysis 17
2.4.4 Net directional realized spillovers of the country ETFs 18
2.4.5 Spillover asymmetry of realized spillovers of the country ETFs 18
2.4.6 Directional asymmetry spillovers from/to good/bad volatility 19
2.4.7 The net pairwise realized asymmetry spillovers from the United States to China 20
2.4.8 Net pairwise realized spillovers from the United States and China to their trade partners 21
2.5 Conclusions 22
Chapter 3. Cryptocurrency market spillover in times of uncertainty 23
3.1 Introduction and Literature Review 23
3.2 Methodology 28
3.2.1 Liquidity measure 28
3.2.2 Spillover model 30
3.2.3 Regression model 32
3.5 Data Description and Empirical Results 33
3.5.1 Data Description 33
3.5.2 Daily return, Volatility, and Liquidity of cryptocurrencies analyses 34
3.5.3 Total return, volatility, and liquidity connectedness analyses for cryptocurrencies 36
3.5.4 Full-sample and net pairwise return connectedness analyses for cryptocurrencies 37
3.5.5 Full-sample and net pairwise volatility connectedness analyses for cryptocurrencies 39
3.5.6 Full-sample and net pairwise liquidity connectedness analyses for cryptocurrencies 40
3.5.7 Regression analyses for spillover effects of cryptocurrencies 42
3.6 Conclusion 45
References 47
Abdi, F., & Ranaldo, A. (2017). A simple estimation of bid-ask spreads from daily close, high, and low prices. The review of financial studies, 30(12), 4437-4480.
Al-Shboul, M., Assaf, A., & Mokni, K. (2022). When Bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic. International Review of Financial Analysis, 83, 102309.
Alvstam, C. G., Ström, P., & Yoshino, N. (2009). On the economic interdependence between China and Japan: Challenges and possibilities. Asia Pacific Viewpoint, 50(2), 198-214.
Amihud, Y., & Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal of Financial Economics, 17(2), 223-249.
Anamika, Chakraborty, M., & Subramaniam, S. (2021). Does sentiment impact cryptocurrency? Journal of Behavioral Finance, 1-17.
Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review, 885-905.
Aspris, A., Foley, S., Svec, J., & Wang, L. (2021). Decentralized exchanges: The “wild west” of cryptocurrency trading. International Review of Financial Analysis, 77, 101845.
Bação, P., Duarte, A. P., Sebastião, H., & Redzepagic, S. (2018). Information transmission between cryptocurrencies: Does Bitcoin rule the cryptocurrency world? Scientific Annals of Economics and Business, 65(2), 97-117.
Bahmani-Oskooee, M., & Wang, Y. (2008). The J-curve: evidence from commodity trade between the US and China. Applied Economics, 40(21), 2735-2747.
Barndorff-Nielsen, O., Kinnebrock, S., & Shephard, N. (2010). Volatility and time series econometrics: Essays in honor of Robert F. Engle, chapter measuring downside risk-realized semivariance. In: Oxford University Press.
Baruník, J., Kocenda, E., & Vácha, L. (2015). Volatility spillovers across petroleum markets. The Energy Journal, 36(3).
Baruník, J., Kočenda, E., & Vácha, L. (2016). Asymmetric connectedness on the US stock market: Bad and good volatility spillovers. Journal of Financial Markets, 27, 55-78.
Baruník, J., Kočenda, E., & Vácha, L. (2017). Asymmetric volatility connectedness on the forex market. Journal of International Money and Finance, 77, 39-56.
Baruník, J., & Křehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. Journal of Financial Econometrics, 16(2), 271-296.
Baur, D. G., Hong, K., & Lee, A. D. (2018). Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions, and Money, 54, 177-189.
Benguria, F., Choi, J., Swenson, D. L., & Xu, M. J. (2022). Anxiety or pain? The impact of tariffs and uncertainty on Chinese firms in the trade war. Journal of International Economics, 137, 103608.
Billio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of financial economics, 104(3), 535-559.
Borochin, P., & Rush, S. (2022). Information networks in the financial sector and systemic risk. Journal of Banking & Finance, 134, 106327.
Bouri, E., Azzi, G., & Dyhrberg, A. H. (2017). On the return-volatility relationship in the Bitcoin market around the price crash of 2013. Economics, 11(1).
