|
[1]戚玉樑, ‘語意網技術在工業4.0的角色與應用’, 機械工業雜誌, no. 437, pp. 75–84, 2019. [2]黃以宜, 胡曉, 蔡承佐,和范盛維, ‘工業4.0通訊技術與應用’, 機械工業雜誌, no. 413, pp. 17–29, 2017. [3]A. Derakhti, E. D. R. Santibanez Gonzalez, and A. Mardani, ‘Industry 4.0 and Beyond: A Review of the Literature on the Challenges and Barriers Facing the Agri-Food Supply Chain’, Sustainability, vol. 15, no. 6, p. 5078, Mar. 2023, doi: 10.3390/su15065078. [4]H. J. Geldenhuys, A. C. Brent, and I. H. De Kock, ‘SSUIT Smart Sustainable Urban Infrastructure Transitioning’, Sustainability, vol. 15, no. 18, p. 13729, Sep. 2023, doi: 10.3390/su151813729. [5]S. Hasan, Z. Işık, and G. Demirdöğen, ‘Evaluating the Contribution of Lean Construction to Achieving Sustainable Development Goals’, Sustainability, vol. 16, no. 8, p. 3502, Apr. 2024, doi: 10.3390/su16083502. [6]S. O. Ametepey, C. Aigbavboa, W. D. Thwala, and H. Addy, ‘The Impact of AI in Sustainable Development Goal Implementation: A Delphi Study’, Sustainability, vol. 16, no. 9, p. 3858, May 2024, doi: 10.3390/su16093858. [7]Rockwell Automation, [Online]. Available: https://www.rockwellautomation.com/ [8]張鴻, ‘「工業5.0」與亞太區域產業及社會永續發展的契機’, 臺灣經濟研究月刊, vol. 46, no. 2, pp. 21–28, Feb. 2023, doi: 10.29656/TERM.202302_46(2).0004. [9]陳昌憲, 莊柏逸, 和鍾逸呈, ‘AI智慧擷取-PLC自動轉譯技術’, 電腦與通訊, no. 183, pp. 47–50, Jun. 2020. [10]B. S. Alsaeed, D. V. L. Hunt, and S. Sharifi, ‘A Sustainable Water Resources Management Assessment Framework (SWRM-AF) for Arid and Semi-Arid Regions—Part 2: Refining the Conceptual Framework Using the Delphi Technique’, Sustainability, vol. 16, no. 11, p. 4463, May 2024, doi: 10.3390/su16114463. [11]K. Kwon, M. Kang, D. Kim, and H. Choi, ‘Prioritization of Hazardous Zones Using an Advanced Risk Management Model Combining the Analytic Hierarchy Process and Fuzzy Set Theory’, Sustainability, vol. 15, no. 15, p. 12018, Aug. 2023, doi: 10.3390/su151512018. [12]I. Tronnebati, F. Jawab, Y. Frichi, and J. Arif, ‘Green Supplier Selection Using Fuzzy AHP, Fuzzy TOSIS, and Fuzzy WASPAS: A Case Study of the Moroccan Automotive Industry’, Sustainability, vol. 16, no. 11, p. 4580, May 2024, doi: 10.3390/su16114580. [13]S.-N. Li, Y. Li, and W. Yu, ‘Assessing the Content Quality of Industry Technology Roadmaps’, Sustainability, vol. 15, no. 11, p. 9058, Jun. 2023, doi: 10.3390/su15119058. [14]O. Ogut, J. N. Tzortzi, and C. Bertolin, ‘Creating a Roadmap to Forecast Future Directions in Vertical Green Structures as a Climate Change Mitigation Strategy: A Critical Review of Technology-Driven Applications’, Sustainability, vol. 16, no. 11, p. 4543, May 2024, doi: 10.3390/su16114543. [15]X. Mao, X. Li, Y. Huang, J. Shi, and Y. Zhang, ‘Programmable Logic Controllers Past Linear Temporal Logic for Monitoring Applications in Industrial Control Systems’, IEEE Trans. Ind. Inf., vol. 18, no. 7, pp. 4393–4405, Jul. 2022, doi: 10.1109/TII.2021.3123194. [16]L. C. Tasca, E. Pignaton De Freitas, and F. R. Wagner, ‘A study on the performance impact of programmable logic controllers based on enhanced architecture and organization’, Microprocessors and Microsystems, vol. 76, p. 103082, Jul. 2020, doi: 10.1016/j.micpro.2020.103082. [17]L. C. Tasca, E. P. D. Freitas, and F. R. Wagner, ‘Enhanced architecture for programmable logic controllers targeting performance