跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳澤君
研究生(外文):CHEN, CHE-CHUN
論文名稱:透過分子標誌輔助選育及營養基因體學增進台灣鯛的抗病與成長表現
論文名稱(外文):Improvement of disease resistance and growth performance in Taiwan tilapia (Oreochromis spp.) by marker-assisted selection and nutrigenomics
指導教授:龔紘毅林仲彥林仲彥引用關係
指導教授(外文):GONG, HONG-YILIN, CHUNG-YEN
口試委員:吳金洌蕭錫延龔紘毅林仲彥胡紹揚周信佑楊文欽陳志毅黃章文
口試委員(外文):WU, JEN-LEIHSHIAU, SHI-YENGONG, HONG-YILIN, CHUNG-YENHU, SHAO-YANGCHOU, HSIN-YIUYANG, WEN-CHINCHEN, JYH-YIHHUANG, CHANG-WEN
口試日期:2024-10-25
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物科技博士學位學程
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:113
語文別:英文
論文頁數:154
中文關鍵詞:抗病吳郭魚標記輔助選育營養基因體學大花咸豐草牛津奈米孔技術腸道菌相
外文關鍵詞:Disease-resistanceTilapiaMarker-assisted selectionNutrigenomicsBidens pilosaOxford nanopore technologyGut microbiota
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
吳郭魚是全球重要的蛋白質供應來源,隨著地球資源日益匱乏和糧食需求逐漸攀升,提高吳郭魚的產量變得至關重要。目前,吳郭魚養殖以GIFT品系為主,其特點為生長快速但抗病力較不佳。為了大幅推動台灣吳郭魚產業的發展,本研究利用分子標記輔助選育和營養基因體學同時提升台灣鯛的抗病與生長表現。本研究針對三個台灣鯛品系進行海豚鏈球菌(Streptococcus iniae)的攻毒試驗,並建立了11 個與抗病相關微衛星標記,包括 3 個 OnHAMP2、4 個 OnHAMP1、1 個 PGRN2、2 個 PGRN1 及 1 個 TP4 基因關聯的微衛星。攻毒的結果顯示三個品系的抗病能力高低依序為A、B、N2,三個品系70-80的致死劑量(LD)為A品系 2 × 106 CFU/g (LD71.3),B品系6 × 105 CFU/g(LD73.2), N2品系 6.5 × 105 CFU/g (LD79.7)。接著透過基因型與存活率的關聯性分析,發現 55 個與存活率顯著相關的基因型,在A、B、N2品系分別有37、9、9個基因型具有顯著差異。透過這些微衛星的基因型資料我們成功建立了台灣鯛的SVM抗病預測模型。最終也經由實際攻毒海豚鏈球菌於吳郭魚抗鏈球菌子代SR-ANT1、SR-AB、SR-BB,證實了抗病預測模型的準確性與實用性。
為了進一步提高台灣鯛的成長和抗病能力,並減少抗生素與化學藥品的使用,達到永續養殖,可食用草本植物大花咸豐草 (Bidens pilosa) 被選擇作為多功能飼料添加劑使用。經過8週的餵食試驗後,結果顯示投餵0.5% 和1% 大花咸豐草會顯著提升台灣鯛的生長性能,包括最終體重、增重百分比、特定生長率和飼料轉換率,而攝食量則無影響。除了成長外,本研究也發現到投餵大花咸豐草具有促進脂質代謝和抗氧化的作用。經8週的投餵實驗,台灣鯛的膽固醇與三酸甘油脂接顯著降低,而血清中超氧化物歧化酶的活性則增加。在肝臟和肌肉組織轉錄組的功能富集分析則發現到,投餵大花咸豐草主要會影響肝臟和肌肉與胺基酸代謝、脂質代謝、碳水化合物代謝、內分泌系統、信號傳導等相關的途徑和基因。qRT-PCR的結果顯示大花咸豐草會增強內分泌IGF1/IGF1Rb信號的基因 (肝臟的igf1和肌肉的igf1rb) 及抑制肌肉自分泌/旁分泌MSTN信號的負調節因子(mstnb) 的表現,進而促進肌生成調節因子如myod1、myog和mrf4的表達,最終提高台灣鯛的肌肉生長。此外,以控制組無添加及添加0.5% 與1% 大花咸豐草飼料餵食台灣鯛8週後再以腹腔注射海豚鏈球菌(6×105 CFU/g) 攻毒,可將致死率自67% 降低至37% 與27%。
本研究也利用第三代牛津奈米孔定序技術建立了台灣鯛餵食大花咸豐草的腸道菌資料庫。結果顯示在投餵大花咸豐草後,除了台灣鯛腸道微生物相多樣性下降外,吳郭魚的其中一種致病菌-產氣單胞菌(Aeromonas)相對豐度也下降,與此同時,已經被用作吳郭魚益生菌的檸檬酸桿菌(Citrobacter)相對豐度則上升。透過腸道菌的功能預測分析,我們發現腸道微生物群的功能預測結果和台灣鯛的肝臟轉錄組富集KEGG途徑結果極為相似,同時被顯著富集的代謝途徑包含胺基酸代謝的Arginine and proline metabolism、Glycine, serine and threonine metabolism、Tryptophan metabolism、Valine, leucine and isoleucine degradation;脂質代謝中的Fatty acid degradation和Glycerophospholipid metabolism;碳水化合物代謝的Amino sugar and nucleotide sugar、Glyoxylate and dicarboxylate、Starch and sucrose metabolism;內分泌系統的Adipocytokine signaling pathway和PPAR signaling pathway;信號傳導FoxO 和MAPK signaling pathway;其他胺基酸代謝的beta-Alanine metabolism途徑。因此我們認為大花咸豐草可能可以透過改變腸道微生物的組成,再經由腸肝軸影響台灣鯛肝臟的營養代謝進而促進成長。
綜上所述,本研究透過分子標記輔助選育和營養基因體學研究,成功增強了台灣鯛的抗病性與生長性能,將可有效減少抗生素和化學藥品的使用。重大的研究成果包括建立台灣鯛的微衛星標記、轉錄組和腸道微生物群的綜合資料庫,並發展出抗病預測模型及可提升養殖效果的多功能飼料添加劑。抗病預測模型可以做為一個節省時間與符合經濟效應的方法幫助選育。而大花咸豐草的添加不僅顯著提高了台灣鯛的生長效率、脂質代謝和抗氧化能力,還有效抑制腸道有害菌的增長,間接促進魚體健康。此外,腸道微生物群的調控進一步佐證了腸肝軸在促進台灣鯛生長和免疫力中的潛在作用。這些成果有望加速台灣鯛產業的生產效能,更可為永續水產養殖模式帶來實質的貢獻。

Tilapia plays a crucial role in the global protein supply. As the demand for food continues to rise and natural resources become increasingly scarce, enhancing tilapia production is of paramount importance. The primary strain of tilapia currently cultivated is the Genetically Improved Farmed Tilapia (GIFT), which is known for its rapid growth but exhibits limited resistance to diseases. This research aims to significantly advance the development of the tilapia industry in Taiwan by improving disease resistance and growth performance through the application of molecular marker-assisted selection and nutrigenomics.
The present study employed a challenge test on Streptococcus iniae on three strains of Taiwan tilapia, simultaneously establishing 11 microsatellite markers pertinent to disease resistance. The identified markers included three OnHAMP2, four OnHAMP1, one PGRN2, two PGRN1, and one TP4. The findings from the challenge test indicated that the disease resistance of the three strains ranked as follows: strain A exhibited the highest resistance, followed by strain B, and lastly strain N2. The lethal dose required to achieve 70-80% mortality (LD70-80) for strain A was determined to be 2 × 106 CFU/g (LD71.3), for strain B it was 6 × 105 CFU/g (LD73.2), and for strain N2 it was 6.5 × 105 CFU/g (LD79.7). A correlation analysis of genotypes and survival revealed that a total of 55 genotypes related to survival were found—37 genotypes in strain A, 9 in strain B, and 9 in strain N2. Then, a Support Vector Machine (SVM) predictive model was built by the genotypes of the parental generation. Furthermore, the accuracy and practicality of the prediction model was confirmed by S. iniae challenge test in the Streptococcus-resistant offspring of Taiwan tilapia, namely SR-ANT1, SR-AB, and SR-BB.