Bouri, E., Demirer, R., Gabauer, D., & Gupta, R. (2022). Financial market connectedness: The role of investors’ happiness. Finance Research Letters, 44, 102075.
Bouri, E., Gabauer, D., Gupta, R., & Tiwari, A. K. (2021). Volatility connectedness of major cryptocurrencies: The role of investor happiness. Journal of Behavioral and Experimental Finance, 30, 100463.
Bouri, E., Gupta, R., & Roubaud, D. (2019). Herding behavior in cryptocurrencies. Finance Research Letters, 29, 216-221.
Bouri, E., Lucey, B., & Roubaud, D. (2020). The volatility surprise of leading cryptocurrencies: Transitory and permanent linkages. Finance Research Letters, 33, 101188.
Brauneis, A., Mestel, R., Riordan, R., & Theissen, E. How to Measure the Liquidity of Cryptocurrency Markets? Journal of Banking & Finance, 106041.
Brauneis, A., Mestel, R., Riordan, R., & Theissen, E. (2021). How to Measure the Liquidity of Cryptocurrency Markets? Journal of Banking & Finance, 106041.
Briefing, C. (2020). The US-China Trade War: A Timeline. Retrieved from https://www.china-briefing.com/news/the-us-china-trade-war-a-timeline/
Briola, A., Vidal-Tomás, D., Wang, Y., & Aste, T. (2023). Anatomy of a Stablecoin’s failure: The Terra-Luna case. Finance Research Letters, 51, 103358.
Bunjaku, F., Gjorgieva-Trajkovska, O., & Miteva-Kacarski, E. (2017). Cryptocurrencies–advantages and disadvantages. Journal of Economics, 2(1), 31-39.
Cadot, O., Carrère, C., & Strauss‐Kahn, V. (2013). Trade diversification, income, and growth: what do we know? Journal of Economic Surveys, 27(4), 790-812.
Chinazzi, M., Fagiolo, G., Reyes, J. A., & Schiavo, S. (2013). Post-mortem examination of the international financial network. Journal of Economic Dynamics and Control, 37(8), 1692-1713.
Chkili, W., Hammoudeh, S., & Nguyen, D. K. (2014). Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory. Energy Economics, 41, 1-18.
Chokor, A., & Alfieri, E. (2021). Long and short-term impacts of regulation in the cryptocurrency market. The Quarterly Review of Economics and Finance, 81, 157-173.
Chu, J., Zhang, Y., & Chan, S. (2019). The adaptive market hypothesis in the high-frequency cryptocurrency market. International Review of Financial Analysis, 64, 221-231.
Constantinescu, C., Mattoo, A., Ruta, M., Maliszewska, M., & Osorio-Rodarte, I. (2019). Global Trade Watch 2018: Trade Amid Tensions: World Bank.
Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28-34.
Corwin, S. A., & Schultz, P. (2012). A simple way to estimate bid‐ask spreads from daily high and low prices. The Journal of Finance, 67(2), 719-760.
De La Horra, L. P., de la Fuente, G., & Perote, J. (2019). The drivers of Bitcoin demand: A short and long-run analysis. International Review of Financial Analysis, 62, 21-34.
Deakins, D., & Hussain, G. (1994). Risk assessment with asymmetric information. International Journal of Bank Marketing, 12(1), 24-31.
Deep Sharma, G., & Bodla, B. (2011). Inter‐linkages among stock markets of South Asia. Asia-Pacific Journal of Business Administration, 3(2), 132-148.
Demiralay, S., Gencer, H. G., & Bayraci, S. (2022). Carbon credit futures as an emerging asset: Hedging, diversification, and downside risks. Energy Economics, 113, 106196.
Demiralay, S., & Golitsis, P. (2021). On the dynamic equicorrelations in the cryptocurrency market. The Quarterly Review of Economics and Finance, 80, 524-533.
Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158-171.
Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66.
Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119-134.
Diebold, F. X., & Yılmaz, K. (2015). Financial and macroeconomic connectedness: A network approach to measurement and monitoring: Oxford University Press, USA.
Do, A., Powell, R., Yong, J., & Singh, A. (2020). Time-varying asymmetric volatility spillover between global markets and China’s A, B and H-shares using EGARCH and DCC-EGARCH models. The North American Journal of Economics and Finance, 54, 101096.