improvements’, Microprocessors and Microsystems, vol. 61, pp. 306–315, Sep. 2018, doi: 10.1016/j.micpro.2018.06.007. [18]M. A. Sehr et al., ‘Programmable Logic Controllers in the Context of Industry 4.0’, IEEE Trans. Ind. Inf., vol. 17, no. 5, pp. 3523–3533, May 2021, doi: 10.1109/TII.2020.3007764. [19]S. C. Rowe, C. I. Samson, and D. E. Clough, ‘A Framework to Guide the Instruction of Industrial Programmable Logic Controllers in Undergraduate Engineering Education’, Education for Chemical Engineers, vol. 31, pp. 76–84, Apr. 2020, doi: 10.1016/j.ece.2020.03.001. [20]U. Pora, N. Gerdsri, N. Thawesaengskulthai, and S. Triukose, ‘Data-Driven Roadmapping (DDRM): Approach and Case Demonstration’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 209–227, Feb. 2022, doi: 10.1109/TEM.2020.3005341. [21]M. G. De Oliveira, J. S. Freitas, B. S. Pereira, and P. V. Guerra, ‘Exploring the Involvement of Experts in Strategic Roadmapping With Large Groups’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 56–66, Feb. 2022, doi: 10.1109/TEM.2020.3026936. [22]H. Miao, Y. Wang, X. Li, and F. Wu, ‘Integrating Technology-Relationship-Technology Semantic Analysis and Technology Roadmapping Method: A Case of Elderly Smart Wear Technology’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 262–278, Feb. 2022, doi: 10.1109/TEM.2020.2970972. [23]B. Mazon-Olivo and A. Pan, ‘Internet of Things: State-of-the-art, Computing Paradigms and Reference Architectures’, IEEE Latin Am. Trans., vol. 20, no. 1, pp. 49–63, Jan. 2022, doi: 10.1109/TLA.2022.9662173. [24]C. W. Chen, ‘Internet of Video Things: Next-Generation IoT With Visual Sensors’, IEEE Internet Things J., vol. 7, no. 8, pp. 6676–6685, Aug. 2020, doi: 10.1109/JIOT.2020.3005727. [25]J. A. Ansere, G. Han, L. Liu, Y. Peng, and M. Kamal, ‘Optimal Resource Allocation in Energy-Efficient Internet-of-Things Networks With Imperfect CSI’, IEEE Internet Things J., vol. 7, no. 6, pp. 5401–5411, Jun. 2020, doi: 10.1109/JIOT.2020.2979169. [26]Y. Zhang et al., ‘Robust Resource Allocation for Lightweight Secure Transmission in Multicarrier NOMA-Assisted Full Duplex IoT Networks’, IEEE Internet Things J., vol. 9, no. 9, pp. 6443–6457, May 2022, doi: 10.1109/JIOT.2021.3110974. [27]T. B. Da Silva, R. P. Dos Santos Chaib, C. S. Arismar, R. Da Rosa Righi, and A. M. Alberti, ‘Toward Future Internet of Things Experimentation and Evaluation’, IEEE Internet Things J., vol. 9, no. 11, pp. 8469–8484, Jun. 2022, doi: 10.1109/JIOT.2021.3114540. [28]A. Canedo, H. Ludwig, and M. A. Al Faruque, ‘High Communication Throughput and Low Scan Cycle Time with Multi/Many-Core Programmable Logic Controllers’, IEEE Embedded Syst. Lett., vol. 6, no. 2, pp. 21–24, Jun. 2014, doi: 10.1109/LES.2014.2299731. [29]M. Watanabe, Y. Nakagami, T. Isshiki, M. Kunugi, and Y. Yasunaga, ‘Research on the TRM Kaizen Method for Governmental Organizations to Apply Technology Roadmapping as a Methodology to Achieve the Goals of Industrial Technology Policy’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 17–33, Feb. 2022, doi: 10.1109/TEM.2020.3032603. [30]T. Alves, R. Das, and T. Morris, ‘Embedding Encryption and Machine Learning Intrusion Prevention Systems on Programmable Logic Controllers’, IEEE Embedded Syst. Lett., vol. 10, no. 3, pp. 99–102, Sep. 