跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡美山
研究生(外文):Mei-Shan Hu
論文名稱:化學交鏈聚乙烯醇凝膠之凝膠化現象和物性
論文名稱(外文):Gelation and Properties of Chemically Crosslinked Gel of Polyvinyl Alcohol
指導教授:汪輝雄石天威石天威引用關係
指導教授(外文):Huei-Hsiung WangTien-Wei Shyr
學位類別:博士
校院名稱:逢甲大學
系所名稱:紡織工程學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:80
中文關鍵詞:聚乙烯醇凝膠凝膠化熱性質黏彈性微細構造
外文關鍵詞:polyvinyl alcoholgelgelationthermal propertyrheologymicrostructure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:474
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的是製備化學交鏈聚乙烯醇凝膠,觀察凝膠化現象且探討其物性變化和微細構造。化學交鏈聚乙烯醇凝膠係以硼酸為交鏈劑並且在二甲基亞石風 和水混合溶劑中所製得,聚乙烯醇聚合體聚合度分別為1700、2000、2400和2600。由實驗結果得知,聚乙烯醇溶液之粘度不僅隨硼酸含量增加而增加,而且在溫度70 ℃ ~ 100 ℃範圍,粘度亦會隨溫度上升而增加﹙雖然在溫度30 ℃ ~ 70 ℃範圍,粘度隨溫度上升而下降﹚。當凝膠化溫度於—15 ℃和70 ℃之間,凝膠化所需時間隨著凝膠化溫度降低而減少;而在凝膠化溫度低於0 ℃時,所形成凝膠幾乎呈透明狀,同時凝膠化所需聚乙烯醇濃度與凝膠化溫度無關,而且聚乙烯醇濃度與聚合度之負0.5次方成正比;相反地,當凝膠化溫度高於0 ℃時,所形成凝膠則為混濁狀﹙乳白色﹚。凝膠之可見光透過率隨著凝膠化溫度上升而減少,但是卻隨著聚乙烯醇濃度增加而增加。
聚乙烯醇凝膠之熱性質和流變性質係分別以微差掃描熱分析儀(DSC)和動態機械熱分析儀(DMTA)來測試。實驗結果得知,凝膠-溶膠轉換溫度、吸熱焓和動態模數隨著聚乙烯醇聚合體濃度或硼酸含量增加而增加。當二甲基亞石風 和水混合溶劑體積比為6:4時,凝膠-溶膠轉換溫度、吸熱焓和動態模數會產生一最大值,而且與聚乙烯醇濃度和硼酸含量無關。對熱可逆性凝膠而言,凝膠-溶膠轉換溫度和吸熱焓與聚乙烯醇濃度和硼酸含量的關係,與修正之Eldrige—Ferry理論符合。
另外,吾人亦根據虎克定律和橡膠彈性理論來評估化學交鏈聚乙烯醇凝膠楊氏模數,E與E*,和Mooney-Rivlin方程式的彈性參數,C1與C2。從結果得知,聚乙烯醇凝膠有一很好的擬橡膠彈性行為。
從X—射線廣角繞射照片,發現聚乙烯醇凝膠內有結晶產生。而且從掃描式電子顯微鏡觀察聚乙烯醇凝膠形態,明顯受液體-液體相分離影響。
The purpose of this study is focused on the preparation of polyvinyl alcohol gels, their gel properties, and microstructure of those gels. The chemically crosslinked gel of polyvinyl alcohol polymer with boric acid, added as a crosslinking agent, was made with a mixture of dimethyl sulfoxide and water. The polyvinyl alcohol polymer with four kinds of degree of polymerization (P) (1700, 2000, 2400 and 2600) was used in this study. From the experimental results, the viscosity of polyvinyl alcohol solution is found to increase not only with the increment of boric acid content, but also with the temperature in the range of 70 ℃ ∼ 100 ℃, although the viscosity is increased in the range of 30 ℃ ∼ 70 ℃. The gelation temperatures are between —15 ℃ and 70 ℃. It is found that the gelation time is decreased with the decreasing of gelation temperature. As the gelation temperature is below 0 ℃, the gels are nearly transparent, and also the polyvinyl alcohol concentration is independent of gelation temperature. Moreover, the minimum requirement of polyvinyl alcohol concentration to form a gel is proportional to P-0.5. On the contrary, as the gels were formed above 0℃ the gels were opaque (milky white). The transmission of the visible light to gels was decreased with the increment of gelation temperature. However, the light transmission of gel was increased with an increment of polyvinyl alcohol concentration.
