跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宜娟
研究生(外文):Yi-Juan Wu
論文名稱:大豆種皮Flavonoid3',5'-Hydroxylase(F3',5'H)基因之選殖與基因表現分析
論文名稱(外文):Molecular Cloning and Expression of Flavonoid 3', 5'-Hydroxylase in Seed Coats of Soybean (Glycine max)
指導教授:曾志正曾志正引用關係王強生
指導教授(外文):Jason T. C. TzenChang-Sheng Wang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農業生物科技學研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:98
中文關鍵詞:青仁烏豆色素基因花青素
外文關鍵詞:Chin-Ren-Woo-DowanthocyaninFlavonoid 3'5'-HydroxylaseF3'5'H
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文選殖黑色種皮大豆青仁烏豆(CRWD)之色素基因flavonoid 3', 5'-hydroxylase (F3', 5'H),供花色改造及近同源品系色素合成之分子層次研究。依據已發表物種的F3', 5'H序列設計退化引子,利用RT-PCR策略選殖含預期片段得到BG39-2殖系,再用以篩選cDNA基因庫,得到一含1,853 bp之cDNA殖系 72-1。此殖系包含1,542 bp的ORF (open reading frame)轉譯一513個胺基酸序列,並具有 59 bp的5'端非轉譯區 (UTR)及252 bp的3'端非轉譯區。經NCBI網站Blast分析結果,其胺基酸序列與矮牽牛、洋桔梗等物種的F3', 5'H序列約有46-51 %的一致性(identity)。蛋白質結構分析發現,72-1殖系分子量為57 kDa,等電點 (pI)為7.32,並具有Cyt P450等5個典型的F3', 5'H蛋白所具備之motifs,因此應為解碼大豆F3', 5'H之全長cDNA。此外,72-1殖系經上網比對時,亦與第一個發表的植物F3'H基因(Ht1)有69﹪的一致性,將72-1殖系與Ht1基因之胺基酸序列進行排比,除了在N端、C端及序列中間區域有較大變異外,其餘部分相似性頗高,且Ht1基因之分子量(57 kDa)及等電點(7.71)皆與72-1殖系相似,也包含 5個典型的F3', 5'H蛋白所具備之motifs。雖然,72-1殖系亦具有F3'H可能特有的GGEK序列,但因此胺基酸之功能與特性尚不清楚,故無法証明72-1殖系為F3'H。北方雜交分析顯示F3', 5'H在幼嫩種皮表現量最高,成熟種皮表現最低。F3', 5'H在大豆植株各組織亦以種皮的表現最為明顯,在其他組織中之表現極弱。在所有Clark近同源品系中F3', 5'H均有一 2.1 kb的轉錄信息,且以具顯性T等位基因之表現較強。南方雜交分析顯示,F3', 5'H基因在所有Clark近同源品系均為單套,且在所有隱性t基因型品系皆較顯性T基因型品系約大300 bp,經選殖顯性T基因型品系(iRT)之基因組殖系(gT殖系)與隱性t基因型品系(iRt)之基因組殖系(gt殖系),進行序列分析、比較發現,gt殖系的intron內多出一262 bp的片段,推測t基因型應是T基因組發生插入突變 (insertional mutation)所致,至於是否因此導致二基因型間F3', 5'H基因表現的差異,則有待更深入的探討。

The blue gene, flavonoid 3', 5'-hydroxylase (F3', 5'H), was cloned from seed coats of black soybean (Chin-Ren-Woo-Dow, CRWD) for flower color engineering and molecular study on soybean isogenic lines with various pigment genes. Degenerate primers were designed according to the published sequences of F3', 5'H. An expected fragment was amplified by RT-PCR strategy and cloned as pBG39-2, a 1.8 kb full length 72-1 clone was obtained by screening a seed coat cDNA library. The 72-1 clone contains a 1,542 bp ORF which encodes a polypeptide containing 513 amino acids, a 59 bp 5' untranslated region (UTR), and a 252 bp 3' UTR region. However, the deduced amino acid sequence of the 72-1 clone showed 46 to 51 % identity to eight registered F3', 5'H proteins by Blast analysis of NCBI. The calculated molecular mass of protein encoded by 72-1 clone is 57 kDa with the isoelectric point (pI) 7.32. The predicted protein contains five typical common motifs of F3', 5'H that belongs to the Cyt P450 super family, indicating that the 72-1 cDNA clone encodes a full length soybean F3', 5'H. The deduced amino acids of the 72-1 clone shows similar molecular mass, pI and the five typical motifs of Cyt P450 of F3', 5'H as well as sequence identity (69﹪) to a recently published F3'H of petunia hybrida Ht1 gene. Furthermore, the 