|
參考文獻
一、外文文獻 1.Accident Analysis and Prevention, Vol. 27, No. 4, 1995, pp. 571–581. 2.Adrienne Lafrance. (2016). Will Pedestrians Be Able to Tell What a Driverless Car Is About to Do? https://www.theatlantic.com/technology/archive/2016/08/designing-a-driverless-car-with-pedestrians-in-mind/497801/ 3.Allen, B. L., B. T. Shin, and P. J. Cooper. Analysis of Traffic Conflicts and Collisions.1978 ;Chin, H.-C., and S.-T. Quek. Measurement of Traffic Conflicts.1997 ; Minderhoud, M. M., and P. H. L. Bovy. Extended Time-to-Collision Measures for Road Traffic Safety Assessment.2001 and control systems—Specifications and test procedures for in-vehicle visual 4.András Bálint, Volker Labenski, Markus Köbe, Carina Vogl, Johan Stoll, Lars 5.Antonescu, O. (2013). Front stop lamps for a safer traffic. In Proceedings of the FISITA 2012 World Automotive Congress: Volume 9: Automotive Safety Technology (pp. 311-314). Springer Berlin Heidelberg. 6.Archer, J. Traffic Conflict Technique: Historical to Current State-of-the-Art. 2001 ; Muhlrad, N. Traffic Conflict Techniques and Other Forms of Behavioural Analysis: Application to Safety Diagnoses. 1993 Automated Vehicles Policy. Accelerating the next revolution in roadway safety. 7.Barua, N., Natarajan, P., Chandrasekar, P., Singh, S., 2014. Strategic Analysis of the European Market for V2V and V2I Communication Systems. Frost & Sullivan report MA29-18. 8.Bazilinskyy, P., et al. (2021). 'The Impact of Colored Light Signals from Autonomous Vehicles on Human Cognition in Varying Road Conditions: A Topic in Need of Further Research.' Advances in Human-Computer Interaction, 2021, Article ID 7845932. 9.Bazilinskyy, P., Kooijman, L., Dodou, D., & De Winter, J. C. F. (2021). How should external Human-Machine Interfaces behave? Examining the effects of colour, position, message, activation distance, vehicle yielding, and visual distraction among 1,434 participants. Applied ergonomics, 95, 103450. 10.Bazilinskyy, P.; Dodou, D.; de Winter, J. Survey on eHMI concepts: The effect of text, color, and perspective. Transp. Res. Part. F Traffic Psychol. Behav. 2019, 67, 175–194. [CrossRef] 11.Becton L., (2019): Discover Your Learning Style - Comprehensive Guide on Different Learning Styles. 12.Bengler, K., Rettenmaier, M., Fritz, N., Feierle, A., 2020. From HMI to HMIs: towards an HMI framework for automated driving. Information 11 (2), 61. https://doi.org/ 10.3390/info11020061. 13.Biever, W., Angell, L., & Seaman, S. (2020). Automated driving system collisions: early lessons. Human factors, 62(2), 249-259. 14.Campbell, J. L., Brown, J. L., Graving, J. S., Richard, C. M., Lichty, M. G.,Sanquist, T., & Morgan, J. (2016). Human factors design guidance for driver-vehicle interfaces. Report No. DOT HS, 812(360), 252. Washington, DC: National Highway Traffic Safety Administration 15.Carmona, J., Guindel, C., Garcia, F., & de la Escalera, A. (2021). eHMI: Review and guidelines for deployment on autonomous vehicles. Sensors, 21(9), 2912. 16.Carmona, J., Guindel, C., Garcia, F., & de la Escalera, A. (2021). eHMI: Review and guidelines for deployment on autonomous vehicles. Sensors,21(9), 2912. 17.Chang, C. M., Toda, K., Igarashi, T., Miyata, M., & Kobayashi, Y. (2018, September). A video-based study comparing communication modalities between an autonomous car and a pedestrian. In Adjunct Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 104-109). 18.Charisi, V., Habibovic, A., Andersson, J., Li, J., & Evers, V. (2017, June). 