(18.205.60.226) 您好!臺灣時間:2019/12/15 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:陳威宇
研究生(外文):Wei-Yu Chen
論文名稱:針扎不織布與薄膜濾材負載特性研究
論文名稱(外文):Loading Characteristics of Needlefelt and Membrane Filters
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:170
中文關鍵詞:針扎型濾材薄膜濾材濾材負載粉餅表面風速壓降
外文關鍵詞:needlefelt filtermembrane filterfilter loadingdust cakeface velocitypressure drop
相關次數:
  • 被引用被引用:6
  • 點閱點閱:480
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在濾材過濾方面被用來採樣或收集氣膠的濾材通常分類為三種:纖維性濾材、薄膜濾材及編織性濾材。其中,編織性濾材常被做成圓桶狀,並懸吊成一列,稱為袋濾屋,是空氣污染控制器中最受歡迎的。薄膜濾材則是高分子合成的濾材,具有各種不同大小的分離孔徑,在環境採樣與微粒成份分析方面多有應用。
在本研究中,在編織性濾材的部分選用聚酯(Polyester)系纖維(PE)、桑通(Ryton) (RS)、芳香族聚醯胺(Polyaramid)纖維(PA)等三種材質的針扎型濾材,並搭配填充密度為9%、厚度為0.38mm及纖維直徑為5.1mm的纖維性濾材同時來進行測試;至於薄膜濾材則包含聚碳酸鹽(Polycarbonate) (IS)、混合纖維素酯(Mixed Cellulose Esters) (MCE)、聚醯胺耐龍纖維(Nylon Polyamide) (NY)等三種材質,並以單一粒徑分佈的酒石酸鉀鈉氣懸微粒做為挑戰氣膠,藉以探討氣膠在濾材上的負載特性。在濾材的負載實驗方面,利用VOMAG(Vibrating Orifice Monodisperse Aerosol Generator)來產生單一粒徑分佈(有5、10、20mm三種粒徑)的酒石酸鉀鈉(PST)氣懸微粒,以進行負載實驗。在氣膠穿透率方面,藉由超音波霧化噴嘴與定量輸出霧化器來產生多粒徑的酒石酸鉀鈉氣懸微粒,粒徑為次微米的微粒在經過濾材後,以掃描式移動度粒徑分析儀(SMPS)偵測;至於粒徑大於0.8 mm的微粒穿透率則由氣動微粒分徑器(APS)來測量。至於濾材的壓降是以經過傾斜壓力計校正的壓力轉換器(Pressure transducer)來做全程監測。同時,以不同的表面風速(5, 10, 20, 30cm/sec)來看表面風速對濾材壓降的影響。
從濾材的實驗結果中發現,負載曲線(以壓降與採樣時間作圖)可分為初始的快速上升區、過渡區及粉餅形成後的直線區。在同一實驗中,於粉餅形成之後,各濾材擁有相同的斜率(壓降/時間)。然而,一旦以粒徑小於濾材孔徑的微粒來進行負載時,負載曲線會在一開始多了一個壓降緩升的階段。這是因為小粒徑微粒會進入濾材孔道並被孔壁收集。至於混合纖維素酯濾材,其負載曲線隨著採樣時間的增加呈線性上升。從實驗開始至粉餅形成的時間隨著表面風速與挑戰氣膠的粒徑的增加而減少。在不同區域之斜率是經由許多因子所決定的,例如:挑戰氣膠的粒徑,表面風速,表面處理與在濾材上所形成的粉餅的可壓縮性。另外,關於工業衛生方面常用的個人採樣幫浦,其流量自動回饋控制能力經實驗證實相當地不錯。當採樣組合包含:濾材、墊片、分徑器與連接管在操作流量在2L/min下,以SKC幫浦作為採樣動力時,在採樣過程中會有0.5%的低估;至於Gilian幫浦則會有1.5%的高估。
Filtration in filter media is one of the most effective and reliable means for the collection of particulate matters from gas stream. Investigations on aerosol filtration have been extensive, and are too numerous to cite individually. In general, filters used for aerosol sampling or collection can be classified as fibrous filters, membrane filters and fabric filters. Among them, the fabric filters are usually made into cylindrical tubes. An array of these tubes while suspended vertically form the so-called "baghouse", one of the most popular air pollution control devices. The membrane filters are synthesized of high molecules and have different kind of pore sizes. They are often used in environmental sampling and particle element analysis.