72-1 clone contains a putative GGEK sequence of Ht1 that was specific to F3'H. However, its function is still unknow. Functional analysis will be conducted to determine the real function of the 72-1 clone. Northern hybridization showed that F3', 5'H transcript is present mainly in seed coats at the early stage of seed development and declined as seed mature. The F3', 5'H enzymes in all the dominant T isolines are expressed stronger than those of the t genotypes. Genomic southern analysis showed that the F3', 5'H exits as a single copy gene in all the tested Clark isolines. Furthermore, the restriction fragments corresponding to F3', 5'H in all the dominant T genotypes analyzed are about 300 bp smaller than those in the recessive t genotypes. T genomic clones, gT and gt clones respectively for the dominant T genotype (iRT) and the recessive t genotype (iRt) were cloned by using PCR. It is found that an 262 bp fragment inserted at the intron of the all t genotype, suggesting that the recessive t allele may be resulted from an insertional mutation at the T allele. If the insertion caused the difference in F3', 5'H gene expression between T and t genotypes will be studied in the future.

目 錄
頁次
中文摘要---------------------------------------------------v
英文摘要---------------------------------------------------vii
壹、前言---------------------------------------------------1
貳、前 人 研 究--------------------------------------------3
一、類黃酮(flavonoids)和花色素(anthocyanins)之生合成途徑-3
二、花色素生合成途徑中構造基因之表現----------------5
三、花色素生合成途徑中調節基因之表現----------------12
四、植物細胞色素的作用------------------------------15
五、影響花色素表現的因子---------------------------16
六、大豆類黃酮和花色素形成之遺傳控制---------------19
七、利用遺傳工程改造花色--------------------------- 4
八、色素合成途徑研究之未來展望----------------------25
參、材 料 與 方 法--------------------------------------30
一、試驗材料----------------------------------------30
二、試驗方法--------------------------------------------30
1. 大豆植株樣品之準備 ---------------------------30
2. 總量RNA之萃取----------------------------------31
3. 氯化銫梯度離心法萃取大豆基因組DNA -------------------32
4. Flavonoid 3', 5'-hydroxylase (F3', 5'H)基因片段之選殖--33
5. F3', 5'H基因片段之定序分析---------------------------37
6. 探針的製備-------------------------------------------39
7. 南方雜交---------------------------------------------39
8. 北方雜交---------------------------------------------41
9. 青仁烏豆cDNA基因庫之篩選-----------------------------41
10. 選殖cDNA殖系之序列分析------------------------43
11. 試驗使用之引子序列----------------------------45
肆、結 果----------------------------------------------46
一、大豆F3', 5'H基因之選殖與分析--------------------46
二、大豆F3', 5'H基因與T基因座之關係-----------------51
伍、討 論 ---------------------------------------------54
一、大豆F3', 5'H cDNA之確認與基因表現分析---------------54
二、大豆F3', 5'H基因與矮牽牛F3'H (Ht1)基因之比較--------58
三、近同源品系iRT與iRt之F3', 5'H基因組殖系之分析--------60
陸、 參 考 文 獻------------------------------------------------------63
圖、表 目 錄
頁次
圖一、利用RT-PCR反應在不同鏈合溫度擴增F3', 5'H cDNA片段-----75
圖二、大豆flavonoid 3', 5'-hydroxylase (BG39-2) cDNA片段之核