19.Charisi, V.; Habibovic, A.; Andersson, J.; Li, J.; Evers, V. Children’s Views on Identification and Intention Communication of Self-driving Vehicles. In Proceedings of the 2017 Conference on Interaction Design and Children, Stanford, CA, USA, 27–30 June 2017; pp. 399–404. children (pp. 399-404). Children's views on identification and intention communication of self-driving 20.Clamann, M., Aubert, M., & Cummings, M. L. (2017). Evaluation of vehicle-to-pedestrian communication displays for autonomous vehicles (No. 17-02119) 21.Clamann, M., Aubert, M., & Cummings, M. L. (2017). Evaluation of vehicle-topedestrian communication displays for autonomous vehicles (No. 17-02119). 22.Colley, M., Bajrovic, E., & Rukzio, E. (2022, April). Effects of pedestrian behavior, time pressure, and repeated exposure on crossing decisions in front of automated vehicles equipped with external communication. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (pp. 1-11). 23.Daimler, A. G. (2017). Autonomous concept car smart vision EQ fortwo: welcome to the future ofcar sharing-Daimler global media site. 24.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003. 25.De Ceunynck, T., Polders, E., Daniels, S., Hermans, E., Brijs, T., & Wets, G. (2013). Road safety differences between priority-controlled intersections and right-hand priority intersections: behavioral analysis of vehicle–vehicle interactions. Transportation research record, 2365(1), 39-48 26.De Clercq, K., Dietrich, A., Núñez Velasco, J. P., De Winter, J., & Happee, R. (2019). External human-machine interfaces on automated vehicles: effects on pedestrian crossing decisions. Human factors, 61(8), 1353-1370. 27.Deb, S., Strawderman, L. J., & Carruth, D. W. (2018). Investigating pedestrian suggestions for external features on fully autonomous vehicles: A virtual reality experiment. Transportation research part F: traffic psychology and behaviour, 59, 135-149. 28.Dey, D., Habibovic, A., Pfleging, B., Martens, M., & Terken, J. (2020, April). Color and animation preferences for a light band eHMI in interactions between automated vehicles and pedestrians. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1-13). 29.Dey, D.; Habibovic, A.; Löcken, A.; Wintersberger, P.; Pfleging, B.; Riener, A.; Martens, M.; Terken, J. Taming the EHMI Jungle: A Classification Taxonomy to Guide, Compare, and Assess the Design Principles of Automated Vehicles’ External Human-Machine Interfaces. Transp. Res. Interdiscip. Perspect. 2020a, 7, 100174–100198 30.Dey, D.; Walker, F.; Martens, M.; Terken, J. Gaze Patterns in Pedestrian Interaction with Vehicles: Towards Effective Design of External Human-Machine Interfaces for Automated Vehicles. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2019, Utrecht, The Netherlands, 21–25 September 2019; ACM: New York, NY, USA, 2019; pp. 369–378. DOT HS 812 (2017), 329 31.Eisma, Y. B., Reiff, A., Kooijman, L., Dodou, D., & De Winter, J. C. F. (2021). External human-machine interfaces: Effects of message perspective. Transportation research part F: traffic psychology and behaviour, 78, 30-41. 32.Endsley, M. R. (1995). Measurement of situation awareness in dynamic systems. Human factors, 37(1), 65-84. 33.Endsley, M. R. (2018, August). Situation awareness in future autonomous vehicles: Beware of the unexpected. In Congress of the International Ergonomics Association (pp. 303-309). Cham: Springer International Publishing. 34.Faas, S. M., & Baumann, M. (2019, November). Light-based external human machine interface: Color evaluation for self-driving vehicle and pedestrian interaction. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 63, No. 1, pp. 1232-1236). Sage CA: Los Angeles, CA: Sage Publications. 35.Faas, S. M., Mathis, L. A., & Baumann, M. (2020). External HMI for self-driving vehicles: Which information shall be displayed?. Transportation research part F: traffic psychology and behaviour, 68, 171-186. 