跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖雁玲
研究生(外文):LIAO, YAN-LING
論文名稱:利用奈升流速液相層析電噴灑串聯質譜儀分析(一)乙二醛及甲基乙二醛所誘導的去氧核醣核酸加成產物(二)分析人類血紅蛋白中雌二醇所形成的修飾
論文名稱(外文):Analysis of (1) Glyoxal- and Methylglyoxal-Induced DNA Adducts and (2) the Modification of Estradiol on Human Hemoglobin by Nanoflow Liquid Chromatography Nanospray Ionization Tandem Mass Spectrometry
指導教授:陳皓君
指導教授(外文):CHEN, HAUH-JYUN
口試委員:陳朝榮賴建成蔡伊琳
口試委員(外文):CHEN, CHAO-JUNGLAI, CHIEN-CHENTSAI, I-LIN
口試日期:2024-07-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:113
語文別:中文
論文頁數:156
中文關鍵詞:乙二醛甲基乙二醛DNA加成產物DNA交聯產物唾液DNA雌二醇醌轉譯後修飾血紅蛋白乳癌
外文關鍵詞:GlyoxalMethylglyoxalDNA AdductsEstradiolHuman HemoglobinNanoflow Liquid ChromatographyMass Spectrometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乙二醛 (glyoxal, gx)及甲基乙二醛 (methylglyoxal, Mgx),為高級糖化作用的最終產物 (AGEs)。已有許多研究發現糖尿病患者血漿中gx及Mgx濃度較正常人高。高親電性的gx及Mgx可能會和去氧核醣核酸 (deoxyribosenucleic acid, DNA)反應形成DNA加成產物,進而誘發突變。本實驗是利用穩定同位素稀釋法搭配奈升流速液相層析高解析度軌道阱質譜儀同時分析gx及Mgx所形成的加成產物,N2-carboxymethyl-2’-deoxyguanosine (CMdG)、N2-carboxyethyl-2’-deoxyguanosine (CEdG)及DNA交聯產物,dG-gx-dA和dG-gx-dC。本研究總共分析了十個真實樣品,分別是健康受試者四個血液以及三個唾液DNA,和五個糖尿病患者血液DNA,在所有樣品中皆有偵測到CMdG及CEdG,dG-gx-dC有在四個血液DNA中測到,而dG-gx-dA則只在一個血液樣品中測到。此研究為第一個開發同時分析由gx及Mgx所產生的四個加成產物,CMdG、CEdG、dG-gx-dC、dG-gx-dA,同時也是第一個在人類唾液樣品中分析到這四個加成產物的研究。
雌激素中的雌二醇在人體內會被氧化成雌二醇醌,雌二醇醌會與人體內的DNA及蛋白質反應形成修飾,且有許多文獻提到乳癌患者中雌二醇醌與蛋白質所形成的加成產物大於健康受試者。本實驗使用奈升流速高解析度軌道阱質譜儀分析雌二醇醌在人類血紅蛋白中所形成的修飾,總共鑑定出了16個修飾,分別是α-104Cys+284、α-104Cys+286、α-104Cys+300、α-104Cys+302、α-104Cys+316、α-104Cys+318、β-2His+284、β-93Cys+300、β-93Cys+316、β-93Cys+318、β-112Cys+284、β-112Cys+286、β-112Cys+300、β-112Cys+302、β-112Cys+316、β-112Cys+318。將此實驗應用在真實樣品上,並計算修飾化程度,總共分析了17位乳癌患者與17位與其年紀相仿的女性健康受試者,在樣品上僅分析到β-112Cys的修飾,雖然在所有乳癌患者的β-112Cys上的修飾平均修飾化程度都大於健康受試者,但皆無統計學上顯著差異。

Glyoxal (gx) and methylglyoxal (Mgx) are the end products of advanced glycation (AGEs). Many studies have found that the concentration of gx and Mgx in the plasma of diabetic patients is higher than that of normal people. Highly electrophilic gx and Mgx may react with deoxyribosenucleic acid (DNA) to form DNA addition products, thereby inducing mutations. This experiment uses the stable isotope dilution method with a nanoliter flow liquid chromatography high-resolution orbitrap mass spectrometer to simultaneously analyze the addition products formed by gx and Mgx, N2-carboxymethyl-2'-deoxyguanosine (CMdG), N2-carboxyethyl -2'-deoxyguanosine (CEdG) and DNA cross-linked products, dG-gx-dA and dG-gx-dC. A total of ten real samples were analyzed in this study, including four blood and three saliva DNA from healthy subjects, and five blood DNA from diabetic patients. CMdG and CEdG were detected in all samples, and dG-gx- dC was detected in four blood DNA samples, while dG-gx-dA was detected in only one blood sample. This study is the first to develop the simultaneous analysis of four addition products produced by gx and Mgx, CMdG, CEdG, dG-gx-dC, and dG-gx-dA. It is also the first to analyze it in human saliva samples. Study of these four addition products.