The thermal and dynamic modulus properties of polyvinyl alcohol gels were measured by a differential scanning calorimeter and a dynamic mechanical thermoanalyst, respectively. Results show that an increment of polyvinyl alcohol polymer concentration, or boric acid content to the gel makes an increasing of gel to sol transition temperature, endothermic enthalpy and dynamic modulus. The maximum values of gel to sol transition, endothermic enthalpy and dynamic modulus happen at the volume ratio 6:4 of dimethyl sulfoxide to water, which is independent on the polyvinyl alcohol polymer and boric acid content. According to the modified Eldrige-Ferry theory for thermoreversible gel, it is found that both of gel to sol transition temperature and endothermic enthalpy vs. polyvinyl alcohol content could be superimposed with respect to the boric acid content.
We also evaluate the values of Young''s modulus of polyvinyl alcohol gel , E, E*, and the elastic parameters, C1 and C2 of Mooney-Rivlin equation, according to the Hooks law and the theory of rubber elasticity, respectively. Based on these, the polyvinyl alcohol gel behaves a good rubber-like elastic behavior.
As seen from the wide angle X-ray diffraction patterns, it exhibits crystal in gel. The morphology of the gel is significantly influenced by the liquid —liquid phase separation, as observed from the scanning electronic microscope.
封面
摘要
ABSTRACT
目錄
圖目錄
表目錄
符號說明
第1章 前言
1-1 聚乙烯醇聚合體的製造方法及其一般性質
1-2 凝膠
1-3 聚乙烯醇凝膠之文獻回顧
1-4 本文研究目地及動機
第2章 聚乙烯醇與硼酸之交鏈反應機構
第3章 實驗材料、儀器及方法
3-1 實驗材料及藥品
3-2 聚乙烯醇凝膠的製備
3-3 聚乙烯醇凝膠之物性測驗分析
第4章 結果與討論
4-1 聚乙烯醇聚合體的立體結構規則性(Stereoregularity )
4-2 聚乙烯醇凝膠的形成
4-3 凝膠化現象
4-4 可見光透過率之分析
4-5 聚乙烯醇凝膠之交鏈度
4-6 凝膠的應力─應變行為之分析
4-7 熱性質
4-8 動態黏彈性質
4-9 聚乙烯醇凝膠應用於紡製聚乙烯醇纖維
4-10 X-射線廣角繞射
4-11 凝膠形態
第5章 結論
參考文獻
誌謝
1. I. Sakurada, ‘Polyvinyl Alcohol Fibers’, Marcel Dekker, New York, P.57(1985)
2. C. A. Finch,‘Polyvinyl Alcohol Properties and Applications’, John Wiley & Sons, London, P.1(1973)
3. I. Sakurada, ‘Polyvinyl Alcohol Fibers’, Marcel Dekker, New York, P.91(1985)
4. T. Yamamoto, S. Seki, M. Hirota, and M. Kamachi, Polymer Journal, Vol.19, No.12, P.147(1987)
5. T. Yamamoto, S. Seki, R. Fukae, O. Sangen, and M. Kamachi, Polymer Journal, Vol.22, No.7, P.567(1990)
6. T. Yamamoto, S. Yoda, O. Sangen, R. Fukae, and M. Kamachi, Polymer Journal, Vol.21, No.12, P.1053(1989)
7. T. Yamamoto, S. Yoda, H. Takase, T. Saso, O. Sangen, R. Fukae, M. Kamachi, and T. Sato, Polymer Journal, Vol.23, No.3, P.185(1991)
8. A. Yamauchi, SEN-I GAKKAISHI, Vol.49, No.3, P.3(1993)
9. 山內愛造,廣川能嗣 著‘機能性凝膠’,p.6,共立出版,東京,日本(1990)
10. 山內愛造,廣川能嗣 著‘機能性凝膠’,p.75,共立出版,東京,日本(1990)
11. Francois J., Gan Y. S., Sarazin D., and Guenet J. M., Polymer, Vol.29, P.898(1988)
12. I. Sakurada, ‘Polyvinyl Alcohol Fibers’, Marcel Dekker, New York, P.145(1985)