甘酸及胺基酸序列--------------------------------------76
圖三、大豆F3', 5'H cDNA全長殖系72-1之核甘酸及胺基酸序列-----77
圖四、大豆flavonoid 3', 5'-hydroxylase (72-1殖系)與矮牽牛等六個
物種之F3', 5'H胺基酸序列排比-------------------------79
圖五、大豆Glycine max (72-1殖系)和其他物種flavonoid 3', 5'
hydroxylase (F3', 5'H)相似motif之排比-----------------81
圖六、大豆(Glycine max) flavonoid 3', 5'-hydroxylase (72-1殖系)之親疏水圖譜---------------------------------------82
圖七、以大豆F3', 5'H cDNA片段(BG39-2)為探針進行青仁烏豆
(CRWD)及Clark近同源品系限制酵素(A) BamH I, (B)
Hind III及(C) Xba I分解之南方雜交分析結果--------83
圖八、以大豆F3', 5'H cDNA片段BG39-2為探針進行Clark近
同源品系種皮發育期間之北方雜交分析結果--------------84
圖九、以大豆F3', 5'H cDNA片段BG39-2為探針進行Clark近
同源品系iRT與iRt植株各部位之北方雜交分析結果-------85
圖十、以大豆F3', 5'H cDNA片段BG39-2為探針進行青仁烏豆
(CRWD)及Clark近同源品系之北方雜交分析結果----------86
圖十一、以大豆BG39-2 cDNA片段為探針進行Clark近同源品
系iRT與iRt基因組DNA兩組限制酵素Nco I + Msl I及
Msl I + BamH I分解之南方雜交分析結果-------------87
圖十二、大豆Clark近同源品系基因組DNA之PCR反應(A)與
南方雜交分析結果(B)------------------------------88
圖十三、大豆Clark近同源品系iRT與iRt部分F3', 5'H基因之
核甘酸序列排比----------------------------------89
圖十四、大豆F3', 5'H cDNA殖系72-1與矮牽牛Ht1之胺基酸
序列排比----------------------------------------92
圖十五、大豆Clark近同源品系iRT與iRt之F3', 5'H基因突變
假說圖示----------------------------------------93
表一、大豆F3', 5'H cDNA全長殖系72-1與茄子等八個物種之
Cyt P450胺基酸序列一致性(%)之比較----------------94
表二、大豆F3', 5'H cDNA全長殖系72-1與六個大豆之Cyt P450
胺基酸序列一致性(%)之比較------------------------95
表三、大豆F3', 5'H cDNA全長殖系72-1與洋桔梗等六個物種之
F3', 5'H胺基酸序列一致性(%)之比較----------------96
表四、不同物種F3', 5'H之相對分子量(Mw)和等電點(pI)之比較-97
表五、矮牽牛F3'H cDNA全長殖系Ht1與洋桔梗等六個物種之
F3', 5'H胺基酸序列一致性(%)之比較-----------------98

1.Akada, S., Kung, S.D., and Dube, S.K. 1993. Nucleotide sequence of a nodule-development-specific member of the soybean (Glycine max) chalcone synthase multigene family Gmchs7. Plant Physiol. 102: 321-323.
2.Alfenito, M. R., Souer, E., Goodman, C. D., Buell, R., Mol, J., Koes, R., and Walbot, V. 1998. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135-1149.
3.Altschul, S. F., Thomas, L. M., Alejandro, A. S., Jinghui, Z., Zheng, Z., Webb, M., and David, J. L. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25:3389-3402.
4.Atsushi, H., Yukihide, A., Norio, S., Yoshishige, I., and Shigeru, I. 1997. The gene encoding flavanone 3 hydroxylase is expressed normally in the pale yellow flowers of the Japanese Morning Glory carrying the speckled mutation which produce neither flavonol nor anthocyanin but accumulate chalcone, aurone and flavanone. Plant Cell Physiol. 38: 970-974.
5.Auchus, R. J., Lee, T. C., and Miller, W. L. 1998. Cytochrome b(5) augments the 17, 20-lyase activity of human P450c17 without direct electron transfer. J. Biol. Chem. 273:3158-3165.
6.Bartlett, N. J. R. 1989. The genetic control of anthocyanin biosynthesis in Antirrhinum majus. PhD Dissertation (Norwich, England: University of East Anglia).
7.Beld, M., Martin, C., Huits, H., Stuitje, A. R., and Gerats, A. G. M. 1989. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol. Biol. 13: 491-502.