In this work, three types of needlefelt filters, made of Polyester (PE), Ryton Sulfar (RS), and Polyaramid (PA) were tested to investigate the aerosol loading characteristics of fabric filters when challenged with monodisperse micrometered-sized potassium sodium tartrate solid (PST) particles. A fibrous filter with packing density of 9%, thickness of 0.38 mm, and fiber diameter of 5.1 mm was included for comparison. Three membrane filters, made of Polycarbonate(IS), Mixed Cellulose Esters(MCE), and Nylon Polyamide(NY) were chosen to study the aerosol loading characteristics of membrane filters. The effect of the increase in air resistance(due to particle accumulation) on the performance of sampling pumps was examined. A vibrating orifice monodisperse aerosol generator was used to produce three different sizes (5, 10, and 20 mm) of PST particles for aerosol loading experiment. An ultrasonic atomizing nozzle and a TSI constant output nebulizer were used to generate ploydisperse PST particles for aerosol penetration test. The aerosol penetration of submicrometer-sized particles through the filters was measured by using a Scanning Mobility Particle Sizer. An Aerodynamic Particle Sizer was used to measured the penetration fraction of aerosol particles larger than 0.8 mm. The pressure dorp across the filter was monitored by using the pressure transducers, which were calibrated against an inclined manometer. Air flows of 5, 10 , 20 and 30 cm/sec were used to study the flow dependency.
The loading curves (plots of pressure drop against sampling time) displayed three regions: an initial region of fast increase, a transition region and a final linear region after dust formation point. In the same experiment, filters shared the same slope (of the loading curves) after the formation point of the dust cake. If loaded with particles smaller than the pore sizes, the loading curves began with a slow increase. This was because the smaller particles might enter the pores and be collected on the wall. As to the MCE filters, the loading curves always increased linearly with the sampling time. The time from the beginning of the loading test to the dust cake formation point decreases with increasing face velocity and increasing size of the challenge aerosol. The slope of different regions of the loading curves was determined by many factors, such as size of challenge aerosol, face velocity, surface treatment, and the compressibility of the dust cake forming on the filter.
The performance of the personal sampling pumps commonly used by the industrial hygienists was found reasonably good. When operated at about 2 L/min and with the regular sampling train of the filter, filter pad, size-selective device, and connecting tubes, the SKC pumps had a tendency of underestimated 0.5%; while Gilian pump overestimated 1.5%.