2018, doi: 10.1109/LES.2018.2823906. [31]D. Formby and R. Beyah, ‘Temporal Execution Behavior for Host Anomaly Detection in Programmable Logic Controllers’, IEEE Trans.Inform.Forensic Secur., vol. 15, pp. 1455–1469, 2020, doi: 10.1109/TIFS.2019.2940890. [32]W. Alsabbagh and P. Langendoerfer, ‘A New Injection Threat on S7-1500 PLCs - Disrupting the Physical Process Offline’, IEEE Open J. Ind. Electron. Soc., vol. 3, pp. 146–162, 2022, doi: 10.1109/OJIES.2022.3151528. [33]P. Krupa, D. Limon, and T. Alamo, ‘Implementation of Model Predictive Control in Programmable Logic Controllers’, IEEE Trans. Contr. Syst. Technol., vol. 29, no. 3, pp. 1117–1130, May 2021, doi: 10.1109/TCST.2020.2992959. [34]H. Su, Z. Luo, Y. Feng, and Z. Liu, ‘Application of Siemens PLC in Thermal Simulator Control System’, Procedia Manufacturing, vol. 37, pp. 38–45, 2019, doi: 10.1016/j.promfg.2019.12.009. [35]N. Mohammed and A. M. Saif, ‘Programmable logic controller based lithium-ion battery management system for accurate state of charge estimation’, Computers & Electrical Engineering, vol. 93, p. 107306, Jul. 2021, doi: 10.1016/j.compeleceng.2021.107306. [36]M. S. El-Genk, R. Altamimi, and T. M. Schriener, ‘Pressurizer dynamic model and emulated programmable logic controllers for nuclear power plants cybersecurity investigations’, Annals of Nuclear Energy, vol. 154, p. 108121, May 2021, doi: 10.1016/j.anucene.2020.108121. [37]S. Vadi, R. Bayindir, Y. Toplar, and I. Colak, ‘Induction motor control system with a Programmable Logic Controller (PLC) and Profibus communication for industrial plants — An experimental setup’, ISA Transactions, vol. 122, pp. 459–471, Mar. 2022, doi: 10.1016/j.isatra.2021.04.019. [38]N. Aziz, S. A. K. Tanoli, and F. Nawaz, ‘A programmable logic controller based remote pipeline monitoring system’, Process Safety and Environmental Protection, vol. 149, pp. 894–904, May 2021, doi: 10.1016/j.psep.2021.03.045. [39]D. Chivilikhin, S. Patil, K. Chukharev, A. Cordonnier, and V. Vyatkin, ‘Automatic State Machine Reconstruction From Legacy Programmable Logic Controller Using Data Collection and SAT Solver’, IEEE Trans. Ind. Inf., vol. 16, no. 12, pp. 7821–7831, Dec. 2020, doi: 10.1109/TII.2020.2992235. [40]J. Zhao and Z. Tao, ‘Toward Reliable Programmable Logic Controller Function Block Diagrams’, IEEE Access, vol. 9, pp. 166137–166146, 2021, doi: 10.1109/ACCESS.2021.3133630. [41]MITSUBISHI ELECTRIC AUTOMATION (TAIWAN) CO., LTD., [Online]. Available: https://www.setsuyo.com.tw/news_detail223.htm [42]X. Jia et al., ‘A Novel Program Scheme to Optimize Program Disturbance in Dual-Deck 3D NAND Flash Memory’, IEEE Electron Device Lett., vol. 43, no. 7, pp. 1033–1036, Jul. 2022, doi: 10.1109/LED.2022.3178155. [43]S. Xia et al., ‘Analysis and Optimization of Temporary Read Errors in 3D NAND Flash Memories’, IEEE Electron Device Lett., vol. 42, no. 6, pp. 820–823, Jun. 2021, doi: 10.1109/LED.2021.3073604. [44]S. Demirhan and A. Bozbey, ‘Design and Implementation of a Single Flux Quantum Logic-Based Memory Controller for Josephson-CMOS Hybrid Memory Systems’, IEEE Trans. Appl. Supercond., vol. 30, no. 7, pp. 1–6, Oct. 2020, doi: 10.1109/TASC.2020.3012382. [45]L. Yang, R. Zhao, Y. Li, H. Tong, Y. Yu, and X. Miao, ‘In-Memory Search With Phase Change