To further improve growth and disease resistance while simultaneously reducing reliance on chemicals and antibiotics in aquaculture, the Bidens pilosa has been selected as a multifunctional additive. An 8-week trial demonstrated that feeding Taiwan tilapia with 0.5% and 1% B. pilosa significantly enhanced their growth performance, including final body weight, percentage weight gain, specific growth rate, and feed conversion ratio, whereas no increase in food intake. B. pilosa also promoted lipid metabolism and antioxidant effects. Taiwan tilapia after fed with BP diet for 8 weeks, cholesterol and triglycerides were decreased and simultaneously increase the activity of superoxide dismutase in serum. Functional enrichment analysis of the transcriptomes of liver and muscle tissues indicated that B. pilosa primarily affects pathways associated with amino acid metabolism, carbohydrate metabolism, lipid metabolism, endocrine system, and signal transduction. Additionally, the results of qRT-PCR revealed that B. pilosa enhance the expression of genes involved in the endocrine IGF1/IGF1Rb signaling pathway (specifically igf1 in the liver and igf1rb in muscle), while inhibiting the negative regulator of autocrine/paracrine MSTN signaling (mstnb) in muscle tissue. Furthermore, the expression of high levels of myogenic regulatory factors (MRFs), including mrf4, myog, and myod1, was found to promote muscle growth in Taiwan tilapia. In addition, the mortality of tilapia after challenged with Streptococcus iniae (6×105 CFU/g) by IP injection was significantly suppressed from 67% in control group to 37% and 27% in the additive group fed with 0.5% and 1% BP, respectively.
Moreover, we employed third-generation Oxford Nanopore Technology (ONT) to establish a gut microbiota database for Taiwan tilapia fed with B. pilosa. The findings showed a decline in intestinal microbial diversity in Taiwan tilapia and a reduction in the relative abundance of Aeromonas, a pathogenic bacterium in tilapia, after B. pilosa. feeding. The relative abundance of Citrobacter, which has been utilized as a probiotic for tilapia, has increased. Additionally, the functional predictions of the intestinal microbiota were found to be similar to those of the KEGG pathway for liver transcriptome enrichment in Taiwanese tilapia. The significant enriched pathways were following: arginine and proline metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, valine, leucine and isoleucine degradation in amino acid metabolism; fatty acid degradation and glycerophospholipid metabolism in lipid metabolism; amino sugar and nucleotide sugar, glyoxylate and dicarboxylate, Starch and sucrose metabolism in carbohydrate metabolism; adipocytokine signaling pathway and PPAR signaling pathway in endocrine system; FoxO and MAPK signaling pathway in signal transduction; beta-Alanine metabolism in metabolism of other amino acids. Therefore, we propose that B. pilosa may alter the composition of gut microbiota and affect the metabolism and growth of Taiwan tilapia by influencing nutritional processes in the liver through the gut-liver axis.
In conclusion, this study effectively improved the disease resistance and growth performance of Taiwan tilapia through the application of molecular marker-assisted selection and nutrigenomics. This approach presents a viable strategy for minimizing the reliance on antibiotics and chemicals. Notable accomplishments include the establishment of a comprehensive database encompassing microsatellite markers, transcriptomic data, and gut microbiome for Taiwan tilapia, as well as the development of a predictive model for disease resistance and a multifunctional feed additive. The predictive model serves as an efficient and cost-effective tool for selective breeding. Furthermore, the incorporation of B. pilosa into the diet significantly enhanced growth efficiency, lipid metabolism, and antioxidant capacity in Taiwan tilapia, while concurrently inhibiting harmful gut bacteria, thereby promoting overall fish health. Furthermore, the modulation of the gut microbiome plays a significant role in supporting the gut-liver axis, which enhances growth and immunity in Taiwan tilapia. These advancements indicate the potential to improve production efficiency and contribute to sustainable aquaculture practices.

致謝 I
摘要 II
Abstract IV
Graphical abstract of the dissertation VII
Table of contents VIII
List of Tables XI
List of Figures XII
Abbreviations XIV
Chapter 1. General Introduction 1
1.1 Tilapia industry 1
1.1.1 Tilapia aquaculture production 1
1.1.2 Genetically improved farmed tilapia 1
1.1.3 Current issues in developing tilapia farming 2
1.2 Selective breeding 2
1.2.1 Traditional breeding 2
1.2.2 Selective breeding programs in aquaculture 3
1.2.3 Marker-assisted selection (MAS) 3
1.3 Feed additive in aquaculture 4
1.3.1 Function additives of feedstuff 4
1.3.2 Phytogenics in aquaculture 5
1.3.3 Nutrigenomics 5
1.4 Studies of gut microbiota in aquaculture 6
1.4.1 Probiotics in aquaculture 6
1.4.2 Correlation between intestinal bacteria and host 7
1.5 The motivation and aims of this study 7
Chapter 2. Development of Disease-Resistance-Associated Microsatellite DNA Markers for Selective Breeding 8
2.1 Introduction 8
2.2 Material and method 10
2.2.1 Experimental animal 10
2.2.2 Selecting the disease-resistant associated microsatellites 11
2.2.3 Challenge test by Streptococcus iniae 11
2.2.4 Streptococcus-resistant associated microsatellites analysis 12
2.2.5 The genetic diversity analysis 15
2.2.6 The correlation analysis of genotype and survival rate 17
2.2.7 The new disease-resistant Taiwan tilapia 17
2.2.8 The Effectiveness Analysis of Genotypes by Predictive Models 18
2.2.9 Detecting the Streptococcus Resistance of New Strains 21
2.3 Result 21
2.3.1 Seventeen microsatellites linked to disease resistance in tilapia 21
2.3.2 Challenge test results for selecting Streptococcus-resistant tilapia 21
2.3.3 Genotypic variation in disease-resistance-related microsatellites in tilapia 22
2.3.4 Genetic diversity among microsatellites linked to Streptococcus-resistance 22
2.3.5 The correlation between genotype and survival rates of Streptococcus-resistance-associated microsatellites in tilapia 23
2.3.6 Predictive model and effectiveness analysis of genotypes 24
2.4 Discussion 25
2.4.1 Microsatellites linked to disease resistance in tilapia 25
2.4.2 The effect of SSRs on gene expression 25
2.4.3 The correlation between SSRs on Streptococcus resistance in tilapia 26
2.4.4 Predictive model and effectiveness in tilapia 27
2.4.5 Application marker-assisted selection in aquaculture 30
2.5 Conclusion 30
Chapter 3. The Nutrigenomics Study of Multifunctional Additive in Tilapia 32
3.1 Introduction 32
3.2 Material and method 34
3.2.1 Experimental animal 34
3.2.2 Preparation of additives and feedstuffs 34
3.2.3 Growth performance, hepatosomatic index, and viscerosomatic index 35
3.2.4 Blood biochemistry analysis 35
3.2.5 Transcriptome analysis 36
3.2.6 The gene expression analysis in tilapia 37
3.2.7 Streptococcus iniae challenge 38
3.2.8 DNA extraction 38
3.2.9 Oxford Nanopore Technologies 38
3.2.10 The diversity analysis of gut microbiota 39
3.2.11 Functional prediction 39
3.2.12 Statistical analysis 40
3.3 Result 40
3.3.1 The growth performance of tilapia following an eight-week feeding period with a B. pilosa diet 40
3.3.2 The effects of an eight-week feeding period with a B. pilosa diet on the biochemical variables and antioxidative responses of tilapia 41
3.3.3 Transcriptome analysis in liver, muscle, and spleen tissues 42
3.3.4 Gene expression in liver, muscle, and spleen tissues 44
3.3.5 The optimal dietary level of B. pilosa 46
3.3.6 Relative percent survival of tilapia by Streptococcus iniae infection 47
3.3.7 The diversity and composition of gut microbiota in tilapia 47
3.3.8 The predicted function of gut microbiota following an eight-week feeding period with a B. pilosa diet in tilapia 48
3.3.9 Potential probiotics and pathogens in tilapia at species level 49
3.4 Discussion 49
3.4.1 The impact of B. pilosa on the growth of tilapia 49
3.4.2 The mechanism by which B. pilosa promotes the growth of tilapia 51
3.4.3 The impact of B. pilosa on the antioxidant capacity of tilapia 52
3.4.4 The impact of B. pilosa on the lipid metabolism of tilapia 54
3.4.5 The impact of B. pilosa on the disease resistance of tilapia 55
3.4.6 Effects of B. pilosa feeding on gut microbiota hosts 57
3.5 Conclusion 59
General conclusion 61
Reference 62
Tables 80
Figures 109

Abdel‐Latif, H.M., Dawood, M.A., Menanteau‐Ledouble, S., El‐Matbouli, M., 2020. The nature and consequences of co‐infections in tilapia: A review. Journal of Fish Diseases 43, 651-664.