8. Bernard, R. L. and Weiss, M. G. 1973. Quantitative genetics. In: Soybeans: Improvement, production and uses. Caldwell, B. E. eds, Agronomy Society of America, Madison, pp.117-154.
9. Bjellqvist, B., Hughes, G. J., Pasquali, C., Paquet, N., Ravier, F., Sanchez, J. C., Frutiger, S., and Hochstrasser, D. F. 1993. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023-1031.
10. Bozak, K. R., Yu, H., Sirevag, R., and Christoffersen, R. 1990. Sequence analysis of ripening related cytochrome P450 cDNAs from avocado fruit. Proc. Natl. Acad. Sci. U.S.A. 1987: 3904-3908.
11. Brewin, N. J. 1993. The Rhizobium-legume symbiosis: Plant morphogenesis in a nodule. Semin. Cell Biol. 2: 149-156.
12. Britsch L., Dedio J., Saedler H., and Forkmann G., 1993. Molecular characterization of flavanone 3 beta-hydroxylases consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur. J. Biochem. 217: 745-754.
13. Brugliera, F., Barri-Rewell, D., Holton, T. A., and Mason, J. G. 1999. Isolation and characterization of a flavonoid 3' hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J. 19:441-451.
14. Buttery, B. R. and Buzzell, R. I. 1973. Inheritance of flavonol glycosides in soybeans. Can. J. Genet. Cytol. 15: 865-867..
15. Buzzell, R. I. and Buttery, B. R. 1982. Genetics of black pigmentation of soybean seed coats/hila. Soybean Genet. Newsl. 9:26-29.
16. Buzzell, R. I., Buttey, B. R., and MacTavish, D. C. 1987. Biochemical genetics of black pigmentationn of soybean seed. J. Hered. 78:53-54.
17. Carlson, J. B. 1973. Morphology. In Soybeans: Improvement, production and uses. Caldwell, B. E. ed. Agronomy Society of America, Madison, pp. 17-95.
18. Chandlee, J. M. and Vodkin, L. O. 1989. Unstable expression of a soybean gene during seed coat development. Theor. Appl. Genet. 77: 587-594.
19. Chandler, V. L., Radlcella, J. P., Robblns, T. P., Chen, J., and Turks, D. 1989. Two regulatory genes of the maize anthocyanin pathway are homologous : Isolation of B utilizing R genomic sequences. Plant Cell 1: 1175-1183.
20. Chung, C. T., Niemela, S. L., and Miller, R. H. 1989. One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. U.S.A. 86: 2172-2175.
21. Cone, K. C., Burr, F. A., and Burr, B. 1986. Molecular analysis of the maize anthocyanin regulatory locus C1. Proc. Natl. Acad. Sci. U.S.A. 83: 9631-9635.
22. Cone, K. C. and Burr, B. 1989. Molecular and genetic analyses of light requirement for anthocyanin synthesis in maize. In the genetics of flavonoides, D.E. Styles, G.A.Gavazzi, and M.L. Racchi, eds (Milan Edizionl Unicopli). pp. 143-146.
23. Courtney-Gutterson, N., Napoli, C., Lemieux, C., Morgan, A., Flrozabady, E., and Robinson, K. 1994. Modification of flower color in Florist's Chrysanthemum: Production of a white-flowering variety through molecular genetics. Bio/Technol. 12: 268-271.
24. Curtis, M. D., Rae, A. L., Rusu, A. G., Harrison, S. J., and Manners, J. M. 1997. A peroxidase gene promoter induced by phytopathogens and methyl jasmonate in transgenic plants. Mol. Plant Microbe Interact. 10:326-338.
25. Dangl, J. L., Hahlbrock, K., and Schell, J. 1989. Regulation and structure of chalcone synthase genes. Cell Culture and Somatic Cell Genetics in Plants. Vol. 6. Vasil, I. K. and Schell, J., eds., Academic Press, New York, 155.
26. Davies, K. M. 1993. A cDNA clone for flavanone 3 hydroxylase from Malus sp. Plant Physiol. 103: 291.
27. De Vetten, N., ter Horst, J., van Schaik, H. P., de Boer, A., Mol, J. N. M., and Koes, R. 1999. A cytochrome b5 is required for full activity of flavonoid 3', 5' hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proc. Natl. Acad. Sci. U.S.A. 96:778-783.