目錄……………………………………………i
表目錄………………………………………iv
圖目錄………………………………………v
中文摘要…………………………………….x
Abstract……………………………………...xii
第一章 緒論……………………………….1
1-1 編織性濾材的發展史……………..6
1-2 薄膜濾材的發展史……………….7
第二章 文獻探討…………………………...8
2-1 濾材的分類及特性……………….8
2-1-1 編織濾材種類…………….8
2-1-2 薄膜濾材種類…………….10
2-2 濾材的結構分析…………………13
2-2-1 孔隙度測試法…………….13
2-2-2 平均孔徑的測定…………..14
2-2-3 最大相當孔徑的測定……….15
2-2-4 孔徑分佈的測定…………..17
2-3 氣懸微粒過濾機制探討……………19
2-4 濾材負載相關特性……………….23
2-4-1 針扎型濾材………………27
2-4-2 薄膜濾材………………......32
第三章 研究方法……………………………35
3-1 實驗方法………………………35
3-1-1 濾材負載特性研究…………35
3-1-2 個人幫浦之流量自動回饋控制能力的探討……………...37
3-2 實驗儀器………………………38
3-3 實驗材料與特性…………………44
3-3-1 針扎型濾材………………44
3-3-2 薄膜濾材………………....45
3-3-3 個人幫浦………………....46
第四章 結果與討論……………………….....47
4-1 針扎型濾材的負載特性……………47
4-2 薄膜濾材的負載特性……………..56
4-3 個人幫浦之流量自動回饋控制能力探討……………………65
第五章 結論與建議………………………….71
5-1 針扎型濾材的負載特性……………71
5-2 薄膜濾材的負載特性……………..73
5-3 個人幫浦………………………75
參考文獻…………………………………….77
附錄一 GilAir5的規格……………………….甲
附錄二 SKC幫浦的規格……………………..丁
附錄三 Buck幫浦的規格……………………..庚
附錄四 能量損失計算法……………………...壬
附錄五 流量穩定度測試法……………………癸
表目錄
表2-4-1-1 在各文獻中粉餅阻抗係數之n值回顧…….84
表3-3-1-1 針扎型濾材的基本特性………………..85
表3-3-1-2 針扎型濾材所經歷的表面處理與適用條件…………………………...85
表3-3-2-1 薄膜濾材的基本特性………………….86
表3-3-2-2 薄膜濾材的應用範疇………………….86
表4-1-1 在表面風速10cm/s與20cm/s下,廢氣處理量與能源損耗量之比較………… 87
表4-3-1 採樣組合中各組件的壓降值整合表………88
表4-3-2 在流量2.473與4.946L/min下,以MCE8與IS5濾材為採樣介質,SKC、
GilAir5與Buck幫浦為採樣動力時,其採樣總體積與重量濃度之誤差推估
整合表………………………….…89
圖目錄
圖2-1-1 織布的基本織法。(a)平紋織法(b)斜紋織法(c)緞織法…………………………90
圖3-1-1-1 濾材負載與氣懸微粒穿透率實驗之系統配置圖…………………………… 91
圖3-1-2-1 個人幫浦之流量自動回饋控制能力之測試系統示意圖…………………………92
圖3-3-2-1 MCE濾紙之掃瞄式電子顯微鏡圖……….93
圖3-3-2-2 NY濾紙之掃瞄式電子顯微鏡圖…………94
圖3-3-2-2 IS濾紙之掃瞄式電子顯微鏡圖………….95
圖3-3-3-1 個人幫浦的圖像(a) GilAir5 (b) SKC pump(c) Buck pump.……………………96
圖4-1-1 三種針扎型濾材的貫穿率及濾材品質…….97
圖4-1-2 三種針扎型濾材搭配一纖維性濾材在不同表面風速與不同的負載微粒粒徑下的負載
曲線………………………………98
圖4-1-3 針扎型濾材的表面處理情形(毛塊現象)…..99
圖4-1-4 以20 mm的挑戰微粒在10cm/s下去比較正反兩面的針扎型濾材的負載曲線之差異情
形………………………………..100
圖4-1-5 針扎型濾材之初始斜率與粉餅形成因子的推估情形(一)………………………101
圖4-1-6 針扎型濾材之初始斜率與粉餅形成因子的推估情形(二)………………………102
圖4-1-7 RS濾材在不同條件下,壓降與重量間的變化情形……………………………103
圖4-1-8 在理想狀態下比較粉餅形成前後由粒徑所影響的相關參數………………………104
圖4-1-9 在表面風速20cm/sec下,比較10mm與20mm兩種微粒粒徑對負載曲線之斜率影響情
形………………………………..105
圖4-1-10 纖維性濾材(30FW)在表面風速為10cm/sec下,以CMD:1.13mm、GSD:1.37的微粒
粒徑分佈進行負載所得之負載曲線……...106
圖4-1-11 在表面風速20、15與10cm/sec下,粉餅形成後之斜率差異……………………..107