Abdelkhalek, N.K., Risha, E., Mohamed, A., Salama, M.F., Dawood, M.A., 2020. Antibacterial and antioxidant activity of clove oil against Streptococcus iniae infection in Nile tilapia (Oreochromis niloticus) and its effect on hepatic hepcidin expression. Fish & Shellfish Immunology 104, 478-488.
Abdul-Muneer, P., 2014. Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genetics Research International 2014, 691759
Aboyadak, I., Ali, N., Goda, A., Aboelgalagel, W., Salam, A., 2015. Molecular detection of Aeromonas hydrophila as the main cause of outbreak in tilapia farms in Egypt. J Aquac Mar Biol 2, 2-5.
Adel, M., Yeganeh, S., Dadar, M., Sakai, M., Dawood, M.A., 2016. Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish & Shellfish Immunology 56, 436-444.
Adhikari, B., Majumdar, S., 2004. Polymers in sensor applications. Progress in Polymer Science 29, 699-766.
Albelda, S.M., Buck, C.A., 1990. Integrins and other cell adhesion molecules. The FASEB journal 4, 2868-2880.
Alexander, J.B., Ingram, G.A., 1992. Noncellular nonspecific defence mechanisms of fish. Annual Review of Fish Diseases 2, 249-279.
Altman, D.G., Bland, J.M., 1994. Diagnostic tests. 1: Sensitivity and specificity. BMJ: British Medical Journal 308, 1552.
Aly, S.M., Abd-El-Rahman, A.M., John, G., Mohamed, M.F., 2008. Characterization of some bacteria isolated from Oreochromis niloticus and their potential use as probiotics. Aquaculture 277, 1-6.
Amal, M., Zamri-Saad, M., 2011a. Streptococcosis in tilapia (Oreochromis niloticus): a review. Pertanika Journal of Tropical Agricultural Science 34, 195-206.
Angeli, J.P.F., Shah, R., Pratt, D.A., Conrad, M., 2017. Ferroptosis inhibition: mechanisms and opportunities. Trends in Pharmacological Sciences 38, 489-498.
Bagshaw, A.T., 2017. Functional mechanisms of microsatellite DNA in eukaryotic genomes. Genome Biology and Evolution 9, 2428-2443.
Balcázar, J.L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., Múzquiz, J.L., 2006. The role of probiotics in aquaculture. Veterinary microbiology 114, 173-186.
Bartolome, A.P., Villaseñor, I.M., Yang, W.-C., 2013. Bidens pilosa L.(Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based Complementary and Alternative Medicine 2013, 340215
Bartoskova, M., Dobsikova, R., Stancova, V., Zivna, D., Blahova, J., Marsalek, P., Zelnickova, L., Bartos, M., Di Tocco, F.C., Faggio, C., 2013. Evaluation of ibuprofen toxicity for zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress. Neuroendocrinology Letters 34, 102-108.
Beltrán, J.M.G., Esteban, M.Á., 2022. Nature-identical compounds as feed additives in aquaculture. Fish & Shellfish Immunology 123, 409-416.
Berger, N., Dubreucq, B., 2012. Evolution goes GAGA: GAGA binding proteins across kingdoms. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1819, 863-868.
Bharathi, S., Antony, C., Cbt, R., Arumugam, U., Ahilan, B., Aanand, S., 2019. Functional feed additives used in fish feeds. Int. J. Fish. Aquat. Stud 7, 44-52.
Bian, C., Li, J., Lin, X., Chen, X., Yi, Y., You, X., Zhang, Y., Lv, Y., Shi, Q., 2019. Whole genome sequencing of the blue tilapia (Oreochromis aureus) provides a valuable genetic resource for biomedical research on tilapias. Marine Drugs 17, 386.
Botstein, D., White, R.L., Skolnick, M., Davis, R.W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32, 314.
Bouchez, A., Hospital, F., Causse, M., Gallais, A., Charcosset, A., 2002. Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162, 1945-1959.
Boulangé, C.L., Neves, A.L., Chilloux, J., Nicholson, J.K., Dumas, M.-E., 2016. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine 8, 1-12.
Breitwieser, F.P., Salzberg, S.L., 2020. Pavian: interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics 36, 1303-1304.
Cáceres, G., López, M.E., Cádiz, M.I., Yoshida, G.M., Jedlicki, A., Palma-Véjares, R., Travisany, D., Díaz-Domínguez, D., Maass, A., Lhorente, J.P., 2019. Fine mapping using whole-genome sequencing confirms anti-Müllerian hormone as a major gene for sex determination in farmed Nile tilapia (Oreochromis niloticus L.). G3: Genes, Genomes, Genetics 9, 3213-3223.
Cai, W.-Q., Li, S.-F., Ma, J.-Y., 2004. Diseases resistance of Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and their hybrid (female Nile tilapia× male blue tilapia) to Aeromonas sobria. Aquaculture 229, 79-87.
Chance, B., Sies, H., Boveris, A., 1979. Hydroperoxide metabolism in mammalian organs. Physiological reviews 59, 527-605.
Chang, C.L., Chung, C.-Y., Kuo, C.-H., Kuo, T.-F., Yang, C.-W., Yang, W.-C., 2016. Beneficial effect of Bidens pilosa on body weight gain, food conversion ratio, gut bacteria and coccidiosis in chickens. PloS One 11, e0146141.
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321-357.
Chen, C.-C., Huang, C.-W., Lin, C.-Y., Ho, C.-H., Pham, H.N., Hsu, T.-H., Lin, T.-T., Chen, R.-H., Yang, S.-D., Chang, C.-I., 2021. Development of disease-resistance-associated microsatellite DNA markers for selective breeding of tilapia (Oreochromis spp.) farmed in Taiwan. Genes 13, 99.
Chen, R., Chang, Y., Chang, K., Liu, F., 2008. Comparison of growth performance of the hybridization and inbred lines in tilapia-development of fast-growing strain. J. Taiwan Fish. Res 16, 41-47.
Chetverina, D., Erokhin, M., Schedl, P., 2021. GAGA factor: a multifunctional pioneering chromatin protein. Cellular and Molecular Life Sciences, 1-17.
Chi, J.-R., Liao, L.-S., Wang, R.-G., Jhu, C.-S., Wu, J.-L., Hu, S.-Y., 2015. Molecular cloning and functional characterization of the hepcidin gene from the convict cichlid (Amatitlania nigrofasciata) and its expression pattern in response to lipopolysaccharide challenge. Fish Physiology and Biochemistry 41, 449-461.
Chicco, D., Jurman, G., 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21, 1-13.
Cho, Y.S., Lee, S.Y., Kim, K.H., Kim, S.K., Kim, D.S., Nam, Y.K., 2009. Gene structure and differential modulation of multiple rockbream (Oplegnathus fasciatus) hepcidin isoforms resulting from different biological stimulations. Developmental & Comparative Immunology 33, 46-58.
Chu, P.-Y., Li, J.-X., Hsu, T.-H., Gong, H.-Y., Lin, C.-Y., Wang, J.-H., Huang, C.-W., 2021. Identification of Genes Related to Cold Tolerance and Novel Genetic Markers for Molecular Breeding in Taiwan Tilapia (Oreochromis spp.) via Transcriptome Analysis. Animals 11, 3538.