Estradiol in estrogen will be oxidized into estradiol quinone in the human body. Estradiol quinone will react with DNA and proteins in the human body to form modifications. There are many documents mentioning the interaction between estradiol quinone and proteins in breast cancer patients. The addition products formed were greater than in healthy subjects. This experiment used a nanoliter flow rate high-resolution orbital trap mass spectrometer to analyze the modifications formed by estradiol quinone in human hemoglobin. A total of 16 modifications were identified, namely α-104Cys+284, α-104Cys+286, α -104Cys+300, α-104Cys+302, α-104Cys+316, α-104Cys+318, β-2His+284, β-93Cys+300, β-93Cys+316, β-93Cys+318, β-112Cys +284, β-112Cys+286, β-112Cys+300, β-112Cys+302, β-112Cys+316, β-112Cys+318. This experiment was applied to real samples and the degree of modification was calculated. A total of 17 breast cancer patients and 17 healthy female subjects of similar age were analyzed. Only β-112Cys modification was analyzed on the samples, although in all samples The average degree of modification on β-112Cys in breast cancer patients was greater than that in healthy subjects, but there was no statistically significant difference.
利用奈升流速液相層析電噴灑串聯質譜儀分析 (一)乙二醛及甲基乙二醛所誘導的去氧核醣核酸加成產物 (二)分析人類血紅蛋白中雌二醇所形成的修飾 1
謝誌 i
總摘要 ii
目錄 iii
表目錄 vi
圖目錄 vii
附圖 ix
(一) 利用奈升流速液相層析電噴灑串聯質譜儀分析乙二醛及甲基乙二醛所誘導的去氧核醣核酸加成產物 1
摘要 2
一、 緒論 3
1-1 去氧核醣核酸 (deoxyribonucleic acid, DNA) 3
1-2 DNA加成產物 (DNA adducts) 5
1-3 脂質過氧化 (lipid peroxidation) 7
1-4 梅納反應 (Maillard reaction) 8
1-5 乙二醛 (glyoxal)與甲基乙二醛 (methylglyoxal) 10
1-6 乙二醛與甲基乙二醛形成的DNA加成產物 11
1-7 dG-gx-dC, dG-gx-dA, CMdG, CEdG之相關文獻 13
1-8 研究動機 19
二、 實驗流程 20
2-1 藥品 20
2-2 儀器 20
2-3 材料 21
2-4 標準品製備 21
2-5 實驗設計 22
2-6 酶水解DNA 23
2-7 從人類血液中萃取DNA48 24
2-8 從人類唾液中萃取DNA49 24
2-9 計算水解效率 25
2-10 利用液相層析儀 (HPLC)對分析物進行濃縮淨化 25
2-11 利用固相萃取管柱 (SPE)對分析物進行濃縮淨化 26
2-12 偵測極限 26
2-13 nanoLC-NSI/MS/MS之分析條件 26
2-14 改善萃取後DNA純度之方法 28
三、 結果與討論 30
3-1 SPE進行濃縮淨化之回收率 30
3-2 LC進行純化濃縮淨化之回收率 30
3-3 TSQ比較使用SPE+LC及LC純化之回收率 31
3-4 找尋OE 120最佳碰撞能量 31
3-5 純化收集步驟有機相對CMdG之影響 33
3-6 四個加成產物在OE120偵測極限 34
3-7 使用不同水解方法水解小牛胸腺DNA及人類胎盤DNA 35
3-8 使用方法A水解測試再現性 38
3-9 分析唾液及血液DNA真實樣品 42
3-10 進一步純化DNA結果 45
四、 結論 47
(二) 利用奈升流速液相層析電噴灑串聯質譜儀分析人類血紅蛋白中雌二醇所形成的修飾 48
摘要 49
五、 緒論 50
5-1 人類血紅蛋白介紹 (human hemoglobin, hHb) 50
5-2 轉譯後修飾 (post translational modification, PTM) 52
5-3 雌激素 (estrogen) 52
5-4 雌二醇醌在胺基酸上形成的修飾 54
5-5 乳癌 (breast cancer) 55
5-6 雌二醇醌在胺基酸上形成修飾相關文獻 56
5-7 甲基乙二醛 (Methylglyoxal, Mgx) 60
5-8 丙二醛 (malondialdehyde, MDA) 61
5-9 甲基乙二醛與丙二醛 61
5-10 研究動機 62
六、 實驗流程 63
6-1 藥品 63
6-2 儀器 63
6-3 藉由雌二醇 (E2)合成雌二醇醌 (E2Q) 63
6-4 藉由雌二醇醌 (E2Q)對血紅蛋白進行反應 64
