跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/07 00:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏大華
研究生(外文):Da-Hua Wei
論文名稱:銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5AgBGA銲料迴銲之金脆研究
論文名稱(外文):Effect of Ni and Sn coating on the electrolytic migration of Cu-conductors, and the study of gold-embrittlement induced by reflow of the Sn-3.5Ag BGA solder on the gold-deposited Ni/Cu pads
指導教授:林景崎
指導教授(外文):Jing-Chie Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:177
中文關鍵詞:電解質遷移鍍鎳或錫錫-銀 球格陣列構裝銲料金脆
外文關鍵詞:electrolytic migrationNi and Sn coatingSn-3.5Ag BGA soldergold-embrittlement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:526
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本論文在探討鎳、錫電鍍層對銅導線遷移性之影響,以及Sn-3.5Ag BGA銲料在鍍金之鎳/銅銲墊上迴銲導致之金脆現象。銅導線表面電鍍2.5∼10µm鎳後,分別在蒸餾水、0.01M NaCl及(NH4)2SO4水溶液中,施以5V偏壓,進行遷移研究,結果顯示:表層鍍鎳之銅導線,具有抑制銅遷移之效果,隨鎳鍍層厚度增加(2.5∼10µm) 抗遷移性增強,但此鍍鎳銅導線在250°C持溫300秒後,抗遷移性顯著減弱。
銅導線表面電鍍1、2及3µm錫後,雖在蒸餾水及0.01M (NH4)2SO4水溶液中5V偏壓下不能抵抗遷移,但將鍍1µm錫之銅導線在250°C持溫300秒後,立即具有良好抗遷移性,顯然鍍錫銅導線因加熱處理而增強其抗遷移性。
在0.01M (NH4)2SO4水溶液中進行陽極動態極化掃描及定電位陽極反應,配合ESCA表面分析,得知鎳、錫鍍層抑制銅遷移的原因如下:鎳鍍層在銅導線表面因陽極鈍化而生成保護膜,此鈍化膜在鎳表層為NiO及Ni(OH)2;另一方面,經加熱後之錫鍍層生成SnO2,可以抑制底層銅的溶解及氧化。
金脆研究先在鍍鎳(5µm)銅銲墊上電鍍0.1、0.5及1µm金層,再分別與Sn-Pb(63/37)及Sn-3.5Ag銲球進行迴銲,迴銲後即進行剪力量測,結果顯示:Sn-3.5Ag銲料比Sn-Pb銲料有更好的抗剪力強度(因生成Ag3Sn介金屬強化相);金鍍層愈厚,抗剪力強度愈差。
Effect of Ni and Sn coating on the migration of Cu-conductors, and gold-embrittlement induced by reflow of the Sn-3.5Ag BGA solder on the gold deposited Ni/Cu pads have been studied. The migration of the Cu-conductors in distilled water, 0.01M Nacl and (NH4)2SO4 solutions at a bias of 5V was inhibited by coating a layer of Ni in thickness of 2.5∼10µm. This inhibition is more efficient with increasing the thickness of the Ni-coats from 2.5 to 10µm. However, it is less efficient when the Ni-coated conductors have been heat-treated at 250℃ for 300s.
The migration inhibition is not so efficient in the case of Sn-coated Cu-conductors at the same conditions. However, heat treatment (at 250℃ for 300s) tremendously enhances the resistance of the Sn-coated conductors to migration, even though the thickness of the Sn-coat only at 1µm.
Electrochemical polarization such as potentiodynamic and potentiostatic experiments were conducted. The XPS analysis for the reaction products formed on the anode indicates that NiO and Ni(OH)2 are responsible for migration inhibition of the Ni-coated conductors, and SnO2 is for the heat-treated Sn-coating conductors.
Gold-embrittlement was estimated by conducting the shear test of the soldered system where Sn-Pb (63/37) and Sn-3.5Ag solders have been reflowed, respectively, onto the Au-deposited Ni/Cu pads. The thickness of Au-deposits is ranging from 0.1 to 1µm and that for Ni-coat is 5µm. It was found that the shear strength is stronger for the Sn-3.5Ag soldering bond than for the Sn-Pb soldering. Intermetallic phase (Ag3Sn) strengthens the soldering bond. The shear strength decreases with an increase of the thickness of gold coats.