Colak, D., Zaninovic, N., Cohen, M.S., Rosenwaks, Z., Yang, W.-Y., Gerhardt, J., Disney, M.D., Jaffrey, S.R., 2014. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science 343, 1002-1005.
Collard, B.C., Mackill, D.J., 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 557-572.
Consortium, C.T., 2003. The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics 4, 911-916.
Conte, M.A., Gammerdinger, W.J., Bartie, K.L., Penman, D.J., Kocher, T.D., 2017. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genomics 18, 1-19.
Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine learning 20, 273-297.
Darwish, A.M., Hobbs, M.S., 2005. Laboratory efficacy of amoxicillin for the control of Streptococcus iniae infection in blue tilapia. Journal of Aquatic Animal Health 17, 197-202.
Davoli, R., Braglia, S., 2007. Molecular approaches in pig breeding to improve meat quality. Briefings in functional genomics and proteomics 6, 313-321.
Dawood, M.A., Amer, A.A., Elbialy, Z.I., Gouda, A.H., 2020. Effects of including triticale on growth performance, digestive enzyme activity, and growth-related genes of Nile tilapia (Oreochromis niloticus). Aquaculture 528, 735568.
Dawood, M.A., Koshio, S., Esteban, M.Á., 2018. Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture 10, 950-974.
Dawood, M.A., Koshio, S., Ishikawa, M., Yokoyama, S., 2015. Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of red sea bream, Pagrus major. Aquaculture 442, 29-36.
Dekkers, J.C., 2004. Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science 82, E313-E328.
Delzenne, N.M., Knudsen, C., Beaumont, M., Rodriguez, J., Neyrinck, A.M., Bindels, L.B., 2019. Contribution of the gut microbiota to the regulation of host metabolism and energy balance: A focus on the gut–liver axis. Proceedings of the Nutrition Society 78, 319-328.
Dias, M.A.D., Neto, R.V.R., de Sousa Bueno Filho, J.S., Jaser, S.K.K., de Assis Lago, A., Hilsdorf, A.W.S., 2019. Growth hormone gene polymorphism associated with grow-out performance of Oreochromis niloticus strains. Aquaculture 503, 105-110.
Dong, H., Techatanakitarnan, C., Jindakittikul, P., Thaiprayoon, A., Taengphu, S., Charoensapsri, W., Khunrae, P., Rattanarojpong, T., Senapin, S., 2017. Aeromonas jandaei and Aeromonas veronii caused disease and mortality in Nile tilapia, Oreochromis niloticus (L.). Journal of Fish Diseases 40, 1395-1403.
Dongyu, Q., 2024. 2024 The state of world fisheries and aquaculture-blue transformation in action. The State of World Fisheries and Aquaculture, R1-232.
Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., Huttenhower, C., Langille, M.G., 2020. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology 38, 685-688.
Dustin, M.L., Cooper, J.A., 2000. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunology 1, 23-29.
Eckmann, L., Kagnoff, M.F., 2001. Cytokines in host defense against Salmonella. Microbes and Infection 3, 1191-1200.
Eknath, A.E., Tayamen, M.M., Palada-de Vera, M.S., Danting, J.C., Reyes, R.A., Dionisio, E.E., Capili, J.B., Bolivar, H.L., Abella, T.A., Circa, A.V., 1993. Genetic improvement of farmed tilapias: the growth performance of eight strains of Oreochromis niloticus tested in different farm environments, Genetics in Aquaculture. Elsevier, pp. 171-188.
Eyngor, M., Zamostiano, R., Tsofack, J.E.K., Berkowitz, A., Bercovier, H., Tinman, S., Lev, M., Hurvitz, A., Galeotti, M., Bacharach, E., 2014. Identification of a novel RNA virus lethal to tilapia. Journal of Clinical Microbiology 52, 4137-4146.
Eze, F., 2019. Marker-assisted selection in fish: A review. Asian Journal of Fisheries and Aquatic Research, 1-11.
Fawcett, T., 2006. An introduction to ROC analysis. Pattern recognition letters 27, 861-874.
Fenech, M., El-Sohemy, A., Cahill, L., Ferguson, L.R., French, T.-A.C., Tai, E.S., Milner, J., Koh, W.-P., Xie, L., Zucker, M., 2011. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. Lifestyle Genomics 4, 69-89.
Firmino, J.P., Galindo-Villegas, J., Reyes-López, F.E., Gisbert, E., 2021. Phytogenic bioactive compounds shape fish mucosal immunity. Frontiers in Immunology 12, 695973.
Fuentes, E.N., Valdés, J.A., Molina, A., Björnsson, B.T., 2013. Regulation of skeletal muscle growth in fish by the growth hormone–insulin-like growth factor system. General and Comparative Endocrinology 192, 136-148.
Fuji, K., Hasegawa, O., Honda, K., Kumasaka, K., Sakamoto, T., Okamoto, N., 2007. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 272, 291-295.
Fuji, K., Kobayashi, K., Hasegawa, O., Coimbra, M.R.M., Sakamoto, T., Okamoto, N., 2006. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 254, 203-210.
Fukui, M., Zhu, B.T., 2010. Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, plays a critical role in protection against glutamate-induced oxidative stress and cell death in HT22 neuronal cells. Free Radical Biology and Medicine 48, 821-830.
Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D.W., Fasano, A., Miller, G.W., 2019. Chronic inflammation in the etiology of disease across the life span. Nature Medicine 25, 1822-1832.
Galindo-Villegas, J., Bossier, P., Reyes-López, F.E., 2022. Oral immune-enhancing research in fish. Frontiers in Immunology 13, 850026.
Gao, Y., Dai, Z., Shi, C., Zhai, G., Jin, X., He, J., Lou, Q., Yin, Z., 2016. Depletion of myostatin b promotes somatic growth and lipid metabolism in zebrafish. Frontiers in Endocrinology 7, 88.
Gatesoupe, F.J., 1999. The use of probiotics in aquaculture. Aquaculture 180, 147-165.
Geissberger, P., Séquin, U., 1991. Constituents of Bidens pilosa L.: do the components found so far explain the use of this plant in traditional medicine? Acta Tropica 48, 251-261.
Gjedrem, T., 1983. Genetic variation in quantitative traits and selective breeding in fish and shellfish. Aquaculture 33, 51-72.
Gjedrem, T., Baranski, M., 2010. Selective breeding in aquaculture: an introduction. Springer Science & Business Media.
Gjedrem, T., Robinson, N., 2014. Advances by selective breeding for aquatic species: a review. Agricultural Sciences 5, 1152.
Guiney, D.G., Lesnick, M., 2005. Targeting of the actin cytoskeleton during infection by Salmonella strains. Clinical Immunology 114, 248-255.
Hanley, J.A., McNeil, B.J., 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29-36.
Hayden, M., Nguyen, T., Waterman, A., McMichael, G., Chalmers, K., 2008. Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Molecular Breeding 21, 271-281.
Hazam, P.K., Chen, J.-Y., 2020. Therapeutic utility of the antimicrobial peptide Tilapia Piscidin 4 (TP4). Aquaculture Reports 17, 100409.
He, A.Y., Ning, L.J., Chen, L.Q., Chen, Y.L., Xing, Q., Li, J.M., Qiao, F., Li, D.L., Zhang, M.L., Du, Z.Y., 2015. Systemic adaptation of lipid metabolism in response to low‐and high‐fat diet in Nile tilapia (Oreochromis niloticus). Physiological Reports 3, e12485.
Hennebry, A., Oldham, J., Shavlakadze, T., Grounds, M.D., Sheard, P., Fiorotto, M.L., Falconer, S., Smith, H.K., Berry, C., Jeanplong, F., 2017. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. Journal of Endocrinology 234, 187-200.
Hernandez de-Dios, M.A., Tovar-Ramírez, D., Maldonado García, D., Galaviz-Espinoza, M.A., Spanopoulos Zarco, M., Maldonado-García, M.C., 2022. Functional additives as a boost to reproductive performance in marine fish: a review. Fishes 7, 262.