圖4-1-12 在表面風速30與5cm/sec下,觀察粉餅在RS濾材上之壓縮情形…………………..108
圖4-1-13 以RS濾材進行實驗所得Dpc/W與Vf間的關係圖與關係式………………………109
圖4-2-1 乾淨的薄膜濾材在不同表面風速下,其壓降的變化情形………………………...110
圖4-2-2 薄膜濾材在表面風速 10cm/sec下的貫穿率........................................................111
圖4-2-3 比較有無加裝墊片對薄膜濾材之負載曲線的影響………………………………112
圖4-2-4 在不同的表面風速下,以20mm的挑戰氣膠對NY濾紙進行負載之負載曲線………..113
圖4-2-5 在不同的表面風速下,以10mm的挑戰氣膠對NY濾紙進行負載之負載曲線………..114
圖4-2-6 在表面風速10cm/s下,以5mm單一粒徑的亞甲基藍微粒以對NY濾紙進行負載的掃瞄
式電子顯微鏡圖(放大500倍)……….115
圖4-2-7 在不同的表面風速下,以20mm的挑戰氣膠對IS濾紙進行負載之負載曲線…………116
圖4-2-8 在不同的表面風速下,以10mm的挑戰氣膠對IS濾紙進行負載之負載曲線…………117
圖4-2-9 在不同的表面風速下,以5mm的挑戰氣膠對IS濾紙進行負載之負載曲線…………118
圖4-2-10 在表面風速10cm/s下,以5mm單一粒徑的亞甲基藍微粒以對IS濾紙進行負載的掃瞄
式電子顯微鏡圖(放大2000倍)……….119
圖4-2-11 在不同的表面風速下,以20mm的挑戰氣膠對MCE濾紙進行負載之負載曲線………120
圖4-2-12 在不同的表面風速下,以10mm的挑戰氣膠對MCE濾紙進行負載之負載曲線……….121
圖4-2-13 在不同的表面風速下,以5mm的挑戰氣膠對MCE濾紙進行負載之負載曲線………122
圖4-2-14 在表面風速10cm/s下,以5mm單一粒徑的亞甲基藍微粒以對MCE濾紙進行負載的掃
瞄式電子顯微鏡圖(放大2000倍)……................................................................123
圖4-2-15 MCE濾紙負載曲線的推估情形………….............................................................124
圖4-2-16 IS與NY濾紙負載曲線的推估情形………...........................................................125
圖4-2-17 在同一表面風速下,負載微粒粒徑對負載曲線之斜率的影響情形…………………126
圖4-2-18 在理想狀態下比較粉餅形成後由粒徑所影響的相關參數………………………...127
圖4-2-19 在不同的表面風速下,粉餅形成後之斜率差異情形…………………………..128
圖4-2-20 在表面風速30cm/s與5cm/s下,觀察粉餅在IS5與MCE8上之壓縮情形……………129
圖4-2-21 以IS5、MCE8濾紙進行實驗所得Dpc/W與Vf間的關係圖與關係式……………….130
圖4-3-1 GilAir5、SKC與Buck幫浦在不同流量下的流量變化曲線………………………131
圖4-3-2 全塵量及金屬燻煙之採樣組合(使用閉口式濾紙匣)…………………………..132
圖4-3-3 全塵量及金屬燻煙之採樣組合(使用開口式濾紙匣)…………………………..132
圖4-3-4 石綿之採樣組合系列(使用直徑為25 mm 之濾紙)…………………………..133
圖4-3-5 可呼吸性粉塵之採樣組合(使用濾紙附加10 mm nylon旋風分離器)………………133
圖4-3-6 可呼吸性粉塵之採樣組合(使用濾紙附加SKC旋風分離器)…………………..134
圖4-3-7 SKC、GilAir5與Buck幫浦在流量2與4 L/min下進行比較………………………...135
圖4-3-8 比較SKC幫浦在2 L/min及4 L/min下有無流量自動回饋控制對流量變化曲線的影響...136
圖4-3-9 在不同的初始壓降基準點下,比較其對流量2 L/min之流量變化曲線的影響…………137
圖4-3-10 流量在2.473 與4.946 L/min下,SKC、GilAir5與Buck幫浦的流量變化曲線…………..138
圖4-3-11 以SKC幫浦搭配MCE8濾紙在流量2.473與4.946 L/min下之流量-時間變化圖……...139
圖4-3-12 以GilAir5幫浦搭配MCE8濾紙在流量2.473與4.946 L/min下之流量-時間變化圖……140
圖4-3-13 以Buck幫浦搭配MCE8濾紙在流量2.473與4.946 L/min下之流量-時間變化圖……141
圖4-3-14 以SKC幫浦搭配IS5濾紙在流量2.473與4.946 L/min下之流量-時間變化圖……...142
