|
1. 莊榮輝, Biochemistry Basics. 2008. 2. Disclaimer How is a phospodiester bond formed? . https://byjus.com/question-answer/how-is-a-phospodiester-bond-formed-how-to-remember-names-of-nitrogen-bases-and-its/. 3. Bano, E.; Fradetal, L.; Ollivier, M.; Choi, J.-H.; Stambouli, V., Chapter 9 - SiC Nanowire-Based Transistors for Electrical DNA Detection. In Silicon Carbide Biotechnology (Second Edition), Saddow, S. E., Ed. Elsevier: 2016; pp 261-310. 4. Tretyakova, N.; Villalta, P. W.; Kotapati, S., Mass spectrometry of structurally modified DNA. Chem Rev 2013, 113 (4), 2395-436. 5. Tang, Y.; Zhang, J. L., Recent developments in DNA adduct analysis using liquid chromatography coupled with mass spectrometry. J Sep Sci 2020, 43 (1), 31-55. 6. Haider, K.; Haider, M. R.; Neha, K.; Yar, M. S., Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem 2020, 204, 112607. 7. Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A., Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev 2017, 2017, 8416763. 8. Stevens, J. F.; Maier, C. S., Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 2008, 52 (1), 7-25. 9. Augustine, J.; Troendle, E. P.; Barabas, P.; McAleese, C. A.; Friedel, T.; Stitt, A. W.; Curtis, T. M., The Role of Lipoxidation in the Pathogenesis of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2020, 11, 621938. 10. Moldogazieva, N. T.; Mokhosoev, I. M.; Mel'nikova, T. I.; Porozov, Y. B.; Terentiev, A. A., Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev 2019, 2019, 3085756. 11. Gianazza, E.; Brioschi, M.; Fernandez, A. M.; Banfi, C., Lipoxidation in cardiovascular diseases. Redox Biol 2019, 23, 101119. 12. Arivazhagan, L.; Lopez-Diez, R.; Shekhtman, A.; Ramasamy, R.; Schmidt, A. M., Glycation and a Spark of ALEs (Advanced Lipoxidation End Products) - Igniting RAGE/Diaphanous-1 and Cardiometabolic Disease. Front Cardiovasc Med 2022, 9, 937071. 13. Bodzek, M.; Rajca, M., Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds / Fotokataliza w oczyszczaniu i dezynfekcji wody część i. podstawy teoretyczne. Ecological Chemistry and Engineering S 2012, 19 (4), 489-512. 14. Murata, M., Browning and pigmentation in food through the Maillard reaction. Glycoconjugate J 2021, 38 (3), 283-292. 15. Glomb, M. A.; Monnier, V. M., Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 1995, 270 (17), 10017- 97 26. 16. Nevin, C.; McNeil, L.; Ahmed, N.; Murgatroyd, C.; Brison, D.; Carroll, M., Investigating the Glycating Effects of Glucose, Glyoxal and Methylglyoxal on Human Sperm. Sci Rep 2018, 8 (1), 9002. 17. Thornalley, P. J.; Langborg, A.; Minhas, H. S., Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 1999, 344 Pt 1 (Pt 1), 109-16. 18. Thornalley, P. J., Dicarbonyl intermediates in the maillard reaction. Ann N Y Acad Sci 2005, 1043, 111-7. 19. Shen, C. Y.; Lu, C. H.; Wu, C. H.; Li, K. J.; Kuo, Y. M.; Hsieh, S. C.; Yu, C. L., The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules 2020, 25 (23). 20. Mizutari, K.; Ono, T.; Ikeda, K.; Kayashima, K.; Horiuchi, S., Photo-enhanced modification of human skin elastin in actinic elastosis by N(epsilon)-(carboxymethyl)lysine, one of the glycoxidation products of the Maillard reaction. J Invest Dermatol 1997, 108 (5), 797-802. 