Ho, Y.-N., Chen, Y.-L., Liu, D.-Y., 2021. Portable and Rapid Sequencing Device with Microbial Community-Guided Culture Strategies for Precious Field and Environmental Samples. Msystems 6, e00748-00721.
Holsinger, K.E., Weir, B.S., 2009. Genetics in geographically structured populations: defining, estimating and interpreting F ST. Nature Reviews Genetics 10, 639-650.
Horwitz, W., 2010. Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs/edited by William Horwitz. Gaithersburg (Maryland): AOAC International, 80, 127A.
Hoseinifar, S.H., Van Doan, H., Dadar, M., Ringø, E., Harikrishnan, R., 2019. Feed additives, gut microbiota, and health in finfish aquaculture. Microbial Communities in Aquaculture Ecosystems: Improving Productivity and Sustainability, 121-142.
Hossain, M.S., Small, B.C., Kumar, V., Hardy, R., 2024. Utilization of functional feed additives to produce cost‐effective, ecofriendly aquafeeds high in plant‐based ingredients. Reviews in Aquaculture 16, 121-153.
Huang, H.-N., Chan, Y.-L., Wu, C.-J., Chen, J.-Y., 2015. Tilapia Piscidin 4 (TP4) stimulates cell proliferation and wound closure in MRSA-Infected wounds in mice. Marine Drugs 13, 2813-2833.
Huang, P.-H., Chen, J.-Y., Kuo, C.-M., 2007. Three different hepcidins from tilapia, Oreochromis mossambicus: analysis of their expressions and biological functions. Molecular Immunology 44, 1922-1934.
Huggins, L.G., Colella, V., Atapattu, U., Koehler, A.V., Traub, R.J., 2022. Nanopore Sequencing Using the Full-Length 16S rRNA Gene for Detection of Blood-Borne Bacteria in Dogs Reveals a Novel Species of Hemotropic Mycoplasma. Microbiology Spectrum 10, e03088-03022.
Ingerslev, H.-C., von Gersdorff Jørgensen, L., Strube, M.L., Larsen, N., Dalsgaard, I., Boye, M., Madsen, L., 2014. The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 424, 24-34.
Irianto, A., Austin, B., 2002. Probiotics in aquaculture. Journal of Fish Diseases 25, 633-642.
Jackson, T.R., Ferguson, M.M., Danzmann, R.G., Fishback, A.G., Ihssen, P.E., O'Connell, M., Crease, T.J., 1998. Identification of two QTL influencing upper temperature tolerance in three rainbow trout (Oncorhynchus mykiss) half-sib families. Heredity 80, 143-151.
Jacobs, M.N., Lewis, D.F., 2002. Steroid hormone receptors and dietary ligands: a selected review. Proceedings of the Nutrition Society 61, 105-122.
Jiang, J., Chen, L., Wu, S., Lv, L., Liu, X., Wang, Q., Zhao, X., 2020. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio). Environmental Pollution 265, 114844.
Jiang, X.-F., Liu, Z.-F., Lin, A.-F., Xiang, L.-X., Shao, J.-Z., 2017. Coordination of bactericidal and iron regulatory functions of hepcidin in innate antimicrobial immunity in a zebrafish model. Scientific Reports 7, 4265.
Jones, D.P., Eklöw, L., Thor, H., Orrenius, S., 1981. Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Archives of Biochemistry and Biophysics 210, 505-516.
Jong, C.J., Azuma, J., Schaffer, S., 2012. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42, 2223-2232.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41, e1-e1.
Kotob, M.H., Menanteau-Ledouble, S., Kumar, G., Abdelzaher, M., El-Matbouli, M., 2017. The impact of co-infections on fish: a review. Veterinary Research 47, 1-12.
Krause, A., Neitz, S., Mägert, H.-J., Schulz, A., Forssmann, W.-G., Schulz-Knappe, P., Adermann, K., 2000. LEAP‐1, a novel highly disulfide‐bonded human peptide, exhibits antimicrobial activity. FEBS Letters 480, 147-150.
Kumar, L.S., 1999. DNA markers in plant improvement: an overview. Biotechnology Advances 17, 143-182.
Lahti, L., Shetty, S., 2017. microbiome R package.
Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., Kambadur, R., 2002. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. Journal of Biological Chemistry 277, 49831-49840.
Lee, C.-S., 2015. Dietary nutrients, additives and fish health.
Lee, N., Iyer, S.S., Mu, J., Weissman, J.D., Ohali, A., Howcroft, T.K., Lewis, B.A., Singer, D.S., 2010. Three novel downstream promoter elements regulate MHC class I promoter activity in mammalian cells. PloS One 5, e15278.
Lee, S.-J., McPherron, A.C., 2001. Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences 98, 9306-9311.
Leng, X., Wu, X., Tian, J., Li, X., Guan, L., Weng, D., 2012. Molecular cloning of fatty acid synthase from grass carp (Ctenopharyngodon idella) and the regulation of its expression by dietary fat level. Aquaculture Nutrition 18, 551-558.
Levene, H., 1949. On a matching problem arising in genetics. The Annals of Mathematical Statistics, 91-94.
Li, B.J., Zhu, Z.X., Qin, H., Meng, Z.N., Lin, H.R., Xia, J.H., 2020. Genome-wide characterization of alternative splicing events and their responses to cold stress in tilapia. Frontiers in Genetics 11, 244.
Li, H., 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094-3100.
Li, Y.-C., Korol, A.B., Fahima, T., Nevo, E., 2004. Microsatellites within genes: structure, function, and evolution. Molecular Biology and Evolution 21, 991-1007.
Liang, M., Wang, Z., Li, H., Cai, L., Pan, J., He, H., Wu, Q., Tang, Y., Ma, J., Yang, L., 2018. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food and Chemical Toxicology 115, 315-328.
Liang, Q., Yuan, M., Xu, L., Lio, E., Zhang, F., Mou, H., Secundo, F., 2022. Application of enzymes as a feed additive in aquaculture. Marine Life Science & Technology 4, 208-221.
Liang, Y.-C., Lin, C.-J., Yang, C.-Y., Chen, Y.-H., Yang, M.-T., Chou, F.-S., Yang, W.-C., Chang, C.L.-T., 2020. Toxicity study of Bidens pilosa in animals. Journal of Traditional and Complementary Medicine 10, 150-157.
Liao, P.-C., Tsai, Y.-L., Chen, Y.-C., Wang, P.-C., Liu, S.-C., Chen, S.-C., 2020. Analysis of streptococcal infection and correlation with climatic factors in cultured tilapia Oreochromis spp. in Taiwan. Applied Sciences 10, 4018.
Lin, W.-C., Chang, H.-Y., Chen, J.-Y., 2016. Electrotransfer of the tilapia piscidin 3 and tilapia piscidin 4 genes into skeletal muscle enhances the antibacterial and immunomodulatory functions of Oreochromis niloticus. Fish & shellfish immunology 50, 200-209.
Liu, C.-H., Chen, J.-C., 2004. Effect of ammonia on the immune response of white shrimpLitopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish & Shellfish Immunology 16, 321-334.
Mahious, A., Gatesoupe, F., Hervi, M., Metailler, R., Ollevier, F., 2006. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758). Aquaculture International 14, 219-229.
Marshall, A., Salerno, M.S., Thomas, M., Davies, T., Berry, C., Dyer, K., Bracegirdle, J., Watson, T., Dziadek, M., Kambadur, R., 2008. Mighty is a novel promyogenic factor in skeletal myogenesis. Experimental Cell Research 314, 1013-1029.
Martinez-Rubio, L., Wadsworth, S., Vecino, J.L.G., Bell, J.G., Tocher, D.R., 2013. Effect of dietary digestible energy content on expression of genes of lipid metabolism and LC-PUFA biosynthesis in liver of Atlantic salmon (Salmo salar L.). Aquaculture 384, 94-103.