13. D. C. Bassett, ‘Principles of Polymer Morphology’, Cambridge University Press, London, P.196(1981)
15. I. Sakurada, ‘Polyvinyl Alcohol Fibers’, Marcel Dekker, New York, P.137(1985)
16. M. Shibayama, M. Sato, Y. Kimura, H. Fujiwara, and S. Nomura, Polymer, Vol.29, P.336(1988)
17. K. Yamaura, T. Takahasi, T. Tanigami, and S. Matsuzawa, Journal of Applied Polymer Science, Vol.33, P.1983(1987)
18. M. Watase, and K. Nishinari, Journal of Polymer Science : Polymer Physics Edition, Vol.23, P.1803(1985)
19. M. Komatsu, T. Inoue, and K. Miyasaka, Journal of Polymer Science : Polymer Physics Edition, Vol.24, P.303(1986)
20. K. Yamaura, K. Hirata, S. Tamura, and S. Matsuzawa, Journal of Polymer Science : Polymer Physics Edition, Vol.33, P.1703(1995)
21. P.-D. Hong and K. Miyasaka, Polymer, Vol.32, No.17, P.3140(1979)
22. 汪輝雄、劉秋銘,「以有機溶劑系統並使用交鏈劑紡製高性能聚乙烯醇纖維」,逢甲大學紡織工程研究所碩士論文,台中,台灣,中華民國(1992)
23. P. Patel, F. Rodriguez, and G. Moloney, Journal of Applied Polymer Science, Vol.23, P.2335(1979)
24. T. Tamigami, K. Murase, K. Yamaura, and S. Matsuzawa, Polymer, Vol.35, No.12, P.2573(1994)
25. K. Yamaura, K.-I. Karasawa, T. Tanigami, and S. Matsuzawa, Journal of Applied Polymer Science, Vol.51, P.2041(1994)
26. K. Yamaura, H. Katoh, T. Tanigami, and S. Matsuzawa, Journal of Applied Polymer Sciencw, Vol.34, P.2347(1987)
27.M. Shibayama, H. Yoshizawa, H. Kurokawa, H. Fujiwara, and S. Nomura, Polymer, Vol.29, P.2066(1988)
28.M. Shibayama, T. Takeuchi, and S. Nomura, Macromolecules, Vol.27, NO.19, P.5350(1994)
29. M. Shibayama, M. Adachi, F. Ikkai, H. Kurokawa, S. Sakurai, and S. Nomura, Macromolecules, Vol.26, No.4, P.623(1993)
30. M. Shibayama, F. Ikkai, R. Moriwaki, and S. Nomura, Macromolecules, Vol.37, No.7, P.1738(1994)
31. Japanese Patent 特公昭 48-30462
32.M. watase, K. Nishinari, M. Nambu, Polymer Communication, Vol. 24, P.52(1983)
33. 南部昌生,高分子加工,Vol. 32, P.523(1983)
34.M. Shibayama, H. Kurokawa, and S. Nomura, Polymer, Vol.33, No.14, P.2883(1992)
35. 木尾慶輔、金谷利治、大倉正壽,高分子加工,Vol.38, No.2, P.2(1989)
36. 南部昌生,高分子加工,Vol.32, No.11, P.19(1983)
37. 玄承烋,高分子加工,Vol.39, No.6, P.44(1990)
38. M. Watse and K. Nishinari, Polymer Journal, Vol.21, No.7, P.567(1989)
39. M. Watse and K. Nishinari, Polymer Journal, Vol.21, No.8, P.597(1989)
40. H. Ochiai, Y. Kurita, and I. Murakami, Makromolecule Chemistry, Vol.185, P.167(1984)
41. L. Kurokawa, E. Pezron, and P. A. Pincus, Polymer, Vol.29, No.6, P.1109(1988)
42. H. Kurokawa, M. Shibayama, T. Ishimaru, S. Nomura, and Wei-li Wu, Polymer, Vol.33, No.10, P.2182(1992)
43. J. M. Maerker and S. W. Sinton, Journal of Rhology, Vol.30, No.1, P.77(1986)
44. M. Shibayama, M. Uesaka, and Y. Shiwa, Journal of Chemistry Physics, Vol.105, No.10, P.4350(1996)
45. M. Shibayama, H. Kurokawa, S. Nomura, M. Muthukumar, Richard S. Stein, and S. Roy, Polymer, Vol.33, No.14, P.2883(1992)