圖4-3-15 以GilAir5幫浦搭配IS5濾紙在流量2.473與4.946 L/min下之流量-時間變化圖……...143
圖4-3-16 以Buck幫浦搭配IS5濾紙在流量2.473與4.946 L/min下之流量-時間變化圖……...144
參考文獻
1.呂維明、呂文芳(1994)過濾技術,高立圖書有限公司。
2.王秋森(1993)氣膠技術學,國立台灣大學醫學院出版委員會出版。
3.鄭福田(1996)粒狀污染物控制設備,空氣污染防制專責人員訓練教材甲級第十二冊,環保署環境保護人員 訓練所。
4.黃盛修(1996)低充填密度纖維性濾材過濾與負載特性研究,國立台灣大學職業醫學與工業衛生研究所碩士 論文。
5.賴慶修(1994)袋濾集塵機概論,工業污染防治技術服務團。
6.Bartley, D. L., Chen, C. C., Song, R. and Fischbach, T. J. (1994)
Respirable Aerosol Sampler Performance Testing. Amer. Ind. Hyg.
Assoc. J. 55(11), PP.1036-1043.
7.Billings, C. E. (1966) Effects of Particle Accumulation in Aerosol
Filteation. Report, W. M. Keck Laboratory, California Institute of
Technology, Pasadena.
8.Brown, R. C. Air Filtration. An Integrated Approach to the Theory
and Applications of Fibrous Filters.
9.Borgwardt, R. H., and Durham, J. F. (1967) Factors Affecting the
Performance of Fabric Filters. Paper presented at the 60th Annual
Meeting of the American Institute of Chemical Engineers, New
York, Nov. 29.
10.Bush P. V. and Snyder T. R. (1992) Impaction of Properties on
Electrostatic Precipitator and Fabric Filter Performance". Power
Technology. PP.207- 213.
11.Chen, C. C., Lehtimaki, M. and Willeke, K. (1993) Loading and
Filtration Characteristics of Filtering Facepieces. Amer. Ind. Hyg.
Assoc. J. 54(2), PP.51- 60.
12.Cheng, Y. H., and Tsai, C. J.(1998) Factors Influencing Pressure
Drop through a Dust Cake during Filtration. Aerosol Sci. and
Technol. 29, PP.315-328.
13.Davies, C. N. (1940) General Principles Underlying the Design of
Particulate Filters, Report CDRD, Porton, U.K.
14.Davis, C. N. (1973) Air Filtration, Academic Press, London.
15.Dennis, R. and Dirgo, J. A. (1981) Comparison of Laboratory and
Field Derived k2 Values for Dust Collected on Fabric Filters,
Filtration and Separation 18, PP.394-417.
16.Donnm, R. G. (1974) Dust Control and Air Cleaning, Pergamon
Press Ltd., Oxford.
17.Emi, H., Kanaoka, C., Otani, Y. and Iiyama, T. (1984) Most
Penetrating Particle Size in Electret Fibre Filtration. In Aerosols
(Edited by Liu, Pui and Fissan). Elsevier, Amsterdam.
18.Fjeld, R. A. and Owens, T. M. (1988) The Effect of Particle Charge
on Penetration in an Electret Filter. IEEE Trans. Ind. Appl. 24
July/August.