Martínez Cruz, P., Ibáñez, A.L., Monroy Hermosillo, O.A., Ramírez Saad, H.C., 2012. Use of probiotics in aquaculture. International Scholarly Research Notices 2012.
Martins, W.S., Lucas, D.C.S., de Souza Neves, K.F., Bertioli, D.J., 2009. WebSat‐A web software for microsatellite marker development. Bioinformation 3, 282.
Masso-Silva, J., Diamond, G., 2014. Antimicrobial peptides from fish. Pharmaceuticles 7: 265–310.
Matsuo, Y., Komiya, S., Yasumizu, Y., Yasuoka, Y., Mizushima, K., Takagi, T., Kryukov, K., Fukuda, A., Morimoto, Y., Naito, Y., 2021. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution. BMC Microbiology 21, 1-13.
McMurdie, P.J., Holmes, S., 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8, e61217.
McPherron, A.C., Lee, S.-J., 1997. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences 94, 12457-12461.
Melo‐Bolívar, J.F., Ruiz Pardo, R.Y., Hume, M.E., Villamil Diaz, L.M., 2021. Multistrain probiotics use in main commercially cultured freshwater fish: A systematic review of evidence. Reviews in Aquaculture 13, 1758-1780.
Meng, X., Hu, W., Wu, S., Zhu, Z., Lu, R., Yang, G., Qin, C., Yang, L., Nie, G., 2019. Chinese yam peel enhances the immunity of the common carp (Cyprinus carpio L.) by improving the gut defence barrier and modulating the intestinal microflora. Fish & Shellfish Immunology 95, 528-537.
Merrifield, D.L., Dimitroglou, A., Foey, A., Davies, S.J., Baker, R.T., Bøgwald, J., Castex, M., Ringø, E., 2010. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302, 1-18.
Mian, G., Godoy, D., Leal, C., Yuhara, T., Costa, G., Figueiredo, H., 2009. Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Veterinary Microbiology 136, 180-183.
Misra, C.K., Das, B.K., Pradhan, J., Pattnaik, P., Sethi, S., Mukherjee, S.C., 2004. Changes in lysosomal enzyme activity and protection against Vibrio infection in Macrobrachium rosenbergii (De Man) post larvae after bath immunostimulation with β-glucan. Fish & Shellfish Immunology 17, 389-395.
Mohammady, E.Y., Soaudy, M.R., Mohamed, A.E., EL-Erian, M.M.A., Farag, A., Badr, A.M., Bassuony, N.I., Ragaza, J.A., El-Haroun, E.R., Hassaan, M.S., 2022. Can dietary phytogenic mixture improve performance for growth, digestive enzyme activity, blood parameters, and antioxidant and related gene expressions of Nile tilapia, Oreochromis niloticus? Animal Feed Science and Technology 290, 115369.
Mohiseni, M., Sepidnameh, M., Bagheri, D., Banaee, M., Nematdust Haghi, B., 2017. Comparative effects of S hirazi thyme and vitamin E on some growth and plasma biochemical changes in common carp (Cyprinus carpio) during cadmium exposure. Aquaculture Research 48, 4811-4821.
Monir, M.S., Yusoff, S.b.M., Mohamad, A., Ngoo, M.S.b.M.H., Ina-Salwany, M.Y., 2020. Haemato-immunological responses and effectiveness of feed-based bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila infections in hybrid red tilapia (Oreochromis mossambicus× O. niloticus). BMC Veterinary Research 16, 1-14.
Mu, Y., Huo, J., Guan, Y., Fan, D., Xiao, X., Wei, J., Li, Q., Mu, P., Ao, J., Chen, X., 2018. An improved genome assembly for Larimichthys crocea reveals hepcidin gene expansion with diversified regulation and function. Communications Biology 1, 195.
Nagano, N., Hozawa, A., Fujiki, W., Yamada, T., Miyaki, K., Sakakura, Y., Hagiwara, A., 2007. Skeletal development and deformities in cultured larval and juvenile seven‐band grouper, Epinephelus septemfasciatus (Thunberg). Aquaculture Research 38, 121-130.
Nayak, S.K., 2010. Probiotics and immunity: a fish perspective. Fish & Shellfish Immunology 29, 2-14.
Neves, J., Leitz, D., Kraut, S., Brandenberger, C., Agrawal, R., Weissmann, N., Mühlfeld, C., Mall, M.A., Altamura, S., Muckenthaler, M.U., 2017. Disruption of the hepcidin/ferroportin regulatory system causes pulmonary iron overload and restrictive lung disease. EBioMedicine 20, 230-239.
Neves, J.V., Caldas, C., Vieira, I., Ramos, M.F., Rodrigues, P.N., 2015. Multiple hepcidins in a teleost fish, Dicentrarchus labrax: different hepcidins for different roles. The Journal of Immunology 195, 2696-2709.
Nguyen, N.H., 2016. Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia and prawns in Asia: achievements, lessons and challenges. Fish and Fisheries 17, 483-506.
Noga, E.J., Ullal, A.J., Corrales, J., Fernandes, J.M., 2011. Application of antimicrobial polypeptide host defenses to aquaculture: Exploitation of downregulation and upregulation responses. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 6, 44-54.
Ogunkalu, O., 2019. Effects of feed additives in fish feed for improvement of aquaculture. Eurasian Journal of Food Science and Technology 3, 49-57.
Oliveira, F., Andrade-Neto, V., Krettli, A., Brandão, M., 2004. New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. Journal of Ethnopharmacology 93, 39-42.
Onu, E., Ugwoke, J., Edeh, H., Onu, M., Onyimonyi, A., 2024. A review: Flavonoid; A Phyto-nutrient and its impact in livestock animal nutrition. World Journal of Advanced Research and Reviews 21, 311-320.
Ozaki, A., Sakamoto, T., Khoo, S., Nakamura, K., Coimbra, M., Akutsu, T., Okamoto, N., 2001. Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Molecular Genetics and Genomics 265, 23-31.
Palaiokostas, C., Kocour, M., Prchal, M., Houston, R.D., 2018. Accuracy of genomic evaluations of juvenile growth rate in common carp (Cyprinus carpio) using genotyping by sequencing. Frontiers in Genetics 9, 82.
Pan, C.-Y., Peng, K.-C., Lin, C.-H., Chen, J.-Y., 2011. Transgenic expression of tilapia hepcidin 1-5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens. Fish & Shellfish Immunology 31, 275-285.
Papoutsoglou, S., 2012. Fish neuroendocrinological systems. Textbook of Fish Endocrinology, 69-75.
Parks, D.H., Tyson, G.W., Hugenholtz, P., Beiko, R.G., 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123-3124.
Peatman, E., Li, C., Peterson, B.C., Straus, D.L., Farmer, B.D., Beck, B.H., 2013. Basal polarization of the mucosal compartment in Flavobacterium columnare susceptible and resistant channel catfish (Ictalurus punctatus). Molecular Immunology 56, 317-327.
Peng, K.-C., Lee, S.-H., Hour, A.-L., Pan, C.-Y., Lee, L.-H., Chen, J.-Y., 2012. Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PloS One 7, e50263.
Phan-Aram, P., Mahasri, G., Kayansamruaj, P., Amparyup, P., Srisapoome, P., 2020. Immune Regulation, but Not Antibacterial Activity, Is a Crucial Function of Hepcidins in Resistance against Pathogenic Bacteria in Nile Tilapia (Oreochromis niloticus Linn.). Biomolecules 10, 1132.
Pier, G.B., Madin, S.H., 1976. Streptococcus iniae sp. nov., a beta-hemolytic Streptococcus isolated from an Amazon freshwater dolphin, Inia geoffrensis. International Journal of Systematic and Evolutionary Microbiology 26, 545-553.
Pierce, A., Breves, J., Moriyama, S., Uchida, K., Grau, E., 2012. Regulation of growth hormone (GH) receptor (GHR1 and GHR2) mRNA level by GH and metabolic hormones in primary cultured tilapia hepatocytes. General and Comparative Endocrinology 179, 22-29.
Ponzoni, R.W., Hamzah, A., Tan, S., Kamaruzzaman, N., 2005. Genetic parameters and response to selection for live weight in the GIFT strain of Nile tilapia (Oreochromis niloticus). Aquaculture 247, 203-210.