36.Färber B. (2016) Communication and Communication Problems Between Autonomous Vehicles and 37.Färber, B., 2016. Communication and communication problems between autonomous vehicles and human drivers, in: Autonomous driving. Springer, pp. 125–144. 38.Färber, B., 2016. Communication and communication problems between autonomous vehicles and human drivers, in: Autonomous driving. Springer, pp. 125–144. 39.Fuest, T., Sorokin, L., Bellem, H., Bengler, K. (2018). Taxonomy of traffic situations for the interaction between automated vehicles and human road users. In: International Conference on Applied Human Factors and Ergonomics (pp. 708-719). Springer. https://doi.org/10.1007/978-3-319-60441-1_68. 40.General Motors Corporation & Delphi-Delco Electronic Systems. (2002).Automotive collision avoidance system field operation test, warning cueimplementation summary report (Report No. DOT HS 809 462). Washington, DC:National Highway Traffic Safety Administration. 41.George, J. M., & Dane, E. (2016). Affect, emotion, and decision making. Organizational Behavior and Human Decision Processes, 136, 47-55. 42.Guo, F., Lyu, W., Ren, Z., Li, M., & Liu, Z. (2022). A Video-Based, Eye-Tracking Study to Investigate the Effect of eHMI Modalities and Locations on Pedestrian–Automated Vehicle Interaction. Sustainability, 14(9), 5633. 43.Habibovic A, Andersson J, Nilsson M, Lundgren VM, Nilsson J (2016) Evaluating interactions with non-existing automated vehicles: three Wizard of Oz approaches. In: Intelligent vehicles symposium (IV), IEEE, pp 32–37 44.Hancock*, P. A., & Weaver, J. L. (2005). On time distortion under stress. Theoretical issues in ergonomics science, 6(2), 193-211. 45.Horrey, W. J., Wickens, D. D., & Alexander, A. L. (2003). The effects of head-up display clutter and in-vehicle display separation on concurrent driving performance. Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting. 1880-1884. https://static1.squarespace.com/static/5efaed43294db25b18168717/t/627e752a8d7775630d2ea94a/1652454782434/SAFE-UP_D2_6_Use%2Bcase%2Bdefinitions%2Band%2Binitial%2Bsafety-critical%2Bscenarios_.pdf 46.Human Drivers. Autonomous Driving, 2016, pp125-144. doi:10.1007/978-3-662-48847-8_7 47.Hydén, C. (1987). The development of a method for traffic safety evaluation: The Swedish Traffic Conflicts Technique. Bulletin Lund Institute of Technology, Department, (70). 48.Imbsweiler, J., Ruesch, M., Weinreuter, H., Puente Leon, ´ F., Deml, B., 2018. Cooperation behaviour of road users in t-intersections during deadlock situations. Transp. Res. Part F: Traffic Psychol. Behav. 58, 665–677. https://doi.org/10.1016/j. trf.2018.07.006. 49.ISO 15008. (2009). Road vehicles—Ergonomic aspects of transport information 50.J. Harding, G. Powell, R. Yoon, J. Fikentscher, C. Doyle, D. Sade, M. Lukuc, J. Simons, J. Wang, et al., “Vehicle-to-vehicle communications: readiness of v2v technology for application.,” tech. rep., United States. National Highway Traffic Safety Administration, 2014 51.J. Imbsweiler, T. Stoll, M. Ruesch, M. Baumann, and B. Deml,“Insight into cooperation processes for traffic scenarios: modelling with naturalistic decision making,” Cognition, Technology & Work, vol. 20, no. 4, pp. 621–635, 2018 52.Jandhyala (2017).Visual Learning: 6 Reasons Why Visuals Are the Most Powerful Aspect Of eLearning 53.Jayaraman, S. K., Creech, C., Tilbury, D. M., Yang, X. J., Pradhan, A. K., Tsui, K. M., & Robert Jr, L. P. (2019). Pedestrian trust in automated vehicles: Role of traffic signal and AV driving behavior. Frontiers in Robotics and AI, 6, 117. 