46. I. D. Robb and J. B. A. F. Smeulders, Polymer, Vol.38, No.9, P.2165(1997)
47.Elizabeth T. Wise and Stephen G. Webber, Macromolecules, Vol.28, No.24, P.8321(1995)
48. E. Pezron, A. Ricard, F. Lafuma, and R. Audebert, Macromolecules, Vol.21, No.4, P.1121(1988)
49.E. Pezron, L. Leibler, and F. Lafuma, Macromolecules, Vol.23, No.6, P.2656(1989)
50.M. Ohkura, T. Kanaya, and Keisuke Kaji, Polymer, Vol.33, No.17, P.3686(1992)
51. 安田浩、伴薰、大田康雄,SEN-I GAKKAISHI, Vol.47, No.10, P.595(1991)
52. U. S. Patent, 3,660,556 (1972)
53. H. Fujiwara, M. Shibayama, J. H. Chen, and S. Nomura, Journal of Applied Polymer Science, Vol.37, P.1403(1989)
54. 柴山充弘、早崎忠義、陳景輝、野村春治,SEN-I GAKKAISHI, Vol.46, No.1, P.15(1990)
55. 早崎忠義、柴山充弘、櫻井伸一、野村春治、藤原弘史、未祥二,SEN-I GAKKAISHI, Vol.47, No.1, P.5(1991)
56. P. Cebe and D. Grubb, Journal of Materials Science, Vol.20, P.4465(1985)
57. Japan Patent, 昭62-90308 (1987)
58. Japan Patent, 昭62-90309 (1987)
59. W.-I. Cha, S.-H. Hyon, and Y. Ikada, Journal of Polymer Science : Part B : Polymer Physics, Vol.32, P.297(1994)
60. Aubert H., Macromolecules, Vol.21, P.3468(1988)
61. Aubert H., Macromolecules, Vol.23, P.1446(1988)
62. I. Sakurada, ‘Polyvinyl Alcohol Fibers’, Marcel Dekker, New York, P.127(1985)
63. John J. A. and William J. M., ‘Introduction to Polymer Viscoelasticity’, P.9(1983)
64. Ilory R. J., ‘Principle of Polymer Chemistry’, Cornel University Press, Ithaca, New York, PP.470-475(1953)
65. R. S. Rivilin, ‘Rheology’, Edited by F. R. Eirich, Academic Press, New York(1956)
66. K.-R. Shiao, and H.-H. Wang, Journal of Materials Science, Vol.27, P.3062(1992)
67. 林明芳、汪輝雄、許耀基,技術學刊,第九卷,第二期,第210頁,台北,台灣,中華民國(1994)
68. S. A. Schichman, and R. L. Aney, Journal of Physics Chemistry, Vol.75, P.98(1971)
69. D. E. Bowell, M. A. Priesand, and M. P. Eastman, Journal of Physics Chemistry, Vol.78, P.2611(1974)
70. D. H. Rasmuseen, and A. P. MacKenzie, Nature, Vol.220, P.1315(1968)
71. M. Watse, and K. Nishinari, Polymer Communication, Vol.24, P.270(1983)
72. K. Nishinari, and M. Watse, Makromolecules chemistry, Vol.185, P.2663(1984)
73. M. Watse, and K. Nishinari, Rhologica Acta, Vol.22, P.918(1983)
74. M. Watse, and K. Nishinari, Polymer Journal, Vol.20, No.12, P.1125(1988)
75. M. Watse, and K. Nishinari, Makromolecules Chemistry, Vol.186, P.1081(1985)
76. 游振宗著,‘纖維高分子化學’第150頁,台北市,超級科技圖書股份有限公司,中華民國(1989)
77. K. Nishinari, S. Koide, and K. Ogino, Journal of Physics Chemistry, Vol.46, P.793(1985)
78. I. Sakurada, ‘Polyvinyl Alcohol Fibers’, Marcel Dekker, New York, PP.99-102(1985)
79. 林宗華、林清安、黃坤山,「交鏈溼式法紡製高強度聚乙烯醇纖維結構及物性之研究」,逢甲大學紡織工程研究所博士論文,台中,台灣,中華民國(1994)
80. A. Prasad, H. Marand, and L. Mandelkern, Journal of Polymer Science : Part B : Polymer Physics, Vol.32, P.1819(1993)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top