Porcheron, G., Dozois, C.M., 2015. Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Veterinary Microbiology 179, 2-14.
Portune, K.J., Beaumont, M., Davila, A.-M., Tomé, D., Blachier, F., Sanz, Y., 2016. Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin. Trends in Food Science & Technology 57, 213-232.
Powers, D.M., 2020. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. ArXiv preprint ArXiv:2010.16061.
Pozharitskaya, O., Shikov, A., Makarova, M., Kosman, V., Faustova, N., Tesakova, S., Makarov, V., Galambosi, B., 2010. Anti-inflammatory activity of a HPLC-fingerprinted aqueous infusion of aerial part of Bidens tripartita L. Phytomedicine 17, 463-468.
Preiss-Landl, K., Zimmermann, R., Hämmerle, G., Zechner, R., 2002. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Current Opinion in Lipidology 13, 471-481.
Rajanbabu, V., Chen, J.-Y., 2011a. Antiviral function of tilapia hepcidin 1–5 and its modulation of immune-related gene expressions against infectious pancreatic necrosis virus (IPNV) in Chinook salmon embryo (CHSE)-214 cells. Fish & Shellfish Immunology 30, 39-44.
Rajanbabu, V., Chen, J.-Y., 2011b. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 32, 415-420.
Redl, K., Breu, W., Davis, B., Bauer, R., 1994. Anti-inflammatory active polyacetylenes from Bidens campylotheca. Planta Medica 60, 58-62.
Ricker, M.A., Haas, W.C., 2017. Anti‐inflammatory diet in clinical practice: a review. Nutrition in Clinical Practice 32, 318-325.
Rimoldi, S., Torrecillas, S., Montero, D., Gini, E., Makol, A., Valdenegro V, V., Izquierdo, M., Terova, G., 2020. Assessment of dietary supplementation with galactomannan oligosaccharides and phytogenics on gut microbiota of European sea bass (Dicentrarchus Labrax) fed low fishmeal and fish oil based diet. PloS One 15, e0231494.
Roberts, S.B., Goetz, F.W., 2001. Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple myostatin isoforms. Febs Letters 491, 212-216.
Rocha, D.M., Bressan, J., Hermsdorff, H.H., 2017. The role of dietary fatty acid intake in inflammatory gene expression: a critical review. Sao Paulo Medical Journal 135, 157-168.
Rodgers, B.D., Weber, G.M., Sullivan, C.V., Levine, M.A., 2001. Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops. Endocrinology 142, 1412-1418.
Saftig, P., Klumperman, J., 2009. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature reviews Molecular Cell Biology 10, 623-635.
Sahoo, M., Ceballos-Olvera, I., del Barrio, L., Re, F., 2011. Role of the inflammasome, IL‐1β, and IL‐18 in bacterial infections. The Scientific World Journal 11, 2037-2050.
Salem, M., Vallejo, R.L., Leeds, T.D., Palti, Y., Liu, S., Sabbagh, A., Rexroad III, C.E., Yao, J., 2012. RNA-Seq identifies SNP markers for growth traits in rainbow trout. PLoS One 7, e36264.
Salerno, M.S., Dyer, K., Bracegirdle, J., Platt, L., Thomas, M., Siriett, V., Kambadur, R., Sharma, M., 2009. Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis. Experimental Cell Research 315, 2012-2021.
Sales, N.M.R., Pelegrini, P.B., Goersch, M., 2014. Nutrigenomics: definitions and advances of this new science. Journal of Nutrition and Metabolism 2014, 202759.
Saurabh, S., Sahoo, P., 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research 39, 223-239.
Serapion, J., Kucuktas, H., Feng, J., Liu, Z., 2004. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus). Marine Biotechnology 6, 364-377.
Sereika, M., Kirkegaard, R.H., Karst, S.M., Michaelsen, T.Y., Sørensen, E.A., Wollenberg, R.D., Albertsen, M., 2022. Oxford Nanopore R10. 4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nature Methods 19, 823-826.
Serradell, A., Montero, D., Fernández-Montero, Á., Terova, G., Makol, A., Valdenegro, V., Acosta, F., Izquierdo, M.S., Torrecillas, S., 2022. Gill oxidative stress protection through the use of phytogenics and galactomannan oligosaccharides as functional additives in practical diets for European sea bass (Dicentrarchus labrax) juveniles. Animals 12, 3332.
Serrano, P.H., 2005. Responsible use of antibiotics in aquaculture. Food & Agriculture Org.
Shlapobersky, M., Sinyakov, M.S., Katzenellenbogen, M., Sarid, R., Don, J., Avtalion, R.R., 2010. Viral encephalitis of tilapia larvae: primary characterization of a novel herpes-like virus. Virology 399, 239-247.
Smith, V., Fernandes, J., 2009. Non-specific antimicrobial proteins of the innate system. Fish Defences 1, 241-275.
Smith, V.J., Desbois, A.P., Dyrynda, E.A., 2010. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine Drugs 8, 1213-1262.
Sonesson, A.K., 2007. Within-family marker-assisted selection for aquaculture species. Genetics Selection Evolution 39, 301-317.
Sruthi, M., Nair, A.B., Arun, D., Thushara, V., Sheeja, C., Vijayasree, A.S., Oommen, O.V., Divya, L., 2018. Dietary curcumin influences leptin, growth hormone and hepatic growth factors in Tilapia (Oreochromis mossambicus). Aquaculture 496, 105-111.
Streelman, J.T., Kocher, T.D., 2002. Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiological genomics 9, 1-4.
Su, B.-K., Chen, J.-C., 2008. Effect of saponin immersion on enhancement of the immune response of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish & Shellfish Immunology 24, 74-81.
Sun, X., Liang, L., 2004. A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture 238, 165-172.
Surachetpong, W., Janetanakit, T., Nonthabenjawan, N., Tattiyapong, P., Sirikanchana, K., Amonsin, A., 2017. Outbreaks of tilapia lake virus infection, Thailand, 2015–2016. Emerging Infectious Diseases 23, 1031.
Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science 240, 1285-1293.
Tattiyapong, P., Dachavichitlead, W., Surachetpong, W., 2017. Experimental infection of Tilapia Lake Virus (TiLV) in Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.). Veterinary Microbiology 207, 170-177.
Tian, J., Wu, F., Yang, C.-G., Jiang, M., Liu, W., Wen, H., 2015. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus. Fish Physiology and Biochemistry 41, 1-18.
Tobinaga, S., Sharma, M.K., Aalbersberg, W.G., Watanabe, K., Iguchi, K., Narui, K., Sasatsu, M., Waki, S., 2009. Isolation and identification of a potent antimalarial and antibacterial polyacetylene from Bidens pilosa. Planta Medica 75, 624-628.
Torrecillas, S., Terova, G., Makol, A., Serradell, A., Valdenegro-Vega, V., Izquierdo, M., Acosta, F., Montero, D., 2021. Dietary phytogenics and galactomannan oligosaccharides in low fish meal and fish oil-based diets for European sea bass (Dicentrarchus labrax) juveniles: Effects on gill structure and health and implications on oxidative stress status. Frontiers in Immunology 12, 663106.
Torrecillas, S., Terova, G., Makol, A., Serradell, A., Valdenegro, V., Gini, E., Izquierdo, M., Acosta, F., Montero, D., 2019. Dietary phytogenics and galactomannan oligosaccharides in low fish meal and fish oil-based diets for European sea bass (Dicentrarchus labrax) juveniles: Effects on gut health and implications on in vivo gut bacterial translocation. PLoS One 14, e0222063.
Torres-Fuentes, C., Schellekens, H., Dinan, T.G., Cryan, J.F., 2017. The microbiota–gut–brain axis in obesity. The lancet Gastroenterology & hepatology 2, 747-756.
Treves-Brown, K.M., 2013. Applied fish pharmacology. Springer Science & Business Media.