6-5 水解血紅蛋白 64
6-6 奈升流速液相層析質譜儀分析E2Q treated Hb條件 65
6-7 胜肽斷裂形式 66
6-8 數據依賴擷取 (Data-dependent acquisition, DDA)分析 66
6-9 相對修飾化程度 (relative extent of modification, EoM) 66
6-10 劑量相關性 (dose-dependency) 67
6-11 血液樣品資訊 67
6-12 從人類血液樣品中萃取血紅蛋白 68
6-13 使用螢光定量萃取出的血紅蛋白 68
6-14 水解真實樣品之血紅蛋白 68
6-15 統計分析 69
6-16 藉由Mgx對血紅蛋白進行反應 69
6-17 藉由MDA對血紅蛋白進行反應 69
6-18 奈升流速液相層析質譜儀分析MDA及Mgx treated Hb條件 69
七、 結果與討論 71
7-1 調整分析梯度 71
7-2 鑑定雌二醇醌在人類血紅蛋白所形成的修飾 72
7-3 定性修飾胜肽及計算胜肽修飾化程度 (EoM) 75
7-4 劑量相關性 (dose dependency) 80
7-5 乳癌患者與健康受試者樣品資訊 83
7-6 乳癌患者與健康受試者血紅蛋白修飾與統計分析結果 83
7-7 丙二醛和離胺酸的反應81 88
7-8 甲基乙二醛和離胺酸的反應81 89
7-9 人類血紅蛋白與Mgx及MDA反應所得K+72修飾 89
7-10 人類血紅蛋白與MDA反應所得11K+72修飾之peak位置 91
7-11 人類血紅蛋白水解 92
7-12 人類血紅蛋白與MDA進行劑量反應 (dose-dependency) 93
八、 結論 95
九、 參考文獻 96
十、 附圖 103

1. 莊榮輝, Biochemistry Basics. 2008.
2. Disclaimer How is a phospodiester bond formed? . https://byjus.com/question-answer/how-is-a-phospodiester-bond-formed-how-to-remember-names-of-nitrogen-bases-and-its/.
3. Bano, E.; Fradetal, L.; Ollivier, M.; Choi, J.-H.; Stambouli, V., Chapter 9 - SiC Nanowire-Based Transistors for Electrical DNA Detection. In Silicon Carbide Biotechnology (Second Edition), Saddow, S. E., Ed. Elsevier: 2016; pp 261-310.
4. Tretyakova, N.; Villalta, P. W.; Kotapati, S., Mass spectrometry of structurally modified DNA. Chem Rev 2013, 113 (4), 2395-436.
5. Tang, Y.; Zhang, J. L., Recent developments in DNA adduct analysis using liquid chromatography coupled with mass spectrometry. J Sep Sci 2020, 43 (1), 31-55.
6. Haider, K.; Haider, M. R.; Neha, K.; Yar, M. S., Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem 2020, 204, 112607.
7. Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A., Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev 2017, 2017, 8416763.
8. Stevens, J. F.; Maier, C. S., Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 2008, 52 (1), 7-25.
9. Augustine, J.; Troendle, E. P.; Barabas, P.; McAleese, C. A.; Friedel, T.; Stitt, A. W.; Curtis, T. M., The Role of Lipoxidation in the Pathogenesis of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2020, 11, 621938.
10. Moldogazieva, N. T.; Mokhosoev, I. M.; Mel'nikova, T. I.; Porozov, Y. B.; Terentiev, A. A., Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev 2019, 2019, 3085756.
11. Gianazza, E.; Brioschi, M.; Fernandez, A. M.; Banfi, C., Lipoxidation in cardiovascular diseases. Redox Biol 2019, 23, 101119.
12. Arivazhagan, L.; Lopez-Diez, R.; Shekhtman, A.; Ramasamy, R.; Schmidt, A. M., Glycation and a Spark of ALEs (Advanced Lipoxidation End Products) - Igniting RAGE/Diaphanous-1 and Cardiometabolic Disease. Front Cardiovasc Med 2022, 9, 937071.