Device-Based Ternary Content Addressable Memory’, IEEE Electron Device Lett., vol. 43, no. 7, pp. 1053–1056, Jul. 2022, doi: 10.1109/LED.2022.3179736. [46]M. Poremba, T. Zhang, and Y. Xie, ‘NVMain 2.0: A User-Friendly Memory Simulator to Model (Non-)Volatile Memory Systems’, IEEE Comput. Arch. Lett., vol. 14, no. 2, pp. 140–143, Jul. 2015, doi: 10.1109/LCA.2015.2402435. [47]Two-Way, [Online]. Available: http://www.two-way.com.tw/ [48]FAPRO ENTERPRISE CO.,LTD, [Online]. Available: https://www.fapro.com.tw/ [49]G. Albuquerque, S. Hernandez, M. T. Kief, D. Mauri, and L. Wang, ‘HDD Reader Technology Roadmap to an Areal Density of 4 Tbpsi and Beyond’, IEEE Trans. Magn., vol. 58, no. 2, pp. 1–10, Feb. 2022, doi: 10.1109/TMAG.2021.3081042. [50]M. V. Pereia Pessoa and A. Gowda, ‘Integrated PSS Roadmapping Using Customer Needs and Technology Change Likelihood’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 127–141, Feb. 2022, doi: 10.1109/TEM.2020.3024581. [51]M. Han and Y. Geum, ‘Roadmapping for Data: Concept and Typology of Data-Integrated Smart-Service Roadmaps’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 142–154, Feb. 2022, doi: 10.1109/TEM.2020.3013295. [52]J. Nazarko et al., ‘Roadmapping in Regional Technology Foresight: A Contribution to Nanotechnology Development Strategy’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 179–194, Feb. 2022, doi: 10.1109/TEM.2020.3004549. [53]S. Ozcan, A. Homayounfard, C. Simms, and J. Wasim, ‘Technology Roadmapping Using Text Mining: A Foresight Study for the Retail Industry’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 228–244, Feb. 2022, doi: 10.1109/TEM.2021.3068310. [54]J.-Y. Ho and E. O’Sullivan, ‘Toward Integrated Innovation Roadmapping: Lessons From Multiple Functional Roadmaps Beyond Technology R&D’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 155–167, Feb. 2022, doi: 10.1109/TEM.2020.3029783. [55]P. T. Letaba and M. W. Pretorius, ‘Toward Sociotechnical Transition Technology Roadmaps: A Proposed Framework for Large-Scale Projects in Developing Countries’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 195–208, Feb. 2022, doi: 10.1109/TEM.2021.3050812. [56]E. Kim et al., ‘User-Centered Design Roadmapping: Anchoring Roadmapping in Customer Value Before Technology Selection’, IEEE Trans. Eng. Manage., vol. 69, no. 1, pp. 109–126, Feb. 2022, doi: 10.1109/TEM.2020.3030172. [57]Y. He, G. Han, M. Xu, and M. Martinez-Garcia, ‘A Pseudopacket Scheduling Algorithm for Protecting Source Location Privacy in the Internet of Things’, IEEE Internet Things J., vol. 9, no. 12, pp. 9999–10009, Jun. 2022, doi: 10.1109/JIOT.2021.3117957. [58]Y. Liu, K. Wang, K. Qian, M. Du, and S. Guo, ‘Tornado: Enabling Blockchain in Heterogeneous Internet of Things Through a Space-Structured Approach’, IEEE Internet Things J., vol. 7, no. 2, pp. 1273–1286, Feb. 2020, doi: 10.1109/JIOT.2019.2954128. [59]H. Tran-Dang, N. Krommenacker, P. Charpentier, and D.