28. De Vettern, N., Quattrocchio, F., Mol, J., and Koes, R. 1997. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants and animals. Genes Dev. 11:1422-1434.
29. Dellaporta, S. L., Greenblatt, I. M., Kermicie, J. L., Hicks, J. B., and Wessier, S. R. 1988. Molecular cloning of the R gene by transposon tagging with Ac. In Chromosome Structure and Function Impact of New Concepts. J.P. Gustafson and R. Appeles, eds, New York, Plenum Press. pp. 263-282.
30. Diallinas, G. and Kanellis, A. K. 1994. A phenylalanine ammonia-lyase gene from melon fruit: cDNA cloning, sequence and expression in response to development and wounding. Plant Mol. Biol. 26: 473-479.
31. Dixon, R. A. 1986. The phytoalexin response : Elicitation, signaling, and control of host gene expression. Biol. Rev. 61:239-291.
32. Donaldson, R. P. and Luster, D. Q. 1990. Mutiple forms of plant cytochromes P450. Plant Physiol. 96: 669-674.
33. Douglas, C., Hoffman, H., Schulz, W., and Hahlbrock, K. 1987. Structure and elicitor or UV-light stimiulated expression of two 4-coumarate CoA ligase genes in parsley. EMBO J. 6:1189-1195.
34. Elomaa, P. and Holton, T. 1994. Modification of flower colour using genetic engineering. Biotechnol. Genet. Eng. Rev. 12:63-88.
35. Elomaa, P., Helariutta, Y., Griesbach, R. J., Kotilainen, M., Seppanen, P., and Teeri, T. H. 1995. Transgene inactivation in Petunia hybrida is influenced by the properties of the foreign gene. Mol. Gen. Genet. 248:649-656.
36. Elomaa, P., Honkanen, J., Puska, R., Seppanen, P., Helariutta, Y., Mehto, M., Kotilainen, M., Nevaiainen, L., and Terri,T. H. 1993. Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/Technol. 11: 508-511.
37. Fasoula, D. A., Stephens, P. A., Nickell, C. D., and Vodkin, L. O. 1995. Cosegregation of purple-throat flower color with a dihydroflavonol reductase (DFR) polymorphism in soybean. Crop Sci. 35:1028-1031.
38. Fedoroff, N. V., Furtek, D. B., and Nelson, O. E. 1984. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element Activator. Proc. Natl. Acad. Sci. U.S.A. 81: 3825-3829.
39. Feinberg, A. P. and Vogelstein, B. 1984. A technique for radiolabelling DNA restriction fragments to a high specific activity. Anal. Biochem. 132: 6-13.
40. Forkmann, G. 1991. Flavonoids as flower pigments: The formation of the natural spectrum and its extension by genetic engineering. Plant Breed. 106: 1-26.
41. Forkmann, G. and Dangelmayr, B. 1980. Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus. Biochem. Genet. 5-6: 519-527.
42. Forkmann, G. and Ruhnau, B. 1987. Distinct substrate specificity of dihydroflavonol 4-reductase from flowers of Petunia hybrida. Z. Naturforsch. 42C: 1146-1148.
43. Forkmann, G. and Stotz, G. 1981. Genetic control of flavanone 3-hydroxylase activity and flavonoid 3'-hydroxylase activity in Antirrhinum majus (snapdrogon). Z. Naturforsch. 36C: 411-416.
44. Frank, R. and Vodkin, L. 1988. Identification of chalcone synthase and phenytalanine ammonia lyase genes in seybean. Soybean Genet. Newsl. 15: 181.
45. Frank, R. L. and Vodkin, L. O. 1991. Sequence and structure of phenylalanine ammonia-lyase gene from Glycine max. DNA Sequence 1:335-346.
46. Fukada-Tanaka, S., Hoshino, A., Hisatomi, Y., Habu, Y., Hasebe, M., and Iida, S. 1997. Identification of new chalcone synthase genes for flower pigmentation in the Japanese and common morning glories. Plant Cell Physiol. 38: 754-758.