19.Gelman, C. (1965) Microporous membrane technology, Anal.
Chem., 29A, PP.37.
20.Gupta, A., Novick, V. J., Biswas, P. and Monson, P. R. (1993)
Effect of Humidity and Particle Hygroscopicity on the Mass
Loading Capacity of High Efficiency Particulate Air Filters.
Aerosol Sci. and Technol. 19, PP.94-107.
21.Japuntich, D. A., Stenhouse, J. I. T., Liu, B. Y. H.(1994)
Experimental Results of Solid Monodisperse Particle Clogging of
Fibrous Filters. J. Aerosol Sci., Vol. 25(2), PP.385-393.
22.Japuntich, D. A., Stenhouse, J. I. T., Liu, B. Y. H.(1997) Effective
Diameter and Monodisperse Particle Clogging of Fibrous Filters. J.
Aerosol Sci., Vol. 28(1), PP.147-158.
23.Heitbrink, W. A., Baron, P. A. and Willeke, K. (1991) Coincidence
in time-of- flight spectrometers: phantom particle creation. Aerosol
Sci. Technol., 14, PP.112-126.
24.Heitbrink, W. A., Baron, P. A. and Willeke, K. (1991) An approach
to evaluating and correcting Aerodynamic Particle Sizer
measurement for phantom particle count cretion. Amer. Ind. Hyg.
Assoc. J. 53(7), PP.427-431.
25.Hinds, W. C. (1982) Aerosol Technology. New York; John Wiley
and Sons, Inc., PP.164-186.
26.Hinds, W. C. and Kadrichu, N. P. (1994) Effect of Dust Loading on
the Performance of Half-Mask Respirators. Applied occupational
and Environmental Hygiene. 9(10), PP.700-706.
27.Kanaoka, C. and Hiragi, S. (1990) Pressure Drop of Air Filter with
Dust Load. Journal of Aerosol Science. 21(l), PP.27-137.
28.Kenneth M., Walter V., Ramsey L. (1990) Controlling particle size
is critical to fabric-filter performance, Power. PP.65-66.
29.Kirsch, A. A. and Lahtin, U. B. (1975) J. Colloid and Interface
Sci., 52, PP.270.
30.Klemm, H. A., Dirgo, J. A., and Dennis, R. (1980) Fabric Filtration
Analyses for Three Utility Boiler Flyashes. EPA-600/7-80-157.
31.Kono, H. O., Jordan, B., Ohtake, T. and Smith, Duane H.(1998)
Formation and measurement of the porosities, Tensile Strengths,
and Deformation Coefficients of Gasification Filter Cakes at
Operating Temperatures and Pressures, Aerosol Science and
Technology 29, PP.236-245.
32.Kono, H. O., Richman, L. M. and Smith, D. H. (1997)
Characteristics of Flow Properties at Elevated Temperature,
AICHE Symp. Series 93(317), PP.141-144.
33.Kvestoslav R. S. (1998) Advances in Aerosol Filtration.
34.Langmuir, I. (1942) Report on Smokes and Filters. SectionⅠ.U.S.
Office Sci. Res. Develop. No. PP.3460.
35.Langmuir, I. (1962) The Collected Works of Irving Langmuir,
Pergamon Press, London.
36.Liu, B. Y. H. and Rubow K. L. (1986) Air Filtration by Fibrous
Media. In Fluid Filtration: Gas, Volume I, R.R. Raber, ed. ASTM
STP 975, PP.1-13.
37.Manton, M. J.(1978)The Impaction of Aerosol on a Nuclepore
Filter. Atmospheric Environment Vol. 12. PP.1671-1675.
38.Manton, M. J.(1978)Brownian Diffusion of Aerosols to the Face of
a Nuclepore Filter. Atmospheric Environment Vol. 13. PP.525-531.
39.Matteson, M. J. (1987) Analytical applications of filtration,
in:York, Matteson, M. J. and Orr, C., Eds., Filtration, Marcel
Dekker, New PP.629-673.