Du, Y., Ju, J., Ramirez, C. D., & Yao, X. (2017). Bilateral trade and shocks in political relations: Evidence from China and some of its major trading partners, 1990–2013. Journal of International Economics, 108, 211-225.
Dumas, J.-G., Jimenez-Garcès, S., & Șoiman, F. (2021). Blockchain technology and crypto-assets market analysis: vulnerabilities and risk assessment. Paper presented at the 12th International Conference on Complexity, Informatics, and Cybernetics.
Dwyer, G. P. (2015). The economics of Bitcoin and similar private digital currencies. Journal of Financial Stability, 17, 81-91.
Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar–A GARCH volatility analysis. Finance Research Letters, 16, 85-92.
Fajgelbaum, P. D., & Khandelwal, A. K. (2022). The economic impacts of the US-China trade war. Annual Review of Economics, 14, 205-228.
Felbermayr, G. J., & Toubal, F. (2010). Cultural proximity and trade. European Economic Review, 54(2), 279-293.
Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: measuring stock market comovements. The Journal of Finance, 57(5), 2223-2261.
Gajardo, G., Kristjanpoller, W. D., & Minutolo, M. (2018). Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold, and DJIA as the Euro, Great British Pound, and Yen? Chaos, Solitons & Fractals, 109, 195-205.
Gama Da Silva, P. V. J., Klotzle, M. C., Pinto, A. C. F., & Gomes, L. L. (2019). Herding behavior and contagion in the cryptocurrency market. Journal of Behavioral and Experimental Finance, 22, 41-50.
Gangwal, S., & Longin, F. (2018). Extreme movements in Bitcoin prices: A study based on extreme value theory. Work. Paper Ser, 8, 1-17.
Gnangnon, S. K. (2018). Effect of multilateral trade liberalization on foreign direct investment outflows amid structural economic vulnerability in developing countries. Research in International Business and Finance, 45, 15-29.
Gnangnon, S. K. (2022). Effect of structural economic vulnerability on the participation in international trade. Journal of Risk and Financial Management, 15(9), 417.
Goulard, S. (2020). The impact of the US-China trade war on the European Union. Global Journal of Emerging Market Economies, 12(1), 56-68.
Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: journal of the Econometric Society, 424-438.
Härdle, W. K., Harvey, C. R., & Reule, R. C. (2020). Understanding cryptocurrencies. In (Vol. 18, pp. 181-208): Oxford University Press.
Harlow, W. V. (1991). Asset allocation in a downside-risk framework. Financial Analysts Journal, 47(5), 28-40.
Hendrickson, J. R., & Luther, W. J. (2022). Cash, crime, and cryptocurrencies. The Quarterly Review of Economics and Finance, 85, 200-207.
Itakura, K. (2020). Evaluating the impact of the US-China trade war. Asian Economic Policy Review, 15(1), 77-93.
Jebabli, I., Kouaissah, N., & Arouri, M. (2022). Volatility spillovers between stock and energy markets during crises: A comparative assessment between the 2008 global financial crisis and the COVID-19 pandemic crisis. Finance Research Letters, 46, 102363.
Ji, Q., Bouri, E., Lau, C. K. M., & Roubaud, D. (2019). Dynamic connectedness and integration in cryptocurrency markets. International Review of Financial Analysis, 63, 257-272.
Kakinaka, S., & Umeno, K. (2022). Cryptocurrency market efficiency in short-and long-term horizons during COVID-19: An asymmetric multifractal analysis approach. Finance Research Letters, 46, 102319.
Katsiampa, P. (2019). Volatility co-movement between Bitcoin and Ether. Finance Research Letters, 30, 221-227.
Katsiampa, P., Corbet, S., & Lucey, B. (2019). Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis. Finance Research Letters, 29, 68-74.
Kennedy, S., & Linnenluecke, M. K. (2022). Circular economy and resilience: A research agenda. Business Strategy and the Environment, 31(6), 2754-2765.
Kirikkaleli, D. (2016). Interlinkage between economic, financial, and political risks in the Balkan countries: Evidence from panel cointegration. Eastern European Economics, 54(3), 208-227.