54.Jerome, C., Monk, C., & Campbell, J. (2015, June). Driver vehicle interface design assistance for vehicle-to-vehicle technology applications. In Proceedings of the 24th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Gothenburg, Sweden (pp. 8-11). 55.Jonas Andersson, Azra Habibovic, Maria Klingegård, Cristofer Englund, and Victor Malmsten-Lundgren. 2017. Hello Human, can you read my mind? ERCIM News (109) (2017), 36–37. http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-29618, International Organization for Standardization (ISO)/TR 23049. 2018. TECHNICAL REPORT ISO: Road Vehicles – Ergonomic aspects of external visual communication from automated vehicles to other road users. Technical Report. https://www.iso.org/obp/ui/#iso:std:iso:tr:23049:ed-1:v1:en 56.K. Bengler, M. Rettenmaier, N. Fritz, and A. Feierle, “From HMI to HMIs: Towards an HMI framework for automated driving,” Information, vol. 11, no. 2, p. 61, 2020 57.Kadali, B. R., & Vedagiri, P. (2013). Effect of vehicular lanes on pedestrian gap acceptance behaviour. Procedia-Social and Behavioral Sciences, 104, 678-687. 58.Kiefer, R., LeBlanc, D., Palmer, M., Salinger, J., Deering, R., & Shulman, M.(1999). Development and validation of functional definitions and evaluation procedures for collision warning/avoidance systems (Report No. DOT HT 808964).Washington, DC: National Highway Traffic Safety Administration. 59.Kitazaki, S., & Myhre, M. J. (2015, June). Effects of non-verbal communication cues on decisions and confidence of drivers at an uncontrolled intersection. In Driving Assesment Conference (Vol. 8, No. 2015). University of Iowa. 60.Lee, S. E., R. R. Knipling, M. C. DeHart, M. A. Perez, G. T. Holbrook, S. B. Brown, S. R. Stone, and R. L. Olson. Vehicle-Based Countermeasures for Signal and Stop Sign Violation. DOT HS 809 423. Virginia Tech Transportation Institute, Blacksburg, Va., 2004./ Parker, D., R. West, S. Stradling, and A. S. R. Manstead. Behavioural Characteristics and Involvement in Different Types of Traffic Accidents. 61.Lee, Y. M., Madigan, R., Garcia, J., Tomlinson, A., Solernou, A., Romano, R., ... & Uttley, J. (2019, September). Understanding the messages conveyed by automated vehicles. In Proceedings of the 11th international conference on automotive user interfaces and interactive vehicular applications (pp. 134-143). 62.Lerner, N. D., Kotwal, B. M., Lyons, R. D., & Gardner-Bonneau, D. J. (1996, January). Preliminary human factors guidelines for crash avoidance warning devices (Report No. DOT HS 808 342). Washington, DC: National Highway Traffic Safety Administration. 63.Li, Y., Cheng, H., Zeng, Z., Deml, B., & Liu, H. (2023). An AV-MV negotiation method based on synchronous prompt information on a multi-vehicle bottleneck road. Transportation Research Interdisciplinary Perspectives, 20, 100845. 64.Li, Y., Cheng, H., Zeng, Z., Liu, H., & Sester, M. (2021, September). Autonomous vehicles drive into shared spaces: ehmi design concept focusing on vulnerable road users. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) (pp. 1729-1736). IEEE. 65.Li, Y., Liu, H., & Deml, B. (2022, January). Hmi-based communication methods for negotiation between a manually driven vehicle driver and an autonomous vehicle in an ambiguous traffic scenario. In 2022 IEEE/SICE International Symposium on System Integration (SII) (pp. 244-249). IEEE. 66.Lind, H. (2007). An efficient visual forward collision warning display for vehicles. SAE World Congress. doi:10.4271/2007-01-1105 67.Liu, H., Hirayama, T., Watanabe, M., 2021. Importance of instruction for pedestrian-automated driving vehicle interaction with an external human machine interface: Effects on pedestrians’ situation awareness, trust, perceived risks and decision making, in: IEEE Intelligent Vehicles Symposium, pp. 748 754. 