40.Montassier, N., Dupin, L. and Boulaud, D.(1996)Experimental
Study on the Collection Efficiency of Membrane Filters. J. Aerosol
Sci. Vol. 27. Suppl 1. PP.S637-S638.
41.Novick, V. J., Monson, P. R. and Ellison, P. E.(1992)The Effect of
Solid Particle Mass Loading on the Pressure Drop of Hepa Filters.
J. Aerosol Sci., Vol. 23(6), PP.657-665.
42.Pich, J. (1964)Impaction of Aerosol Particles in the Neighborhood
of a circular hole. Collection Czech. Chem. Commun. 29, PP.2223-
2227.
43.Pich, J. (1966) Theory of Aerosol Filtration by Fibrous and
Membrane Filters. Aerosol Science, (C.N. Davis, Ed), Academic
Press, London, PP.269-271.
44.Rudnick, S. N. and First, M. W. (1978) Third Symposium on
Fabric Filter for Particulate Collection. EPA-600/7-78-007, PP.251-
288.
45.Romo-Kroger, C. M. and Diaz V.(1996)Electrical Interactions
Involved in Aerosol Filtration by a Dielectric Porous Membrane:
the case of Nuclepore Filter. J. Aerosol Sci. Vol. 27(5), PP.751-757.
46.Schmidt, E. (1997) Theoretical Investigations into the Compression
of Dust Cakes Deposited on Filter Media. Filtration & Separation.
May, PP.365-368.
47.Schroeder, H. G. and Deluca P. P. (1980) Theoretical aspects of
sterile filtration and integrity testing. Pharmaceutical Technology
3, PP.80-85.
48.Schurmann, G. And Fissan, H. J. (1984) Fractional Efficiencies of
an Electrostatically Spun Polymer Fibre Filter. J. Aerosol Sci. 15,
PP.s227-s230.
49.Sioutas, C., Koutrakis, P., Wang, P. Y., Babich, P. and Wolfson, J.
M. (1999) Experimental Investigation of Pressure Drop with
Particle Loading in Nuclepore Filters. Aerosol Sci. and Technol.
30, PP.71-83.
50.Spaite, R. H., and Walsh, G. W. (1963) Effect of Fabric Structure
on Filter Performance. Amer. Ind. Hyg. Assoc. J. 24, PP.357-365.
51.Spurny, K., Lodge, J. P., Frank, E. R. and Sheesley, D. C.(1969)
Aerosol Filtration by Means of Nuclepore Filters: Structural and
Filtration Properties, Environ. Sci. and Technol. 3, PP.453-464.
52.Spurny, K., Lodge, J. P., Frank, E. R., and Sheesley, D. C.(1969)
Aerosol Filtration by Means of Nuclepore Filters:Aerosol
Sampling and Measurement. Environ. Sci. and Technol. 3, PP.464-
468.
53.Spurny, K. R.(1998) Advances in Aerosol Filtration. Lewis
Publishers.
54.Thomas, D. B.: Membrane Filtration: A User''s Guide and
Reference Manual.
55.Thomas, D., Contal, P., Renaudin, V., Penicot, P., Leclerc, D. and
Vendel, J.(1999)Modelling Pressure Drop in Hepa Filters During
Dynamic Filtration. J. Aerosol Sci. Vol. 30.(2), PP.235-246.
56.Trottier, R. A. and Brown, R. C. (1990) The Effect of Aerosol
Charge and Filter Charge on the Filtration of Submicrometer
Aerosols. J. Aerosol Sci. 21,(Suppl. 1), PP.s689-692.
57.VanOsdell, D.W., Donovan, R.P., Furlong, D.A. and Hovis, L.S.
(1984) Fourth Symposium on the Transfer and Utilizayion of
Particulate Control Technology, EPA-600/9-84-025a, PP.342-356.
58.Watson, J. H. L. (1946) Filmless sample mounting for the electron
microscope, J. Appl. Phys., 17, PP.121-127.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