13. Bodzek, M.; Rajca, M., Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds / Fotokataliza w oczyszczaniu i dezynfekcji wody część i. podstawy teoretyczne. Ecological Chemistry and Engineering S 2012, 19 (4), 489-512.
14. Murata, M., Browning and pigmentation in food through the Maillard reaction. Glycoconjugate J 2021, 38 (3), 283-292.
15. Glomb, M. A.; Monnier, V. M., Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 1995, 270 (17), 10017-
97
26.
16. Nevin, C.; McNeil, L.; Ahmed, N.; Murgatroyd, C.; Brison, D.; Carroll, M., Investigating the Glycating Effects of Glucose, Glyoxal and Methylglyoxal on Human Sperm. Sci Rep 2018, 8 (1), 9002.
17. Thornalley, P. J.; Langborg, A.; Minhas, H. S., Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 1999, 344 Pt 1 (Pt 1), 109-16.
18. Thornalley, P. J., Dicarbonyl intermediates in the maillard reaction. Ann N Y Acad Sci 2005, 1043, 111-7.
19. Shen, C. Y.; Lu, C. H.; Wu, C. H.; Li, K. J.; Kuo, Y. M.; Hsieh, S. C.; Yu, C. L., The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules 2020, 25 (23).
20. Mizutari, K.; Ono, T.; Ikeda, K.; Kayashima, K.; Horiuchi, S., Photo-enhanced modification of human skin elastin in actinic elastosis by N(epsilon)-(carboxymethyl)lysine, one of the glycoxidation products of the Maillard reaction. J Invest Dermatol 1997, 108 (5), 797-802.
21. Kielhorn, J.; Pohlenz-Michel, C.; Schmidt, S.; Mangelsdorf, I.; World Health, O.; International Programme on Chemical, S., Glyoxal. World Health Organization: Geneva, 2004.
22. Nagao, M.; Fujita, Y.; Wakabayashi, K.; Nukaya, H.; Kosuge, T.; Sugimura, T., Mutagens in coffee and other beverages. Environ Health Perspect 1986, 67, 89-91.
23. Moree-Testa, P.; Saint-Jalm, Y., Determination of α-dicarbonyl compounds in cigarette smoke. Journal of Chromatography A 1981, 217, 197-208.
24. Frankel, E. N., Volatile lipid oxidation products. Prog Lipid Res 1983, 22 (1), 1-33.
25. Loidl-Stahlhofen, A.; Spiteller, G., alpha-Hydroxyaldehydes, products of lipid peroxidation. Biochim Biophys Acta 1994, 1211 (2), 156-60.
26. Lapolla, A.; Flamini, R.; Dalla Vedova, A.; Senesi, A.; Reitano, R.; Fedele, D.; Basso, E.; Seraglia, R.; Traldi, P., Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med 2003, 41 (9), 1166-73.
27. Ueda, Y.; Miyata, T.; Goffin, E.; Yoshino, A.; Inagi, R.; Ishibashi, Y.; Izuhara, Y.; Saito, A.; Kurokawa, K.; Van Ypersele De Strihou, C., Effect of dwell time on carbonyl stress using icodextrin and amino acid peritoneal dialysis fluids. Kidney Int 2000, 58 (6), 2518-24.
28. Raj, D. S.; Choudhury, D.; Welbourne, T. C.; Levi, M., Advanced glycation end products: a Nephrologist's perspective. Am J Kidney Dis 2000, 35 (3), 365-80.
29. Chen, H. J.; Chen, Y. C., Analysis of glyoxal-induced DNA cross-links by capillary liquid chromatography nanospray ionization tandem mass spectrometry. Chem Res Toxicol 2009, 22 (7), 1334-41.
30. Shuck, S. C.; Wuenschell, G. E.; Termini, J. S., Product Studies and Mechanistic Analysis of the Reaction of Methylglyoxal with Deoxyguanosine. Chem Res Toxicol 2018, 31 (2), 105-115.
31. Chen, H. C.; Chang, Y. L.; Teng, Y. C.; Hsiao, C. F.; Lin, T. S., A Stable Isotope Dilution
98
Nanoflow Liquid Chromatography Tandem Mass Spectrometry Assay for the Simultaneous Detection and Quantification of Glyoxal-Induced DNA Cross-Linked Adducts in Leukocytes from Diabetic Patients. Anal Chem 2017, 89 (24), 13082-13088.