68.M. Rettenmaier, M. Pietsch, J. Schmidtler, and K. Bengler, “Passing through the bottleneck-the potential of external human-machine interfaces,” in 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 1687–1692, IEEE, 2019. 69.Markkula, G., Madigan, R., Nathanael, D., Portouli, E., Lee, Y. M., Dietrich, A., ... & Merat, N. (2020). Defining interactions: A conceptual framework for understanding interactive behaviour in human and automated road traffic. Theoretical Issues in Ergonomics Science, 21(6), 728-752. 70.McCormick, Ernest J.& Sanders, Mark S. 人因工程─工程與設計之人性因素(上冊),吳水丕、許勝雄、彭游譯,美商麥格羅‧希爾國際公司,(1998). 71.Miller, L., Leitner, J., Kraus, J., & Baumann, M. (2022). Implicit intention communication as a design opportunity for automated vehicles: Understanding drivers’ interpretation of vehicle trajectory at narrow passages. Accident Analysis & Prevention, 173, 106691. 72.Moore, D., Currano, R., Strack, G. E., & Sirkin, D. (2019, September). The case for implicit external human-machine interfaces for autonomous vehicles. In Proceedings of the 11th international conference on automotive user interfaces and interactive vehicular applications (pp. 295-307). 73.MUTCD, U.S. Department of Transportation, Federal Highway Administration.Manual on Uniform Traffic Control Devices for Streets and Highways (Revision 2). 2012. Retrieved from Federal Highway Administration website: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/mutcd2009r1r2edition.pdf 74.N. Merat, T. Louw, R. Madigan, M. Wilbrink, and A. Schieben, “Whatexternally presented information do vrus require when interacting with fully automated road transport systems in shared space?,” AccidentAnalysis & Prevention, vol. 118, pp. 244–252, 2018. 75.Najm, Wassim G., John D. Smith, and Mikio Yanagisawa. 2007. “Pre-Crash Scenario Typology for Crash Avoidance Research.” DOT HS 810 767. U.S. Department of Transportation. 76.National Highway Traffic Safety Administration and others. 2017. Federal 77.NHTSA (2015). Evaluation of Heavy-Vehicle Crash Warning Interfaces. DOT HS 812 191. https://www.nhtsa.gov/es/document/report-evaluation-heavy-vehicle-crash-warning-interfaces 78.Palmeiro, A. R., van der Kint, S., Vissers, L., Farah, H., de Winter, J. C., & Hagenzieker, M. (2018). Interaction between pedestrians and automated vehicles: A Wizard of Oz experiment. Transportation research part F: traffic psychology and behaviour, 58, 1005-1020. 79.Perkins S. R., and J. I. Harris. Traffic Conflict Characteristics: Accident Potential at Intersections. 1968 80.Petzoldt, T., Schleinitz, K., & Banse, R. (2018). Potential safety effects of a frontal brake light for motor vehicles. IET Intelligent Transport Systems, 12(6), 449-453. 81.Post, David, “Performance Requirements for Turn and Hazard Warning Signals,” National Highway Traffic Safety Administration, October 1975. [Online]. Available: http://deepblue.lib.umich.edu/bitstream/handle/2027.42/281/34157.0001.001.pdf?sequence=2 presentation. Geneva: International Organization for Standardization. 82.Rettenmaier, M., & Bengler, K. (2020, December). Modeling the interaction with automated vehicles in road bottleneck scenarios. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 64, No. 1, pp. 1615-1619). Sage CA: Los Angeles, CA: SAGE Publications. 83.Rettenmaier, M., Bengler, B. (2021). The Matter of How and When: Comparing Explicit and Implicit Communication Strategies of Automated Vehicles in Bottleneck Scenarios. In: IEEE Open Journal of Intelligent Transportation Systems, 2, 282-293. https://doi.org/10.1109/OJITS.2021.3107678. 