21. Kielhorn, J.; Pohlenz-Michel, C.; Schmidt, S.; Mangelsdorf, I.; World Health, O.; International Programme on Chemical, S., Glyoxal. World Health Organization: Geneva, 2004. 22. Nagao, M.; Fujita, Y.; Wakabayashi, K.; Nukaya, H.; Kosuge, T.; Sugimura, T., Mutagens in coffee and other beverages. Environ Health Perspect 1986, 67, 89-91. 23. Moree-Testa, P.; Saint-Jalm, Y., Determination of α-dicarbonyl compounds in cigarette smoke. Journal of Chromatography A 1981, 217, 197-208. 24. Frankel, E. N., Volatile lipid oxidation products. Prog Lipid Res 1983, 22 (1), 1-33. 25. Loidl-Stahlhofen, A.; Spiteller, G., alpha-Hydroxyaldehydes, products of lipid peroxidation. Biochim Biophys Acta 1994, 1211 (2), 156-60. 26. Lapolla, A.; Flamini, R.; Dalla Vedova, A.; Senesi, A.; Reitano, R.; Fedele, D.; Basso, E.; Seraglia, R.; Traldi, P., Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med 2003, 41 (9), 1166-73. 27. Ueda, Y.; Miyata, T.; Goffin, E.; Yoshino, A.; Inagi, R.; Ishibashi, Y.; Izuhara, Y.; Saito, A.; Kurokawa, K.; Van Ypersele De Strihou, C., Effect of dwell time on carbonyl stress using icodextrin and amino acid peritoneal dialysis fluids. Kidney Int 2000, 58 (6), 2518-24. 28. Raj, D. S.; Choudhury, D.; Welbourne, T. C.; Levi, M., Advanced glycation end products: a Nephrologist's perspective. Am J Kidney Dis 2000, 35 (3), 365-80. 29. Chen, H. J.; Chen, Y. C., Analysis of glyoxal-induced DNA cross-links by capillary liquid chromatography nanospray ionization tandem mass spectrometry. Chem Res Toxicol 2009, 22 (7), 1334-41. 30. Shuck, S. C.; Wuenschell, G. E.; Termini, J. S., Product Studies and Mechanistic Analysis of the Reaction of Methylglyoxal with Deoxyguanosine. Chem Res Toxicol 2018, 31 (2), 105-115. 31. Chen, H. C.; Chang, Y. L.; Teng, Y. C.; Hsiao, C. F.; Lin, T. S., A Stable Isotope Dilution 98 Nanoflow Liquid Chromatography Tandem Mass Spectrometry Assay for the Simultaneous Detection and Quantification of Glyoxal-Induced DNA Cross-Linked Adducts in Leukocytes from Diabetic Patients. Anal Chem 2017, 89 (24), 13082-13088. 32. Wang, H.; Cao, H.; Wang, Y., Quantification of N2-carboxymethyl-2'-deoxyguanosine in calf thymus DNA and cultured human kidney epithelial cells by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope dilution method. Chem Res Toxicol 2010, 23 (1), 74-81. 33. Guilbaud, A.; Ghanegolmohammadi, F.; Wang, Y.; Leng, J.; Kreymerman, A.; Gamboa Varela, J.; Garbern, J.; Elwell, H.; Cao, F.; Ricci-Blair, E. M.; Liang, C.; Balamkundu, S.; Vidoudez, C.; DeMott, M. S.; Bedi, K.; Margulies, K. B.; Bennett, D. A.; Palmer, A. A.; Barkley-Levenson, A.; Lee, R. T.; Dedon, P. C., Discovery adductomics provides a comprehensive portrait of tissue-, age- and sex-specific DNA modifications in rodents and humans. Nucleic Acids Res 2023, 51 (20), 10829-10845. 34. Synold, T.; Xi, B.; Wuenschell, G. E.; Tamae, D.; Figarola, J. L.; Rahbar, S.; Termini, J., Advanced glycation end products of DNA: quantification of N2-(1-Carboxyethyl)-2'-deoxyguanosine in biological samples by liquid chromatography electrospray ionization tandem mass spectrometry. Chem Res Toxicol 2008, 21 (11), 2148-55. 35. Schneider, M.; Thoss, G.; Hubner-Parajsz, C.; Kientsch-Engel, R.; Stahl, P.; Pischetsrieder, M., Determination of glycated nucleobases in human urine by a new monoclonal antibody specific for N2-carboxyethyl-2'-deoxyguanosine. Chem Res Toxicol 2004, 17 (10), 1385-90. 