Kolstad, I. (2007). Why firms should not always maximize profits. Journal of Business Ethics, 76, 137-145.
Kondor, D., Pósfai, M., Csabai, I., & Vattay, G. (2014). Do the rich get richer? An empirical analysis of the Bitcoin transaction network. PloS one, 9(2), e86197.
Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119-147.
Koop, G., Pesaran, M. H., & Potter, S. M. (1998). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119-147.
Kowalski, L., Green, W., Lilley, S., & Panourgias, N. (2022). Lackluster Adoption of Cryptocurrencies as a Consumer Payment Method in the United States—Hypothesis: Is This Independent Technology in Need of a Brand, and What Kind? Journal of Risk and Financial Management, 16(1), 23.
Kulbhaskar, A. K., & Subramaniam, S. (2023). Breaking news headlines: Impact on trading activity in the cryptocurrency market. Economic Modelling, 106397.
Li, He, C., & Lin, C. (2018). Economic impacts of possible China-US trade war. Emerging Markets Finance and Trade, 54(7), 1557-1577.
Li, Y., & Giles, D. E. (2015). Modeling volatility spillover effects between developed stock markets and Asian emerging stock markets. International Journal of Finance & Economics, 20(2), 155-177.
Lien, D., & Yang, L. (2008). The asymmetric effect of the basis on dynamic futures hedging: Empirical evidence from commodity markets. Journal of Banking & Finance, 32(2), 187-198.
Liu, W. (2019). Portfolio diversification across cryptocurrencies. Finance Research Letters, 29, 200-205.
Loi, H. (2018). The liquidity of Bitcoin. International Journal of Economics and Finance, 10(1), 13-22.
Luther, W. J. (2020). Regulatory ambiguity in the market for bitcoin. The Review of Austrian Economics, 1-14.
Makarov, I., & Schoar, A. (2020). Trading and arbitrage in cryptocurrency markets. Journal of Financial Economics, 135(2), 293-319.
Malmendier, U., Pouzo, D., & Vanasco, V. (2020). Investor experiences and financial market dynamics. Journal of Financial Economics, 136(3), 597-622.
Mensi, W., Nekhili, R., Vo, X. V., Suleman, T., & Kang, S. H. (2021). Asymmetric volatility connectedness among US stock sectors. The North American Journal of Economics and Finance, 56, 101327.
Mishra, R. K., & Karthik, M. (2020). Understanding the US-China Trade War: Causes, Consequences and Economic Impact. Global Trade and Customs Journal, 15(11/12).
Naeem, M. A., Qureshi, S., Rehman, M. U., & Balli, F. (2022). COVID-19 and cryptocurrency market: evidence from quantile connectedness. Applied Economics, 54(3), 280-306.
Okorie, D. I., & Lin, B. (2023). Cryptocurrency spectrum and 2020 pandemic: Contagion analysis. International Review of Economics & Finance, 84, 29-38.
Omane-Adjepong, M., & Alagidede, I. P. (2019). Multiresolution analysis and spillovers of major cryptocurrency markets. Research in International Business and Finance, 49, 191-206.
Osterrieder, J., & Lorenz, J. (2017). A statistical risk assessment of Bitcoin and its extreme tail behavior. Annals of Financial Economics, 12(01), 1750003.
Pakhchanyan, S. (2016). Operational risk management in financial institutions: A literature review. International Journal of Financial Studies, 4(4), 20.
Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of Business, 61-65.
Patton, A. J., & Sheppard, K. (2015). Good volatility, bad volatility: Signed jumps and the persistence of volatility. Review of Economics and Statistics, 97(3), 683-697.
Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17-29.
Raddant, M., & Kenett, D. Y. (2021). Interconnectedness in the global financial market. Journal of International Money and Finance, 110, 102280.
Rajagopal, V., Venkatesan, S. P., & Goh, M. (2017). Decision-making models for supply chain risk mitigation: A review. Computers & Industrial Engineering, 113, 646-682.
Rajan, R. G. (2006). Has finance made the world riskier? European financial management, 12(4), 499-533.
Rehman, M. U., Asghar, N., & Kang, S. H. (2020). Do Islamic indices provide diversification to bitcoin? A time-varying copulas and value at risk application. Pacific-Basin Finance Journal, 61, 101326.