47. Goff, S. A., Cone, K. C., and Chandler, V. L. 1992. Functional analysis of the transcriptional activator encoded by the maize B gene: Evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev. 6: 864-875.
48. Goodrich, J., Carpenter, R., and Coen, E. S. 1992. A common gene regulates pigmentation patterm in diverse plant species. Cell 68: 955-964.
49. Gowri, G., Paiva, N. L., and Dixon, R. A. 1991. Stress responses in alfalfa (Medicago sativa L.) 12. Sequence analysis of phenylalanine ammonia-lyase (PAL) cDNA clones and appearance of PAL transcripts in elicitor-treated cell cultures and developing plants. Plant Mol. Biol. 17:415-429.
50. Grotewold, E., Drummond, B. J., Bowen, B., and Peterson, T. 1994. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76:543-553.
51. Harborne, J. B. 1989. General procedures and measurement of total phenolics. Method in plant biochemistry. Vol. 1. Harborne, J. B. ed. Academic Press. U.S.A. pp. 1-28.
52. Helariutta, Y., Elomaa, P., Kotilainen, M., Seppanen, P., and Teerl, T. H. 1993. Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollase of Gerbera hybrida war. Regina (Composites). Plant Mol. Biol. 22: 183-193.
53. Hirokawa, T., Boon-Chieng, S., and Mitaku, S. 1998. SOSUI: Classification and Secondary Structure Prediction System for Membrane Proteins. Bioinformatics (formerly CABIOS). 4:378-379.
54. Holton, T. A. and Cornish, E. C. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell. 7:1071-1083.
55. Holton, T. A., Brugilera, F., Lester, D. R., Tanaka, Y., Hyland, C., Menting, J. G. T., Lu, C. Y., Farcy, E., Stevenson, T. W., and Cornish, E. C. 1993. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366: 276-279.
56. Huang X. 1996. An improved sequence assembly program. Genomics 33: 21-31.
57. Jackson, J. A., Fuglevand, G., Brown, B. A., Shaw, M. J., and Jenkins, G. I. 1995. Isolation of Arabidopsis mutants altered in the light-regulation of chalcone synthase gene expression using a transgenic screening approach. Plant J. 8:369-380.
58. Kaltenbach, M., Schrőder, G., Schmelzer, E., Lutz, V., and Schrőder, J. 1999. Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. Plant J. 19:183-193.
59. Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L., and Altmann, T. 1996. Genetic evidence for an essential role of brassinosteroids in plant development. The Plant J. 9 (5) :701-713.
60. Koes, E., Spelt, C. E., and Mol, J. N. 1989. The chalcone synthase multigene family of Petuna hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Mol. Biol. 12: 213-225.
61. Koes, R. E., Quattrocchio, F., and Mol, J. N. M. 1994. The flavonoid biosynthetic pathway in plants : function and evolution. BioEssays 16 : 123-132.
62. Kreuzaler, F., Ragg, H., Fautz, E., Kuhn, D. N., and Hahlbrock, K. 1983. UV-induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense. Proc. Natl. Acad. Sci. U.S.A. 80: 2591-2593.
63. Kroon, J., Souer, E., de Graaff, A., Xue, Y., Mol, J., and Koes, R. 1994. Cloning and sructure analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida : Characterization of insertion sequences in two mutant alleles. Plant J. 5: 69-80.
64. Larson, R. L. and Coe, E. H. J. 1968. Enzymatic action of the Bz anthocyanin factor in maize. Proc. 12th. Int. Congr. Genet. 1: 131.
65. Lloyd, A. M., Walbot, V., and Davis, R. W. 1992. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773-1775.
66. Ludwig, S. R., Habera, L. F., Deilaporta, S. L., and Wessier, S. R. 1989. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. U.S.A. 86: 7092-7096.
67. Madyastha, K. M., Ridgeway, J. E., Dwyer, J. G., and Coscia, C. J. 1977. Subcellular locolization of a cytochrome P450 dependent monooxygenase in vesicles of the higer plant, Catharanthus roseus. J. Cell Biol. 72: 302-313.
68. Marchuk, D., Drumm, M., Saulino, A., and Collins, F. S. 1990. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucl. Acids Res. 19: 1154.