36. Waris, S.; Winklhofer-Roob, B. M.; Roob, J. M.; Fuchs, S.; Sourij, H.; Rabbani, N.; Thornalley, P. J., Increased DNA dicarbonyl glycation and oxidation markers in patients with type 2 diabetes and link to diabetic nephropathy. J Diabetes Res 2015, 2015, 915486. 37. Li, H.; Nakamura, S.; Miyazaki, S.; Morita, T.; Suzuki, M.; Pischetsrieder, M.; Niwa, T., N2-carboxyethyl-2'-deoxyguanosine, a DNA glycation marker, in kidneys and aortas of diabetic and uremic patients. Kidney Int 2006, 69 (2), 388-92. 38. Yuan, B.; Cao, H.; Jiang, Y.; Hong, H.; Wang, Y., Efficient and accurate bypass of N2-(1-carboxyethyl)-2'-deoxyguanosine by DinB DNA polymerase in vitro and in vivo. Proc. Nat.l Acad. Sci. U.S.A. 2008, 105 (25), 8679−84. 39. Jaramillo, R.; Shuck, S. C.; Chan, Y. S.; Liu, X.; Bates, S. E.; Lim, P. P.; Tamae, D.; Lacoste, S.; O'Connor, T. R.; Termini, J., DNA Advanced Glycation End Products (DNA-AGEs) Are Elevated in Urine and Tissue in an Animal Model of Type 2 Diabetes. Chem Res Toxicol 2017, 30 (2), 689-698. 40. Breyer, V.; Becker, C. M.; Pischetsrieder, M., Intracellular glycation of nuclear DNA, mitochondrial DNA, and cytosolic proteins during senescence-like growth arrest. DNA Cell Biol 2011, 30 (9), 681-9. 41. Breyer, V.; Weigel, I.; Huang, T. T.; Pischetsrieder, M., Endogenous mitochondrial oxidative stress in MnSOD-deficient mouse embryonic fibroblasts promotes mitochondrial DNA glycation. 99 Free Radic Biol Med 2012, 52 (9), 1744-9. 42. 鄧儀君. 以質譜法分析(一)人類尿液中五個DNA加成產物(二)乙二醛誘導形成的DNA交聯產物(三)從採血紙上萃取血紅蛋白上乙二醛與甲基乙二醛修飾程度的穩定性. 國立中正大學, 2016. 43. 陳柏翰. 以奈升流速液相層析串聯質譜法分析(一) 雌二醇於人類血紅蛋白上所產生之修飾、(二) 乙二醛和甲基乙二醛所產生之DNA加成產物. 國立中正大學, 2023. 44. 陳昭儀. 利用奈升流速液相層析奈電噴灑游離串聯質譜儀分析(1) 人類血紅蛋白上因丙二醛所形成的轉譯後修飾(2) DNA 中的N2-羧甲基2'-脫氧鳥苷. 國立中正大學, 2020. 45. 陳乃瑛. 以奈升流速液相層析串聯質譜法分析(一) 丙烯醛於人類血紅蛋白上之修飾(二) DNA 上N2-(1-羧乙基)-2'-去氧鳥糞嘌呤核苷. 國立中正大學, 2020. 46. 張雅嵐. 以穩定同位素稀釋液相層析奈電噴灑游離串聯質譜法分析(1)人類白血球DNA中乙二醛與DNA的交聯產物與(2)人類尿液中乙烯基與8-羥基-2’-去氧鳥糞嘌呤核苷. 國立中正大學, 2012. 47. Hong, H.; Cao, H.; Wang, Y.; Wang, Y., Identification and quantification of a guanine-thymine intrastrand cross-link lesion induced by Cu(II)/H2O2/ascorbate. Chem Res Toxicol 2006, 19 (5), 614-21. 48. Chen, H. J.; Lin, W. P., Simultaneous quantification of 1,N2-propano-2'-deoxyguanosine adducts derived from acrolein and crotonaldehyde in human placenta and leukocytes by isotope dilution nanoflow LC nanospray ionization tandem mass spectrometry. Anal Chem 2009, 81 (23), 9812-8. 49. Chen, H. J.; Lin, W. P., Quantitative analysis of multiple exocyclic DNA adducts in human salivary DNA by stable isotope dilution nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry. Anal Chem 2011, 83 (22), 8543-51. 50. Lum, A.; Le Marchand, L., A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies. Cancer Epidemiol Biomarkers Prev 1998, 7 (8), 719-24. 51. Bessette, E. E.; Spivack, S. D.; Goodenough, A. K.; Wang, T.; Pinto, S.; Kadlubar, F. F.; Turesky, R. J., Identification of carcinogen DNA adducts in human saliva by linear quadrupole ion trap/multistage tandem mass spectrometry. Chem Res Toxicol 2010, 23 (7), 1234-44. 52. inc, D. g. RNA removal by double-RNase digestion 2011. