跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 09:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王法禹
研究生(外文):Faa-Yeu Wang
論文名稱:二階段多通道晶格狀超指數盲蔽解旋捲積運算法
論文名稱(外文):TWO-STEP MULTICHANNEL LATTICE SUPER-EXPONENTIAL ALGORITHM FOR BLIND DECONVOLUTION
指導教授:祁忠勇
指導教授(外文):Chong-Yung Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
中文關鍵詞:超指數運算法
外文關鍵詞:2-step
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Shalvi和Weinstein的單一輸入輸出(SISO)超指數運算法(SEA)已被Yeung和Yau推廣成多通道超指數運算法,也被Feng和Chi推廣成具有lattice結構的單一輸入輸出超指數運算法(LSEA)。本篇論文將Feng和Chi的LSEA,推廣成一個針對多重輸入輸出(MIMO)系統的LSEA,並且具有模組化、低參數量化靈敏度及低計算量等特性。此外,一個針對多重輸入輸出系統的2-step LSEA也被提出,它是由Feng及Chi的單一輸入輸出2-step LSEA推展而成的,同時具有較Yeung和Yau的多通道超指數運算法更快的收斂速度及先前所提的LSEA的優點。
本篇論文的特色是以多通道晶格狀結構來實現多重輸入輸出超指數運算法,由於此結構的特性,使得運算量大為簡化,並且將預估誤差向量的各分量正交化,更進一步使得原來超指數運算法中的反矩陣運算得以簡化,改以除法為之;在另一方面,由於向前預估誤差向量是近似白程序( white process ),即其為 Amplitude equalized signal,以此做為超指數運算法的起始值,可對intersymbol interference 降低的收斂速度有重大的影響。如此一來使得多重輸入輸出的超指數運算法的實現變成可能,特別是以VLSI的方式來達成,
由模擬結果得知此法在實務上,對MIMO系統具有實現快速超指數運算法的潛力,而且在通信、訊號處理都有相關的應用。

Shalvi and Weinstein's single-input single-output (SISO) super-exponential algorithm (SEA) for blind econvolution was extended to multichannel SEA by Yeung and Yau, followed by Feng and Chi's lattice super-exponential algorithm (LSEA) for SISO systems. In this thesis, an LSEA for multi-input multi-output (MIMO) systems is proposed, that is an extension of Feng and Chi's LSEA for SISO systems, both sharing the merits of modularity, low sensitivity to parameter quantization effects as well as lower computational load. Furthermore, a 2-step LSEA for MIMO systems, also an extension of Feng and Chi's 2-step LSEA for SISO systems, is proposed that converges faster than the Yeung and Yau's multichannel SEA in addition to the preceding merits of the proposed LSEA for MIMO systems.
In this thesis, we further propose a 2S-LSEA for MIMO systems that
also shares all the preceding merits of the 2S-LSEA for SISO
systems, and outperforms Yeung and Yau's SEA for MIMO systems
with much faster convergence speed, much lower
computational complexity, and more reliable performance. Some
simulation results are presented to support the efficacy of the
proposed 2S-LSEA for MIMO systems. The thesis is organized as
follows. Section 2 presents a lattice super-exponential algorithm
(LSEA) for MIMO systems. In Section 3, we propose a 2S-LSEA
algorithm. Section 4 presents some simulation results.
Finally, we draw some conclusions.

ABSTRACT ( in Chinese ) ……………………………Ⅰ
ABSTRACT……………………………………………Ⅱ
ACKNOWLEDGMENTS………………………………Ⅲ
CONTENTS……………………………………………Ⅳ
1. INTRODUCTION…………………………………… 1
2. LATTICE SUPER-EXPONENTIAL ALGORITHM
FOR MIMO SYSTEMS……………………………… 4
2.1 Review of SE Algorithm for MIMO systems…… 4
2.2 MIMO Lattice LPE Filter…………………………7
2.3 LSEA for MIMO Systems………………………10
3. TWO-STEP LSEA FOR MIMO SYSTEMS…………14
4. SIMULATION RESULTS……………………………17
5. CONCLUSIONS……………………………………19
Appendix A………………………………………….20
References………………………………………………21
Figure Captions…………………………………………23

C.-C Feng and C.-C Chi, ``A two-step lattice super-exponential
algorithm for blind equalization," Proc. Fourth Symposium on
Computers and Communications, Tauyan, Taiwan, Oct. 7-8, 1998, pp.
329-335.
O. Shalvi and E. Weinstein, Universal Methods for
Blind Deconvolution, A chapter in t Blind Deconvolution, S.
Haykin, ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1994.
O. Shalvi and E. Weinstein,
``Super-exponential methods for blind deconvolution,'' IEEE
Trans. Information Theory, vol. 39, no. 2, pp. 504-519, March
1993.
J. Gomes and V. Barroso, ``A super-exponential algorithm
for blind fractionally spaced equalization,'' IEEE Signal
Processing Letters, vol. 3, no. 10, pp. 283-285, Oct. 1996.
M.H. Hayes, Statistical Digital Signal Processing
and Modeling, John Wiley and Sons, New York, 1996.
F. Ling and J. G. Proakis, ``A generalized multichannel least squares
lattice algorithm based on sequential processing stages," IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-32, pp.381-389, April 1984.
B. Friedlander, ``Lattice filters for adaptive filtering," Proc.
IEEE, vol. 70, pp. 829-867, Aug. 1982.
M. Martone, ``Non-Gaussian multivariate adaptive AR estimation
using the super-exponential algorithm," IEEE Trans. Signal Processing,
vol. 44 pp. 2640-2644, Oct. 1996.
S. Haykin, {\it Adaptive Filter Theory}, Prentice-Hall, 1996.
R. T. Comption, JR., {\it Adaptive Antennas}, Prentice-Hall, 1988.
J. K. Tugnait, ``Identificantion and deconvolution of
multichannel linear non-Gaussian processes using higher order statistics
and inverse filter criteria," IEEE Trans.
Signal Processing, vol. 45 pp. 658-672, Mar. 1996.
K. L. Yeung and S. F. Yau, ``A cumulant-based super-exponential
algorithm for blind
deconvolution of multi-input multi-output systems," Signal
Processing 67(1998)141-162.
C.-Y. Chi and C.-H. Chen, ``Cumulant based blind
equalization with user and channel identification for multiuser
DS/CDMA systems in multipath,'' Proc. 2nd IEEE SP Workshop on
SPAWC, Annapolis, Maryland, May 9-12, 1999, pp. 211-214.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top