69. Marrs, K. A., Alfenito, M. R., Lloyd, A. M., and Walbot, V. 1995. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene bronze-2. Nature 375: 397-400.
70. Martin, C., Prescott, A., Mackay, S, Bartlett, J., and Vrijlandt, E. 1991. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1: 37-49.
71. McCarty, D. R., Carson, C. B., Stinard, P. S., and Robertson, D. S. 1989. Molecular analysis of viviparous-1: An abscisic acid-insensitive mutant of maize. Plant Cell 1: 523-532.
72. Menting, J. G. T., Scopes, R. K., and Stevenson, T. W. 1994. Characterization of flavonoid 3', 5'-hydroxylase in microsomal membrane fraction of Petunia hybrida flowers. Plant Physiol. 106: 633-642.
73. Metzlaff, M. , ODell, M., Cluster, P. D., and Flavell, R. B. 1997. RNA-Mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell 88: 845-854.
74. Meyer, P. and Heidmann, I. 1994. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA : an indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243:390-399.
75. Meyer, P., Heidmann, I., Forkmann, G., and Saedler, H. 1987. A new petunia flower color generated by transformation of a mutant with a maize gene. Nature 330: 677-678.
76. Mizutani, M., Ohta, D., and Sato, R. 1997. Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol. 113:755-63.
77. Mol, J. N. M., Cornish, E. C., Mason, J., and Koes, R. E. 1999. Novel coloured flowers. Curr. Opin. Biotechnol. 10 : 198-201.
78. Mol, J., Grotewold, E., and Koes, R. 1998. How genes paint flowers and seeds. Trends Plant Sci. 3:212-217.
79. Mol, J., Jenkins, G., Schafer, E., and Weiss, D. 1996. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis. Crit. Rev. Plant Sci. 15:525-557.
80. Mougin, C. Cabanne, F., Canivene, M. C., and Scalla, R. 1990. Hydroxylation and n-methylation of chlortoluron by wheat microsomal enzymes. Plant Sci. 66: 195-203.
81. Moyano, E., Mart’nez-Garcia, J. F., and Martin, C. 1996. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell 8:1519-1532.
82. Murray, V. 1989. Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucl. Acids Res. 17:8889.
83. Nagai, I. 1921. A genetic-physiological study on the formation of anthocyanin and brown pigments in plants. Tokyo Univ. College of Agric, J. 8: 1-92.
84. Napoli, C., Lemieux, C., and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible in trans. Plant Cell 2: 279-289.
85. Noda, K., Glover, B. J., Linstead, P., and Martin, C. 1994. Flower color intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369: 661-664.
86. Orr, J. D., Edwards, R., and Dixon, R. A. 1993. Stress responses in alfalfa (Medicago sativa L.): 14. Change in the levels of phenylpropanoid pathway intermediates in relation to regulation of L- phenylalanine ammonia-lyase in elicitor treated cell suspension cultures. Plant Physiol. 101:847-856.
87. Palmer, R.G. and Kilen, T.C. 1987. Qualitative genetics. In J. R. Wilcox, ed., soybeans: improvement, production, and use, ed. 2. American Society of Agronomy.Madison, WI pp. 135-209.
88. Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P. A., and Saedler, H. 1987. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 6:3553-3558.
89. Pellegrini, L., Rohfritsch, O., Fritig, B., and Legrand, M. 1994. Phenylalanine ammonia-lyase in tobacco molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor. Plant Physiol. 106: 877-886.
90. Perrot, G. H. and Cone, K. C. 1989. Nucleotide sequence of the maize R-S gene. Nucl. Acids Res. 17: 8003.
91. Podivinsky, E., Bradley, J. M., and Davies, K. M. 1993. Sequence announcements. Plant Mol. Biol. 21: 737-738.
92. Quattrocchio, F. M. 1994. Regulatory genes cotrolling flower pigmentation in Retunia hydbrids. PhD Dissertation (Amsterdam: Vrije Universiteit).
93. Quattrocchio, F., Wing, J. F., Leppen, H. T. C., Mol, J. N. M., and Koes, R. E. 1993. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497-1512.