32. Wang, H.; Cao, H.; Wang, Y., Quantification of N2-carboxymethyl-2'-deoxyguanosine in calf thymus DNA and cultured human kidney epithelial cells by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope dilution method. Chem Res Toxicol 2010, 23 (1), 74-81.
33. Guilbaud, A.; Ghanegolmohammadi, F.; Wang, Y.; Leng, J.; Kreymerman, A.; Gamboa Varela, J.; Garbern, J.; Elwell, H.; Cao, F.; Ricci-Blair, E. M.; Liang, C.; Balamkundu, S.; Vidoudez, C.; DeMott, M. S.; Bedi, K.; Margulies, K. B.; Bennett, D. A.; Palmer, A. A.; Barkley-Levenson, A.; Lee, R. T.; Dedon, P. C., Discovery adductomics provides a comprehensive portrait of tissue-, age- and sex-specific DNA modifications in rodents and humans. Nucleic Acids Res 2023, 51 (20), 10829-10845.
34. Synold, T.; Xi, B.; Wuenschell, G. E.; Tamae, D.; Figarola, J. L.; Rahbar, S.; Termini, J., Advanced glycation end products of DNA: quantification of N2-(1-Carboxyethyl)-2'-deoxyguanosine in biological samples by liquid chromatography electrospray ionization tandem mass spectrometry. Chem Res Toxicol 2008, 21 (11), 2148-55.
35. Schneider, M.; Thoss, G.; Hubner-Parajsz, C.; Kientsch-Engel, R.; Stahl, P.; Pischetsrieder, M., Determination of glycated nucleobases in human urine by a new monoclonal antibody specific for N2-carboxyethyl-2'-deoxyguanosine. Chem Res Toxicol 2004, 17 (10), 1385-90.
36. Waris, S.; Winklhofer-Roob, B. M.; Roob, J. M.; Fuchs, S.; Sourij, H.; Rabbani, N.; Thornalley, P. J., Increased DNA dicarbonyl glycation and oxidation markers in patients with type 2 diabetes and link to diabetic nephropathy. J Diabetes Res 2015, 2015, 915486.
37. Li, H.; Nakamura, S.; Miyazaki, S.; Morita, T.; Suzuki, M.; Pischetsrieder, M.; Niwa, T., N2-carboxyethyl-2'-deoxyguanosine, a DNA glycation marker, in kidneys and aortas of diabetic and uremic patients. Kidney Int 2006, 69 (2), 388-92.
38. Yuan, B.; Cao, H.; Jiang, Y.; Hong, H.; Wang, Y., Efficient and accurate bypass of N2-(1-carboxyethyl)-2'-deoxyguanosine by DinB DNA polymerase in vitro and in vivo. Proc. Nat.l Acad. Sci. U.S.A. 2008, 105 (25), 8679−84.
39. Jaramillo, R.; Shuck, S. C.; Chan, Y. S.; Liu, X.; Bates, S. E.; Lim, P. P.; Tamae, D.; Lacoste, S.; O'Connor, T. R.; Termini, J., DNA Advanced Glycation End Products (DNA-AGEs) Are Elevated in Urine and Tissue in an Animal Model of Type 2 Diabetes. Chem Res Toxicol 2017, 30 (2), 689-698.
40. Breyer, V.; Becker, C. M.; Pischetsrieder, M., Intracellular glycation of nuclear DNA, mitochondrial DNA, and cytosolic proteins during senescence-like growth arrest. DNA Cell Biol 2011, 30 (9), 681-9.
41. Breyer, V.; Weigel, I.; Huang, T. T.; Pischetsrieder, M., Endogenous mitochondrial oxidative stress in MnSOD-deficient mouse embryonic fibroblasts promotes mitochondrial DNA glycation.
99
Free Radic Biol Med 2012, 52 (9), 1744-9.
42. 鄧儀君. 以質譜法分析(一)人類尿液中五個DNA加成產物(二)乙二醛誘導形成的DNA交聯產物(三)從採血紙上萃取血紅蛋白上乙二醛與甲基乙二醛修飾程度的穩定性. 國立中正大學, 2016.
43. 陳柏翰. 以奈升流速液相層析串聯質譜法分析(一) 雌二醇於人類血紅蛋白上所產生之修飾、(二) 乙二醛和甲基乙二醛所產生之DNA加成產物. 國立中正大學, 2023.
44. 陳昭儀. 利用奈升流速液相層析奈電噴灑游離串聯質譜儀分析(1) 人類血紅蛋白上因丙二醛所形成的轉譯後修飾(2) DNA 中的N2-羧甲基2'-脫氧鳥苷. 國立中正大學, 2020.