Tripathi, A., Debelius, J., Brenner, D.A., Karin, M., Loomba, R., Schnabl, B., Knight, R., 2018. The gut–liver axis and the intersection with the microbiome. Nature Reviews Gastroenterology & hepatology 15, 397-411.
Tsukiyama, T., Becker, P.B., Wu, C., 1994. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525-532.
Vallejo, R.L., Leeds, T.D., Gao, G., Parsons, J.E., Martin, K.E., Evenhuis, J.P., Fragomeni, B.O., Wiens, G.D., Palti, Y., 2017. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Genetics Selection Evolution 49, 1-13.
Van Hai, N., 2015. The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture 446, 88-96.
Vijayaram, S., Sun, Y.-Z., Zuorro, A., Ghafarifarsani, H., Van Doan, H., Hoseinifar, S.H., 2022. Bioactive immunostimulants as health-promoting feed additives in aquaculture: A review. Fish & Shellfish Immunology 130, 294-308.
Vykoukalova, Z., Knoll, A., Dvořák, J., Čepica, S., 2006. New SNPs in the IGF2 gene and association between this gene and backfat thickness and lean meat content in Large White pigs. Journal of Animal Breeding and Genetics 123, 204-207.
Wade, A.M., Tucker, H.N., 1998. Antioxidant characteristics of L-histidine. The Journal of Nutritional Biochemistry 9, 308-315.
Wang, G., Li, X., Wang, Z., 2016. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research 44, D1087-D1093.
Wang, H.-X., Wang, Y.-P., 2016. Gut microbiota-brain axis. Chinese Medical Journal 129, 2373-2380.
Wang, J., Liang, X.-F., He, S., Li, J., Huang, K., Zhang, Y.-P., Huang, D., 2018a. Lipid deposition pattern and adaptive strategy in response to dietary fat in Chinese perch (Siniperca chuatsi). Nutrition & Metabolism 15, 1-11.
Wang, Y.-B., Li, J.-R., Lin, J., 2008. Probiotics in aquaculture: challenges and outlook. Aquaculture 281, 1-4.
Wang, Y., Branicky, R., Noë, A., Hekimi, S., 2018b. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology 217, 1915-1928.
Webster, C.D., Lim, C., 2024. Tilapia: biology, culture, and nutrition. CRC Press.
Weinstein, M.R., Litt, M., Kertesz, D.A., Wyper, P., Rose, D., Coulter, M., McGeer, A., Facklam, R., Ostach, C., Willey, B.M., 1997. Invasive infections due to a fish pathogen, Streptococcus iniae. New England Journal of Medicine 337, 589-594.
Wickham, H., 2011. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3, 180-185.
Winston, G.W., Di Giulio, R.T., 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology 19, 137-161.
Wu, S.-H., Chou, H.-Y., Liu, P.-C., Wu, J.-L., Gong, H.-Y., 2019. Granulin peptide GRN-41 of Mozambique tilapia is a novel antimicrobial peptide against Vibrio species. Biochemical and Biophysical Research Communications 515, 706-711.
Wu, S.-H., Lin, H.-J., Lin, W.-F., Wu, J.-L., Gong, H.-Y., 2018. A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity. Fish & Shellfish Immunology 75, 74-90.
Wu, S., Wang, G., Angert, E.R., Wang, W., Li, W., Zou, H., 2012. Composition, diversity, and origin of the bacterial community in grass carp intestine. PloS One 7, e30440.
Xie, S., Zhou, W., Tian, L., Niu, J., Liu, Y., 2016. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology 55, 233-241.
Xu, S., Yu, G.M., 2021. an R package for analysis, visualization and biomarker discovery of microbiome. R Package Version 1.
Xuan, T.D., Khanh, T.D., 2016. Chemistry and pharmacology of Bidens pilosa: an overview. Journal of Pharmaceutical Investigation 46, 91-132.
Yamashita, Y., Yabu, T., Touhata, K., Yamashita, M., 2012. Purification and characterization of glutathione peroxidase 1 in the red muscle of Pacific bluefin tuna Thunnus orientalis. Fisheries Science 78, 407-413.
Yang, M., Wang, K.-J., Chen, J.-H., Qu, H.-D., Li, S.-J., 2007. Genomic organization and tissue-specific expression analysis of hepcidin-like genes from black porgy (Acanthopagrus schlegelii B.). Fish & Shellfish Immunology 23, 1060-1071.
Yang, W., Tien, Y., Chung, C., Chen, Y., Chiou, W., Hsu, S., Liu, H., Liang, C., Chang, C., 2015. Effect of Bidens pilosa on infection and drug resistance of Eimeria in chickens. Research in Veterinary Science 98, 74-81.
Yanong, R.P., Curtis, E.W., Simmons, R., Bhattaram, V.A., Gopalakrishnan, M., Ketabi, N., Nagaraja, N.V., Derendorf, H., 2005. Pharmacokinetic studies of florfenicol in koi carp and threespot gourami Trichogaster trichopterus after oral and intramuscular treatment. Journal of Aquatic Animal Health 17, 129-137.
Ye, X., Li, J., Lu, M., Deng, G., Jiang, X., Tian, Y., Quan, Y., Jian, Q., 2011. Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China. Fisheries Science 77, 623-632.
Yin, X., Liu, W., Chen, H., Qi, C., Chen, H., Niu, H., Yang, J., Kwok, K.W., Dong, W., 2022. Effects of ferulic acid on muscle development and intestinal microbiota of zebrafish. Journal of Animal Physiology and Animal Nutrition 106, 429-440.
Yoshida, G.M., Barria, A., Correa, K., Cáceres, G., Jedlicki, A., Cadiz, M.I., Lhorente, J.P., Yáñez, J.M., 2019a. Genome-wide patterns of population structure and linkage disequilibrium in farmed Nile tilapia (Oreochromis niloticus). Frontiers in Genetics 10, 745.
Yoshida, G.M., Carvalheiro, R., Rodríguez, F.H., Lhorente, J.P., Yáñez, J.M., 2019b. Single-step genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout. Genomics 111, 127-132.
Yoshida, G.M., Lhorente, J.P., Correa, K., Soto, J., Salas, D., Yáñez, J.M., 2019c. Genome-wide association study and cost-efficient genomic predictions for growth and fillet yield in Nile tilapia (Oreochromis niloticus). G3: Genes, Genomes, Genetics 9, 2597-2607.
Young, P., Hsu, Y., Yang, W., 2010. Bidens pilosa L. and its medicinal use. Recent Progress in Medicinal Plants Drug Plant II 28.
Zahran, E., Risha, E., Elbahnaswy, S., Mahgoub, H.A., Abd El-Moaty, A., 2019. Tilapia piscidin 4 (TP4) enhances immune response, antioxidant activity, intestinal health and protection against Streptococcus iniae infection in Nile tilapia. Aquaculture 513, 734451.
Zhang, L., Wang, C., Liu, H., Fu, P., 2019. The important role of phagocytosis and interleukins for nile tilapia (Oreochromis niloticus) to defense infection of Aeromonas hydrophila based on transcriptome analysis. Fish & Shellfish Immunology 92, 54-63.
Zhou, J.-G., Wei, J.-G., Xu, D., Cui, H.-C., Yan, Y., Ou-Yang, Z.-L., Huang, X.-H., Huang, Y.-H., Qin, Q.-W., 2011. Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, Epinephelus coioides. Fish & Shellfish Immunology 30, 559-568.
Zhou, X., Li, J.-J., Li, S., Liu, H.-H., Xu, D.-D., Chi, C.-F., Zheng, L.-B., 2024. Transcriptomic analysis of large yellow croaker (Larimichthys crocea) reveals the suppression of the inflammatory response from Cryptocaryon irritans infection. Fish & Shellfish Immunology 144, 109258.
Zhu, J., Fu, Q., Ao, Q., Tan, Y., Luo, Y., Jiang, H., Li, C., Gan, X., 2017. Transcriptomic profiling analysis of tilapia (Oreochromis niloticus) following Streptococcus agalactiae challenge. Fish & Shellfish Immunology 62, 202-212.
Zou, K.H., O’Malley, A.J., Mauri, L., 2007. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 115, 654-657.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