94. Quattrocchio, F., Wing, J. F., van der Woude, K., Mol, J. N. M., and Kose, R. 1998. Analysis of bHLH and MYB domain proteins: Species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J. 13:475-488.
95. Raponi, M., Dawes, I. W., and Arndt, G. M. 2000. Characterization of flanking sequences using long inverse PCR. Bio/Techniques 28:834-844.
96. Reddy, G. M. and Coe, E. H. 1962. Inter-tissue complementation: A simple technique for direct analysis of gene action sequence. Science 138:149-150.
97. Reif, H. J., Niesbach, U., Deumling, B., and Saedler, H. 1985. Cloning and analysis of two genes for chalcone synthase from Petunia hybrida. Mol. Gen. Genet. 199: 208-215.
98. Sambrook J., Fritsch E. F., and Maniatis T., 1989. Molecular cloning: A laboratory manual, New York, Cold Spring Harbor Laboratory Press.
99. Schwinn, K. E., Davles, K. M., Miller, R. M., Deroles, S. C., and Bradley, J. M. 1993. Floral flavonoids and their modification in lisianthus. Phytochem. Soc. North America Newslett. 33: 17.
100. Shimada, Y., Nakano-Shimada, R., Ohbayashi, M., Okinaka, Y., Kiyokawa, S., and Kiluchi, Y. 1999. Expression of chimeric P450 genes encoding flavonoid 3',5'-hydroxylase in transgenic tobacco and petunia plants. FEBS Letters 461:241-245.
101. Shimada, Y., Nakano-Shimada, R., Ohbayashi, M., Okinaka, Y., Kiyokawa, S., and Kikuchi, Y. 1999. Expression of chimeric P450 genes encoding flavonoid 3',5'-hydroxylase in transgenic tobacco and petunia plants. FEBS Lett. 461: 241-245.
102. Shirley, B. W. 1999. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiologia Plantarum 107:142-149.
103. Souer, E., Quattrocchio, F., de Vetten, N., Mol, J., and Koes, R. 1995. A general method to isolate genes tagged by a high copy number transposable element. Plant J. 7:677-685.
104. Sparvoli, F., Martin, C., Scienza, A., Gavazzi, G., and Tonelli, C. 1994. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol. Biol. 24: 743-755.
105. Stephens, P. A. and Nickell, C.D. 1992. Inheritance of pink flower in soybean. Crop Sci. 32: 1131-1132.
106. Stewart, R. T. 1930. Inheritance of certain seed coat colors in soybeans. J. of Agricultural Research 40: 829-854.
107. Stotz, G., de Vlaming, P., Wiering, H., Schram, A. W., and Forkmann, G. 1985. Genetic and biochemical studies on flavonoid 3'-hydroylation in flowers of Petunia hybrida. Theor. Appl. Genet. 70: 300-305.
108. Suzuki, M., Kao, C. Y., and McCarty, D. R. 1997. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9: 799-807.
109. Tabak, A. J. H., Meyer, H., and Bennink, G. J. H. 1978. Modification of the B-ring during flavonoid synthesis in Petunia hybrida: Introduction of the 3'-hydroxyl group regulated by the gene Ht1. Planta 139: 67-71.
110. Tanaka, Y., Fukul, Y., Fukuchl-Mizutani. M., Holton, T., Higgins, E., and Kusumi, T. 1995. Molecular cloning and characterization of Rosa Hybrida dihydroflavonol 4-reductase gene. Plant Cell Physiol. 36:1025-1031.
111. Tanaka,Y., Yonekura, K., Fukuchi-Mizutani, M., Fukui, Y., Fujiwara, H., Ashikari, T., and Kusumi, T. 1996. Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant Cell Physiol. 37 (5): 711-716.
112. Teutsch, H. G., Hasenfrstz, M. P., and Leaot, A. 1993. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc. Natl. Acad. Sci. U.S.A. 90:4102-4106.
113. Todd, J. J. and Vodkin, L. O. 1993. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins that bind RNA. Plant Physiol. 102:663-670.
114. Toneill, C., Consonni, G., Dolfinl, S.F., Deliaports, S. L., Viottl, A., and Gavazzl, G. 1991. Molecular analysis of the maize anthocyanin regulator

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top