45. 陳乃瑛. 以奈升流速液相層析串聯質譜法分析(一) 丙烯醛於人類血紅蛋白上之修飾(二) DNA 上N2-(1-羧乙基)-2'-去氧鳥糞嘌呤核苷. 國立中正大學, 2020.
46. 張雅嵐. 以穩定同位素稀釋液相層析奈電噴灑游離串聯質譜法分析(1)人類白血球DNA中乙二醛與DNA的交聯產物與(2)人類尿液中乙烯基與8-羥基-2’-去氧鳥糞嘌呤核苷. 國立中正大學, 2012.
47. Hong, H.; Cao, H.; Wang, Y.; Wang, Y., Identification and quantification of a guanine-thymine intrastrand cross-link lesion induced by Cu(II)/H2O2/ascorbate. Chem Res Toxicol 2006, 19 (5), 614-21.
48. Chen, H. J.; Lin, W. P., Simultaneous quantification of 1,N2-propano-2'-deoxyguanosine adducts derived from acrolein and crotonaldehyde in human placenta and leukocytes by isotope dilution nanoflow LC nanospray ionization tandem mass spectrometry. Anal Chem 2009, 81 (23), 9812-8.
49. Chen, H. J.; Lin, W. P., Quantitative analysis of multiple exocyclic DNA adducts in human salivary DNA by stable isotope dilution nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry. Anal Chem 2011, 83 (22), 8543-51.
50. Lum, A.; Le Marchand, L., A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies. Cancer Epidemiol Biomarkers Prev 1998, 7 (8), 719-24.
51. Bessette, E. E.; Spivack, S. D.; Goodenough, A. K.; Wang, T.; Pinto, S.; Kadlubar, F. F.; Turesky, R. J., Identification of carcinogen DNA adducts in human saliva by linear quadrupole ion trap/multistage tandem mass spectrometry. Chem Res Toxicol 2010, 23 (7), 1234-44.
52. inc, D. g. RNA removal by double-RNase digestion 2011. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.dnagenotek.com/row/pdf/PD-PR-040.pdf.
53. VectorMine; Dreamstime.com Composition of blood vector illustration. Labeled anatomical structure scheme with plasma, white and red cells and platelets. Percentage diagram with body liquid parts amount explanation information. https://www.dreamstime.com/composition-blood-vector-illustration-labeled-anatomical-structure-scheme-plasma-white-red-cells-platelets-percentage-image184029683.
54. Wikipedia 血紅素. https://zh.wikipedia.org/zh-tw/%E8%A1%80%E7%BA%A2%E8%9B%8B%E7%99%BD.
100
55. Chen, H. J. C.; Chen, Y. C., Reactive Nitrogen Oxide Species-Induced Post-Translational Modifications in Human Hemoglobin and the Association with Cigarette Smoking. Analytical Chemistry 2012, 84 (18), 7881-7890.
56. Carlsson, H.; Rappaport, S. M.; Tornqvist, M., Protein Adductomics: Methodologies for Untargeted Screening of Adducts to Serum Albumin and Hemoglobin in Human Blood Samples. High Throughput 2019, 8 (1).
57. Ramazi, S.; Zahiri, J., Posttranslational modifications in proteins: resources, tools and prediction methods. Database (Oxford) 2021, 2021.
58. Fuentes, N.; Silveyra, P., Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 2019, 116, 135-170.
59. Watson, C. S.; Jeng, Y. J.; Kochukov, M. Y., Nongenomic actions of estradiol compared with estrone and estriol in pituitary tumor cell signaling and proliferation. FASEB J 2008, 22 (9), 3328-36.
60. Samavat, H.; Kurzer, M. S., Estrogen metabolism and breast cancer. Cancer Lett 2015, 356 (2 Pt A), 231-43.
61. Cavalieri, E.; Chakravarti, D.; Guttenplan, J.; Hart, E.; Ingle, J.; Jankowiak, R.; Muti, P.; Rogan, E.; Russo, J.; Santen, R.; Sutter, T., Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 2006, 1766 (1), 63-78.
62. Lin, C.; Hsieh, W. C.; Chen, D. R.; Kuo, S. J.; Yu, W. F.; Hu, S. W.; Sue, H. J.; Ko, M. H.; Juan, C. H.; Chung, K. S.; Lin, P. H., Hemoglobin adducts as biomarkers of estrogen homeostasis: elevation of estrogenquinones as a risk factor for developing breast cancer in Taiwanese women. Toxicol Lett 2014, 225 (3), 386-91.