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.dnagenotek.com/row/pdf/PD-PR-040.pdf. 53. VectorMine; Dreamstime.com Composition of blood vector illustration. Labeled anatomical structure scheme with plasma, white and red cells and platelets. Percentage diagram with body liquid parts amount explanation information. https://www.dreamstime.com/composition-blood-vector-illustration-labeled-anatomical-structure-scheme-plasma-white-red-cells-platelets-percentage-image184029683. 54. Wikipedia 血紅素. https://zh.wikipedia.org/zh-tw/%E8%A1%80%E7%BA%A2%E8%9B%8B%E7%99%BD. 100 55. Chen, H. J. C.; Chen, Y. C., Reactive Nitrogen Oxide Species-Induced Post-Translational Modifications in Human Hemoglobin and the Association with Cigarette Smoking. Analytical Chemistry 2012, 84 (18), 7881-7890. 56. Carlsson, H.; Rappaport, S. M.; Tornqvist, M., Protein Adductomics: Methodologies for Untargeted Screening of Adducts to Serum Albumin and Hemoglobin in Human Blood Samples. High Throughput 2019, 8 (1). 57. Ramazi, S.; Zahiri, J., Posttranslational modifications in proteins: resources, tools and prediction methods. Database (Oxford) 2021, 2021. 58. Fuentes, N.; Silveyra, P., Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 2019, 116, 135-170. 59. Watson, C. S.; Jeng, Y. J.; Kochukov, M. Y., Nongenomic actions of estradiol compared with estrone and estriol in pituitary tumor cell signaling and proliferation. FASEB J 2008, 22 (9), 3328-36. 60. Samavat, H.; Kurzer, M. S., Estrogen metabolism and breast cancer. Cancer Lett 2015, 356 (2 Pt A), 231-43. 61. Cavalieri, E.; Chakravarti, D.; Guttenplan, J.; Hart, E.; Ingle, J.; Jankowiak, R.; Muti, P.; Rogan, E.; Russo, J.; Santen, R.; Sutter, T., Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 2006, 1766 (1), 63-78. 62. Lin, C.; Hsieh, W. C.; Chen, D. R.; Kuo, S. J.; Yu, W. F.; Hu, S. W.; Sue, H. J.; Ko, M. H.; Juan, C. H.; Chung, K. S.; Lin, P. H., Hemoglobin adducts as biomarkers of estrogen homeostasis: elevation of estrogenquinones as a risk factor for developing breast cancer in Taiwanese women. Toxicol Lett 2014, 225 (3), 386-91. 63. Patel, S.; Homaei, A.; Raju, A. B.; Meher, B. R., Estrogen: The necessary evil for human health, and ways to tame it. Biomed Pharmacother 2018, 102, 403-411. 64. Abul-Hajj, Y. J.; Tabakovic, K.; Gleason, W. B.; Ojala, W. H., Reactions of 3,4-estrone quinone with mimics of amino acid side chains. Chem Res Toxicol 1996, 9 (2), 434-8. 65. Fang, C. M.; Ku, M. C.; Chang, C. K.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, S. H., Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicol Sci 2015, 148 (2), 433-42. 66. Nicolis, S.; Monzani, E.; Pezzella, A.; Ascenzi, P.; Sbardella, D.; Casella, L., Neuroglobin modification by reactive quinone species. Chem Res Toxicol 2013, 26 (12), 1821-31. 67. Jen, H. H.; Kafeenah, H.; Chang, T. Y.; Lin, Y. M.; Shan, Y. S.; Wu, C. H.; Chen, S. H., Quantification of the Endogenous Adduction Level on Hemoglobin and Correlation with Albumin Adduction via Proteomics: Multiple Exposure Markers of Catechol Estrogen. J Proteome Res 2021, 20 (9), 4248-4257. 68. Society, A. C. Breast Cancer. https://www.cancer.org/cancer/types/breast-cancer/understanding-a-breast-cancer-diagnosis/stages-of-breast-cancer.html. 69. 嘉義長庚紀念醫院 乳癌分期 (Breast Cancer Staging). 