-S. Kim, ‘Toward the Internet of Things for Physical Internet: Perspectives and Challenges’, IEEE Internet Things J., vol. 7, no. 6, pp. 4711–4736, Jun. 2020, doi: 10.1109/JIOT.2020.2971736. [60]L. Yuan, H. Zhang, M. Xu, F. Zhou, and Q. Wu, ‘A Multiscale CNN Framework for Wireless Technique Classification in Internet of Things’, IEEE Internet Things J., vol. 9, no. 12, pp. 10366–10367, Jun. 2022, doi: 10.1109/JIOT.2021.3132652. [61]K. Yang, Y. Zhang, X. Lin, Z. Li, and L. Sun, ‘Characterizing Heterogeneous Internet of Things Devices at Internet Scale Using Semantic Extraction’, IEEE Internet Things J., vol. 9, no. 7, pp. 5434–5446, Apr. 2022, doi: 10.1109/JIOT.2021.3110757. [62]R. Gomes Alves, R. Filev Maia, and F. Lima, ‘Discrete-event simulation of an irrigation system using Internet of Things’, IEEE Latin Am. Trans., vol. 20, no. 6, pp. 941–947, Jun. 2022, doi: 10.1109/TLA.2022.9757736. [63]H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, ‘Edge QoE: Computation Offloading With Deep Reinforcement Learning for Internet of Things’, IEEE Internet Things J., vol. 7, no. 10, pp. 9255–9265, Oct. 2020, doi: 10.1109/JIOT.2020.2981557. [64]Y. Liu, C. Chi, Y. Zhang, and T. Tang, ‘Identification and Resolution for Industrial Internet: Architecture and Key Technology’, IEEE Internet Things J., vol. 9, no. 18, pp. 16780–16794, Sep. 2022, doi: 10.1109/JIOT.2022.3160737. [65]J. Liu, X. Zhao, P. Qin, S. Geng, and S. Meng, ‘Joint Dynamic Task Offloading and Resource Scheduling for WPT Enabled Space-Air-Ground Power Internet of Things’, IEEE Trans. Netw. Sci. Eng., vol. 9, no. 2, pp. 660–677, Mar. 2022, doi: 10.1109/TNSE.2021.3130251. [66]F. Zhang, G. Han, L. Liu, M. Martinez-Garcia, and Y. Peng, ‘Joint Optimization of Cooperative Edge Caching and Radio Resource Allocation in 5G-Enabled Massive IoT Networks’, IEEE Internet Things J., vol. 8, no. 18, pp. 14156–14170, Sep. 2021, doi: 10.1109/JIOT.2021.3068427. [67]S. Xu, X. Wang, G. Yang, J. Ren, and S. Wang, ‘Routing optimization for cloud services in SDN-based Internet of Things with TCAM capacity constraint’, J. Commun. Netw., vol. 22, no. 2, pp. 145–158, Apr. 2020, doi: 10.1109/JCN.2020.000006. [68]M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo, ‘Software Configuration Engineering in Practice Interviews, Survey, and Systematic Literature Review’, IIEEE Trans. Software Eng., vol. 46, no. 6, pp. 646–673, Jun. 2020, doi: 10.1109/TSE.2018.2867847. [69]T. Hogan, U. Hinrichs, and E. Hornecker, ‘The Elicitation Interview Technique: Capturing People’s Experiences of Data Representations’, IEEE Trans. Visual. Comput. Graphics, vol. 22, no. 12, pp. 2579–2593, Dec. 2016, doi: 10.1109/TVCG.2015.2511718. [70]P. Chundury, B. Patnaik, Y. Reyazuddin, C. Tang, J. Lazar, and N. Elmqvist, ‘Towards Understanding Sensory Substitution for Accessible Visualization: An Interview Study’, IEEE Trans. Visual. Comput. Graphics, vol. 28, no. 1, pp. 1084–1094, Jan. 2022, doi: 10.1109/TVCG.2021.3114829. [71]Whisper Maisiri; Liezl van Dyk; Rojanette Coetzee, ‘Development of an industry 4.0 competency maturity model’, SAIEE Africa Research Journal, vol. 112, no. 4, pp. 189–197, 2021. [72]P. Gray and J. M. Nilles, ‘Evaluating a Delphi forecast on personal computers’, IEEE Trans. Syst., Man, Cybern., vol. SMC-13, no. 2, pp. 222–224, Mar. 1983, doi: 10.1109/TSMC.1983.6313116. [73]G. Parekh et al., ‘Identifying Core Concepts of Cybersecurity: Results of Two Delphi Processes’, IEEE Trans. Educ., vol. 61, no. 1, pp. 11–20, Feb. 2018, doi: 10.1109/TE.2017.2715174. [74]A. J. Maddox, R. D. Downs, J. F. Lindsay, and M. T. Quesada, ‘The