Ren, X., Dou, Y., Dong, K., & Li, Y. (2022). Information spillover and market connectedness: multi-scale quantile-on-quantile analysis of the crude oil and carbon markets. Applied Economics, 54(38), 4465-4485.
Roll, R. (1984). A simple implicit measure of the effective bid‐ask spread in an efficient market. The Journal of Finance, 39(4), 1127-1139.
Sebastião, H., & Godinho, P. (2020). Bitcoin futures: An effective tool for hedging cryptocurrencies. Finance Research Letters, 33, 101230.
Segal, G., Shaliastovich, I., & Yaron, A. (2015). Good and bad uncertainty: Macroeconomic and financial market implications. Journal of Financial Economics, 117(2), 369-397.
Sensoy, A. (2019). The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Finance Research Letters, 28, 68-73.
Shafer, M., & Szado, E. (2020). Environmental, social, and governance practices and perceived tail risk. Accounting & Finance, 60(4), 4195-4224.
Shahzad, S. J. H., Bouri, E., Roubaud, D., & Kristoufek, L. (2020). Safe haven, hedge, and diversification for G7 stock markets: Gold versus bitcoin. Economic Modelling, 87, 212-224.
Shahzad, S. J. H., Bouri, E., Roubaud, D., Kristoufek, L., & Lucey, B. (2019). Is Bitcoin a better safe-haven investment than gold and commodities? International Review of Financial Analysis, 63, 322-330.
Shahzad, S. J. H., Naeem, M. A., Peng, Z., & Bouri, E. (2021). Asymmetric volatility spillover among Chinese sectors during COVID-19. International Review of Financial Analysis, 75, 101754.
Stiglitz, J. E. (2009). The current economic crisis and lessons for economic theory. Eastern Economic Journal, 35, 281-296.
Subramaniam, S., & Chakraborty, M. (2020). Investor attention and cryptocurrency returns: Evidence from quantile causality approach. Journal of Behavioral Finance, 21(1), 103-115.
Urata, S. (2020). US-Japan trade frictions: The past, the present, and implications for the US-China trade war. Asian Economic Policy Review, 15(1), 141-159.
Valdeolmillos, D., Mezquita, Y., González-Briones, A., Prieto, J., & Corchado, J. M. (2020). Blockchain technology: a review of the current challenges of cryptocurrency. Paper presented at the Blockchain and Applications: International Congress.
Wei, W. C. (2018). Liquidity and market efficiency in cryptocurrencies. Economics Letters, 168, 21-24.
Wu. (2022). Common risk factors in cryptocurrency. The Journal of Finance, 77(2), 1133-1177.
Wu, S., Tong, M., Yang, Z., & Derbali, A. (2019). Does gold or Bitcoin hedge economic policy uncertainty? Finance Research Letters, 31, 171-178.
Xi, D., O’Brien, T. I., & Irannezhad, E. (2020). Investigating the investment behaviors in cryptocurrency. The Journal of Alternative Investments, 23(2), 141-160.
Xu, Y., & Lien, D. (2020). Dynamic exchange rate dependences: The effect of the US-China trade war. Journal of International Financial Markets, Institutions, and Money, 68, 101238.
Yarovaya, L., Brzeszczyński, J., & Lau, C. K. M. (2016). Volatility spillovers across stock index futures in Asian markets: Evidence from range volatility estimators. Finance Research Letters, 17, 158-166.
Yean Tham, S., Yi, A. K. J., & Ann, T. B. (2019). US-China Trade War: Potential Trade and Investment Spillovers into Malaysia. Asian Economic Papers, 18(3), 117-135.
Yi, S., Xu, Z., & Wang, G.-J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60, 98-114.
Zhang, Dong, Chen, & Yu. (2023). The impacts of blockchain adoption on a dual-channel supply chain with risk-averse members. Omega, 114, 102747.
Zhang, Li, Y., & Xiong, X. (2021). Downside risk and the cross-section of cryptocurrency returns. Journal of Banking & Finance, 133, 106246.
Zhang, H., Hong, H., Guo, Y., & Yang, C. (2022). Information spillover effects from media coverage to the crude oil, gold, and Bitcoin markets during the COVID-19 pandemic: evidence from the time and frequency domains. International Review of Economics & Finance, 78, 267-285.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