63. Patel, S.; Homaei, A.; Raju, A. B.; Meher, B. R., Estrogen: The necessary evil for human health, and ways to tame it. Biomed Pharmacother 2018, 102, 403-411.
64. Abul-Hajj, Y. J.; Tabakovic, K.; Gleason, W. B.; Ojala, W. H., Reactions of 3,4-estrone quinone with mimics of amino acid side chains. Chem Res Toxicol 1996, 9 (2), 434-8.
65. Fang, C. M.; Ku, M. C.; Chang, C. K.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, S. H., Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicol Sci 2015, 148 (2), 433-42.
66. Nicolis, S.; Monzani, E.; Pezzella, A.; Ascenzi, P.; Sbardella, D.; Casella, L., Neuroglobin modification by reactive quinone species. Chem Res Toxicol 2013, 26 (12), 1821-31.
67. Jen, H. H.; Kafeenah, H.; Chang, T. Y.; Lin, Y. M.; Shan, Y. S.; Wu, C. H.; Chen, S. H., Quantification of the Endogenous Adduction Level on Hemoglobin and Correlation with Albumin Adduction via Proteomics: Multiple Exposure Markers of Catechol Estrogen. J Proteome Res 2021, 20 (9), 4248-4257.
68. Society, A. C. Breast Cancer. https://www.cancer.org/cancer/types/breast-cancer/understanding-a-breast-cancer-diagnosis/stages-of-breast-cancer.html.
69. 嘉義長庚紀念醫院 乳癌分期 (Breast Cancer Staging).
101
https://www1.cgmh.org.tw/intr/intr5/c6210/breast%20cancer%20stage.html.
70. 財團法人台灣癌症基金會 乳癌 - Breast Cancer. https://www.canceraway.org.tw/cancerinfo.php?id=EC4BC652-18B3-464C-B19D-CB0C49C64285.
71. Chen, D. R.; Chen, S. T.; Wang, T. W.; Tsai, C. H.; Wei, H. H.; Chen, G. J.; Yang, T. C.; Lin, C.; Lin, P. H., Characterization of estrogen quinone-derived protein adducts and their identification in human serum albumin derived from breast cancer patients and healthy controls. Toxicol Lett 2011, 202 (3), 244-52.
72. Lin, C.; Chen, D. R.; Hsieh, W. C.; Yu, W. F.; Lin, C. C.; Ko, M. H.; Juan, C. H.; Tsuang, B. J.; Lin, P. H., Investigation of the cumulative body burden of estrogen-3,4-quinone in breast cancer patients and controls using albumin adducts as biomarkers. Toxicol Lett 2013, 218 (3), 194-9.
73. Lin, C.; Chen, D. R.; Wang, S. L.; Hsieh, W. C.; Yu, W. F.; Wang, T. W.; Tsai, C. H.; Wei, H. H.; Tsuang, B. J.; Lin, P. H., Cumulative body burdens of polycyclic aromatic hydrocarbons associated with estrogen bioactivation in pregnant women: protein adducts as biomarkers of exposure. J Environ Sci Health A Tox Hazard Subst Environ Eng 2014, 49 (6), 634-40.
74. Lin, P. H.; Yang, H. J.; Hsieh, W. C.; Lin, C.; Chan, Y. C.; Wang, Y. F.; Yang, Y. T.; Lin, K. J.; Lin, L. S.; Chen, D. R., Albumin and hemoglobin adducts of estrogen quinone as biomarkers for early detection of breast cancer. PLoS One 2018, 13 (9), e0201241.
75. Chen, D. R.; Hsieh, W. C.; Liao, Y. L.; Lin, K. J.; Wang, Y. F.; Lin, P. H., Imbalances in the disposition of estrogen and naphthalene in breast cancer patients: a potential biomarker of breast cancer risk. Sci Rep 2020, 10 (1), 11773.
76. Lin, C.; Chen, D. R.; Kuo, S. J.; Feng, C. Y.; Chen, D. R.; Hsieh, W. C.; Lin, P. H., Profiling of Protein Adducts of Estrogen Quinones in 5-Year Survivors of Breast Cancer Without Recurrence. Cancer Control 2022, 29, 10732748221084196.
77. Huang, Y. S.; Lin, Y. M.; Chen, H.; Wu, C. H.; Syu, C. H.; Huang, T. E.; Do, Q. T.; Chen, S. H., Targeting Endogenous Adduction Level of Serum Albumin by Parallel Reaction Monitoring via Standard Additions and Intact Protein Measurement: Biological Dosimetry of Catechol Estrogens. Anal Chem 2019, 91 (24), 15922-15931.