Delphi outer detector decision module: Lucifer’, IEEE Trans. Nucl. Sci., vol. 37, no. 5, pp. 1589–1593, Oct. 1990, doi: 10.1109/23.58709. [75]A. Ishikawa, M. Amagasa, T. Shiga, G. Tomizawa, R. Tatsuta, and H. Mieno, ‘The max-min Delphi method and fuzzy Delphi method via fuzzy integration’, Fuzzy Sets and Systems, vol. 55, no. 3, pp. 241–253, May 1993, doi: 10.1016/0165-0114(93)90251-C. [76]Jao-Hong Cheng, ‘Indexes of Competitive Power and Core Competence in Selecting Asia-Pacific Ports’, Journal of the Chinese Institute of Transportation, vol. 13, no. 1, pp. 1–25. [77]Jeng Tsang-Bin, ‘Fuzzy assessment model for maturity of software organization in improving its staff’s capability’, National Taiwan University of Science and Technology, 2001. [78]T. L. Saaty and L. G. Vargas, ‘Estimating technological coefficients by the analytic hierarchy process’, Socio-Economic Planning Sciences, vol. 13, no. 6, pp. 333–336, Jan. 1979, doi: 10.1016/0038-0121(79)90015-6. [79]J. J. Buckley, ‘Fuzzy hierarchical analysis’, Fuzzy Sets and Systems, vol. 17, no. 3, pp. 233–247, Dec. 1985, doi: 10.1016/0165-0114(85)90090-9. [80]R. W. Saaty, ‘The analytic hierarchy process—what it is and how it is used’, Mathematical Modelling, vol. 9, no. 3–5, pp. 161–176, 1987, doi: 10.1016/0270-0255(87)90473-8. [81]R.L.N. Murty, Sivaji Ganesh Kondamudi, M.V. Suryanarayana and P. Giribabu, ‘Application Of Buckley’S Fuzzy Ahp To Identify The Most Important Factor Affecting The Unorganized Microentrepreneurs’ Borrowing Decision’, vol. 11, no. 6, pp. 665–674, 2020. [82]Z. Geng, Z. Wang, C. Peng, and Y. Han, ‘A New Fuzzy Process Capability Estimation Method Based on Kernel Function and FAHP’, IEEE Trans. Eng. Manage., vol. 63, no. 2, pp. 177–188, May 2016, doi: 10.1109/TEM.2016.2517337. [83]H. Zhang, X. Feng, Y. Wei, and Z. Li, ‘A Vagueness Adaptive Efficiency Evaluation Method of Science and Technology Resources Opening and Sharing Platforms Based on FAHP and BP Neural Network’, IEEE Trans. Eng. Manage., vol. 71, pp. 2049–2062, 2024, doi: 10.1109/TEM.2022.3173370. [84]M. Ri, J. Ko, S. Pak, Y. Song, and C. Kim, ‘Notice of Removal: Exploiting an Integrated FAHP-VWA-TOPSIS in Whole-Process of On-Demand Charging Scheduling for WRSNs’, IEEE Systems Journal, vol. 17, no. 4, pp. 6634–6644, Dec. 2023, doi: 10.1109/JSYST.2023.3302870. [85]L. Li, M. Liu, W. Shen, and G. Cheng, ‘Recommending Mobile Services with Trustworthy QoS and Dynamic User Preferences via FAHP and Ordinal Utility Function’, IEEE Trans. on Mobile Comput., vol. 19, no. 2, pp. 419–431, Feb. 2020, doi: 10.1109/TMC.2019.2896239. [86]C. Valmohammadi, F. Faezy Razi, and F. Einy, ‘Six Sigma Project Selection Using the Hybrid Approach FAHP-FTOPSIS and Grey Relational Analysis Model’, IEEE Eng. Manag. Rev., vol. 49, no. 2, pp. 134–146, Jun. 2021, doi: 10.1109/EMR.2021.3071368. [87]P. J. M. Van Laarhoven and W. Pedrycz, ‘A fuzzy extension of Saaty’s priority theory’, Fuzzy Sets and Systems, vol. 11, no. 1–3, pp. 229–241, 1983, doi: 10.1016/S0165-0114(83)80082-7. [88]Shiang-Lin Lin and Chen-Shu Wang, ‘Integration of FAHP and Association Rule to Establish the Evaluation Mechanism for e-Learning Platform, Journal of Management & Systems’, Journal of Management & Systems, vol. 22, no. 1, pp. 124–147, Jan. 2015.
|