84.Rettenmaier, M., Bengler, K., 2020. Modeling the interaction with automated vehicles in road bottleneck scenarios, in: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, SAGE Publications Sage CA: Los Angeles, CA. pp. 1615–1619. 85.Rettenmaier, M., Requena Witzig, C., & Bengler, K. (2020). Interaction at the bottleneck–a traffic observation. In Human Systems Engineering and Design II: Proceedings of the 2nd International Conference on Human Systems Engineering and Design (IHSED2019): Future Trends and Applications, September 16-18, 2019, Universität der Bundeswehr München, Munich, Germany (pp. 243-249). Springer International Publishing. 86.Rettenmaier, M., Witzig, C.R., Bengler, K. (2020b). Interaction at the bottleneck–a traffic observation. In: International Conference on Human Systems Engineering and Design: Future Trends and Applications (pp. 243-249). Springer. https://doi.org /10.1007/978-3-030-27928-8_37. 87.Rettenmaier, M., Witzig, C.R., Bengler, K. (2020b). Interaction at the bottleneck–a traffic observation. In: International Conference on Human Systems Engineering and Design: Future Trends and Applications (pp. 243-249). Springer. https://doi.org /10.1007/978-3-030-27928-8_37. 88.Rothenbücher, D., Li, J., Sirkin, D., Mok, B., & Ju, W. (2016, August). Ghost driver: A field study investigating the interaction between pedestrians and driverless vehicles. In 2016 25th IEEE international symposium on robot and human interactive communication (RO-MAN) (pp. 795-802). IEEE. 89.SAE Standards Works. 2018. J3134 Automated Driving System (ADS) Lamps Task Force. (2018). https://www.sae.org/works/committeeHome.do?comtID=TEVLCS5Z 90.SAE Technical Standards Board, “J3016b:taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles,” pp. 1–35, SAE International, 2018 91.Salamati, K., Schroeder, B., Rouphail, N. M., Cunningham, C., Long, R., & Barlow, J. (2011). Development and implementation of conflict-based assessment of pedestrian safety to evaluate accessibility of complex intersections. Transportation research record, 2264(1), 148-155. Schories, Lena Amann, Ganesh Baroda Sudhakaran, Pedro Huertas Leyva, 92.Schubert, W., & Kirschbaum, B. (2018). The Front Brake Light. Its conception and theoretical and experimental evidence for increasing traffic safety. Bonn: Bonner Institute for Forenscic and Traffic Psychology. 93.Stoll, T., Weihrauch, L., Baumann, M., 2020b. After you: merging at highway on- ramps. Proc. Hum. Factors Ergon. Soc. Annual Meeting 64 (1), 1105–1109. https://doi.org/10.1177/1071181320641266. 94.Šucha, M. (2014). Road users’ strategies and communication: driver-pedestrian interaction. Transport Research Arena (TRA). 95.Swain, J. (1987). Highway safety: The traffic conflict technique. Transport and Road Research Laboratory. Thomas Pallacci, Martin Östling, Daniel Schmidt, D., and Ron Schindler. 2021. 96.UNECE (United Nations Economic Commission for Europe). 2018. Autonomous Vehicle Signalling Requirements (AVSR) Taskforce. (2018). https://wiki.unece.org/pages/viewpage.action?pageId=73925596 Use case definitions and initial safety-critical scenarios. Report No. D2.6. Project SAFE-UP vehicles. In Proceedings of the 2017 conference on interaction design and 97.Werner, A. (2018). New colours for autonomous driving: An evaluation of chromaticities for the external lighting equipment of autonomous vehicles. Colour Turn, (1). 98.Wu, Z., Zhou, H., Xi, H., & Wu, N. (2021). Analysing public acceptance of autonomous buses based on an extended TAM model. IET Intelligent Transport Systems, 15(10), 1318-1330.
|