78. Chen, H. J.; Chen, Y. C.; Hsiao, C. F.; Chen, P. F., Mass Spectrometric Analysis of Glyoxal and Methylglyoxal-Induced Modifications in Human Hemoglobin from Poorly Controlled Type 2 Diabetes Mellitus Patients. Chem Res Toxicol 2015, 28 (12), 2377-89.
79. Kikugawa, K.; Kosugi, H.; Asakura, T., Effect of malondialdehyde, a product of lipid peroxidation, on the function and stability of hemoglobin. Arch Biochem Biophys 1984, 229 (1), 7-14.
80. Chen, H. C.; Chen, C. Y.; Fang, Y. H.; Hung, K. W.; Wu, D. C., Malondialdehyde-Induced Post-translational Modifications in Hemoglobin of Smokers by NanoLC-NSI/MS/MS Analysis. J Proteome Res 2022, 21 (12), 2947-2957.
81. Chen, H. C.; Liao, Y. L., Response to "Malondialdehyde-Induced Post-Translational
102
Modification of Human Hemoglobin". J Proteome Res 2023, 22 (6), 2144-2148.
82. Lin, C.; Chen, D. R.; Kuo, S. J.; Feng, C. Y.; Chen, D. R.; Hsieh, W. C.; Lin, P. H., Profiling of Protein Adducts of Estrogen Quinones in 5-Year Survivors of Breast Cancer Without Recurrence. Cancer Control 2022, 29.
電子全文 電子全文(網際網路公開日期:20291129)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 雌性激素血紅蛋白胼合物 與乳癌診斷與治療指標之相關性研究
2. 以質譜法分析人類(一)乙醯化血紅蛋白; (二)唾 液蛋白之硝化與亞硝化的轉譯後修飾; (三)從採血 紙上萃取的血紅蛋白中硝化及氧化的穩定度
3. 利用液相層析搭配奈電噴灑游離串聯式質譜儀 (一) 分析乳癌患者中人體血紅蛋白的氯化、雙氯化、糖化與乙二醛以及甲基乙二醛誘導的修飾與 (二) 鑑定與分析dSp與dGh
4. 利用液相層析搭配奈電噴灑游離串聯質譜儀同時分析(一)人類血紅蛋白上丙二醛和乙醛誘導及乙基化轉譯後修飾; (二)人類尿液中六個外環性DNA加成產物
5. 探討在乳癌代謝壓力反應中EGR1的轉譯後修飾對其功能之影響
6. 以奈升流速液相層析串聯質譜法分析 (一) 雌二醇於人類血紅蛋白上所產生之修飾、(二) 乙二醛和甲基乙二醛所產生之 DNA加成產物
7. 以奈升流速串聯質譜法分析(一)丙烯醛在人類血紅蛋白上所誘導的轉譯後修飾(二)人類尿液中的外環性DNA加成產物
8. 利用奈升流速液相層析奈電噴灑串聯質譜儀分析(一) 人體血液中丙二醛之轉譯後修飾程度;(二) DNA 中的溴化與氯化之去氧胞嘧啶核苷、去氧尿嘧啶核苷
9. 以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物
10. 利用奈升流速液相層析奈電噴灑游離串聯式質譜儀分析 (1)DNA與尿液中的加成產物5-醛基去氧脲苷 (2)乳癌患者血紅蛋白中的氯化、硝化、亞硝化以及氧化修飾
11. hnRNPK蛋白質絲氨酸 379 磷酸化在乳癌中的角色
12. 以奈升流速液相層析串聯質譜法分析 (一) 丙烯醛於人類血紅蛋白上之修飾 (二) DNA 上 N2-(1-羧乙基)-2'-去氧鳥糞嘌呤核苷
13. 利用奈升流速液相層析奈電噴灑游離串聯質譜儀分析 (1) 人類血紅蛋白上因丙二醛所形成的轉譯後修飾 (2) DNA 中的N2-羧甲基2'-脫氧鳥苷
14. 以質譜法分析(一)胃癌患者血紅蛋白上的硝化、氯化與氧化修飾(二)雌二醇誘導之人類血紅蛋白上的轉譯後修飾(三)外環性DNA加成產物
15. 利用奈升流速液相層析奈電噴灑游離串聯式質譜法分析人類(1)血紅蛋白上因活性氧物種所形成的轉譯後修飾(2)
 
無相關期刊