101 https://www1.cgmh.org.tw/intr/intr5/c6210/breast%20cancer%20stage.html. 70. 財團法人台灣癌症基金會 乳癌 - Breast Cancer. https://www.canceraway.org.tw/cancerinfo.php?id=EC4BC652-18B3-464C-B19D-CB0C49C64285. 71. Chen, D. R.; Chen, S. T.; Wang, T. W.; Tsai, C. H.; Wei, H. H.; Chen, G. J.; Yang, T. C.; Lin, C.; Lin, P. H., Characterization of estrogen quinone-derived protein adducts and their identification in human serum albumin derived from breast cancer patients and healthy controls. Toxicol Lett 2011, 202 (3), 244-52. 72. Lin, C.; Chen, D. R.; Hsieh, W. C.; Yu, W. F.; Lin, C. C.; Ko, M. H.; Juan, C. H.; Tsuang, B. J.; Lin, P. H., Investigation of the cumulative body burden of estrogen-3,4-quinone in breast cancer patients and controls using albumin adducts as biomarkers. Toxicol Lett 2013, 218 (3), 194-9. 73. Lin, C.; Chen, D. R.; Wang, S. L.; Hsieh, W. C.; Yu, W. F.; Wang, T. W.; Tsai, C. H.; Wei, H. H.; Tsuang, B. J.; Lin, P. H., Cumulative body burdens of polycyclic aromatic hydrocarbons associated with estrogen bioactivation in pregnant women: protein adducts as biomarkers of exposure. J Environ Sci Health A Tox Hazard Subst Environ Eng 2014, 49 (6), 634-40. 74. Lin, P. H.; Yang, H. J.; Hsieh, W. C.; Lin, C.; Chan, Y. C.; Wang, Y. F.; Yang, Y. T.; Lin, K. J.; Lin, L. S.; Chen, D. R., Albumin and hemoglobin adducts of estrogen quinone as biomarkers for early detection of breast cancer. PLoS One 2018, 13 (9), e0201241. 75. Chen, D. R.; Hsieh, W. C.; Liao, Y. L.; Lin, K. J.; Wang, Y. F.; Lin, P. H., Imbalances in the disposition of estrogen and naphthalene in breast cancer patients: a potential biomarker of breast cancer risk. Sci Rep 2020, 10 (1), 11773. 76. Lin, C.; Chen, D. R.; Kuo, S. J.; Feng, C. Y.; Chen, D. R.; Hsieh, W. C.; Lin, P. H., Profiling of Protein Adducts of Estrogen Quinones in 5-Year Survivors of Breast Cancer Without Recurrence. Cancer Control 2022, 29, 10732748221084196. 77. Huang, Y. S.; Lin, Y. M.; Chen, H.; Wu, C. H.; Syu, C. H.; Huang, T. E.; Do, Q. T.; Chen, S. H., Targeting Endogenous Adduction Level of Serum Albumin by Parallel Reaction Monitoring via Standard Additions and Intact Protein Measurement: Biological Dosimetry of Catechol Estrogens. Anal Chem 2019, 91 (24), 15922-15931. 78. Chen, H. J.; Chen, Y. C.; Hsiao, C. F.; Chen, P. F., Mass Spectrometric Analysis of Glyoxal and Methylglyoxal-Induced Modifications in Human Hemoglobin from Poorly Controlled Type 2 Diabetes Mellitus Patients. Chem Res Toxicol 2015, 28 (12), 2377-89. 79. Kikugawa, K.; Kosugi, H.; Asakura, T., Effect of malondialdehyde, a product of lipid peroxidation, on the function and stability of hemoglobin. Arch Biochem Biophys 1984, 229 (1), 7-14. 80. Chen, H. C.; Chen, C. Y.; Fang, Y. H.; Hung, K. W.; Wu, D. C., Malondialdehyde-Induced Post-translational Modifications in Hemoglobin of Smokers by NanoLC-NSI/MS/MS Analysis. J Proteome Res 2022, 21 (12), 2947-2957. 81. Chen, H. C.; Liao, Y. L., Response to "Malondialdehyde-Induced Post-Translational 102 Modification of Human Hemoglobin". J Proteome Res 2023, 22 (6), 2144-2148. 82. Lin, C.; Chen, D. R.; Kuo, S. J.; Feng, C. Y.; Chen, D. R.; Hsieh, W. C.; Lin, P. H., Profiling of Protein Adducts of Estrogen Quinones in 5-Year Survivors of Breast Cancer Without Recurrence. Cancer Control 2022, 29.
|