摘要(中文)Ⅰ
摘要(英文)Ⅱ
誌謝Ⅲ
目錄Ⅳ
表目錄Ⅹ
圖目錄ⅩⅠ
一、前言 1
1-1研究背景1
1-1-1構裝簡界1
1-1-2 BGA緣起與介紹2
1-1-3銅墊(Cu pads)與鎳鍍層之電化學行為4
1-1-4銲料及迴銲5
1-1-5無鉛銲料之發展6
1-2研究目的8
二、文獻回顧與理論9
2-1金屬的遷移9
2-1-1遷移(migration)9
2-1-2金屬遷移的型態9
2-1-3金屬遷移的環境9
2-1-4金屬遷移的過程與現象11
2-2銅的遷移12
2-3銅的腐蝕14
2-4鎳的氧化15
2-5錫的氧化17
2-6合金的溶解18
2-7銲料間之界面反應19
2-7-1鎳-錫(Ni/Sn)19
2-7-2錫-銀銲料/鎳、銅(Sn-Ag solder/Ni、Cu)20
2-7-3錫銲料/金/鎳、銅(Sn solder/Au/Ni、Cu)21
2-8金的應用與衍生之問題22
2-8-1鍍金之原理22
2-8-2鍍金之應用23
2-8-3金脆性23
三、實驗裝置25
3-1試片製備25
3-1-1感光電路板製備25
3-1-2電路板圖樣25
3-1-3試片製作方法25
3-2電鍍及熱處理26
3-2-1銅線路電鍍鎳及熱處理26
3-2-2銅線路電鍍錫及熱處理28
3-2-3鍍鎳銅線路鍍金29
3-3電解槽環境30
3-3-1電解槽及實驗裝置30
3-3-2電解槽環境30
3-4實驗操作與試片準備31
3-4-1遷移性的比較31
3-4-2動態陽極極化曲線掃描32
3-4-3陽極定電位腐蝕32
3-5儀器分析33
3-5-1遷移電流量測及動態極化量測33
3-5-2 OM及SEM觀察33
3-5-3 AFM表面型態觀察及分析34
3-5-4 X-ray結晶分析34
3-5-5 ESCA表面氧化物成份分析34
3-6 BGA迴銲及金脆評估35
3-6-1試片製備35
3-6-2銲錫球與BGA迴銲之程序35
3-6-3推力測試36
四、結果37
(Ⅰ)銅線路鍍鎳37
4-1-1銅線路鍍鎳熱處理前後表面形態SEM觀察37
4-1-2銅線路鍍不同厚度鎳層後AFM表面粗糙度分析37
4-1-3熱處理對鍍鎳銅線路表面粗糙度之影響38
4-1-4銅線路鍍不同厚度鎳熱處理前後X-ray繞射分析39
4-1-5銅線路鍍鎳熱處理前後之SEI剖面圖及EDX分析40
4-1-6兩極在外加電壓5V時電流密度對時間的關係圖42
4-1-7陰極析出物觀察45
(Ⅱ) 銅線路鍍錫49
4-2-1銅線路鍍錫熱處理前後表面形態SEM觀察49
4-2-2銅線路鍍不同厚度錫熱處理前後X-ray繞射分析49
4-2-3銅線路鍍錫之SEI剖面圖51
4-2-4兩極在外加電壓5V時電流密度對時間的關係圖51
4-2-5陰極析出物觀察53
(Ⅲ) 鍍鎳銅線路鍍金54
4-3-1鍍鎳銅線路在鍍不同厚度金層後表面形態SEM觀察54
4-3-2鍍鎳銅線路在鍍不同厚度金後X-ray繞射分析55
4-3-3鍍鎳銅線路在鍍金後之SEI剖面圖及EDX分析55
(Ⅳ)鍍不同厚度金層之BGA與銲錫球迴銲56
4-4-1錫-鉛(63/37)銲球56
4-4-2 Sn-3.5Ag銲球57
五、討論59
(Ⅰ)銅線路鍍鎳59
5-1-1 NaCl水溶液中的動態陽極極化曲線分析59
5-1-2 (NH4)2SO4水溶液中的動態陽極極化曲線分析59
5-1-3銅線路鍍不同厚度鎳的動態陽極極化曲線分析64
5-1-4在0.01M (NH4)2SO4水溶液中定電位下的陽極電流比較65
5-1-5 ESCA表面氧化物成分分析66
(Ⅱ)銅線路鍍錫70
5-2-1 (NH4)2SO4水溶液中的動態陽極極化曲線分析70
5-2-2銅線路鍍不同厚度錫的動態陽極極化曲線分析74
5-2-3 ESCA表面氧化物成分分析75
(Ⅲ)鍍不同厚度金層之BGA與銲錫球迴銲78
5-3-1錫-鉛(63/37)銲球78
5-3-2 Sn-3.5Ag銲球79
六、結論81
七、參考文獻82
1.「亞太半導體製造中心策略藍圖─矽金之島2010」,中華民國電子材料與元件協會(1996)。
2.陳信文,「電子構裝現況與展望」,材料會訊,(1999)6月,pp3-4。
3.楊文禮、張秀蓉,「新世代IC封裝技術與材料的發展趨勢」, 材料會訊,(1999)6月,5-11。
4.R. R. Tummala, E. J. Rymaszewaki and A. G. Klopfenstein, “Microelectronics Packaging Handbook”, Chapman & Hall, New York, NY, (1977).
5.J. E. Morris, Workshop “The Design and Processing Technology of Electronic Packaging”, (1997).
6.許再發、黃仁豪、劉文隆,「BMI系PBGA基板技術簡介」,工業材料151期,88年7月。
7.“Ball Grid Array Technology”, Ed. by J. H. Lau, McGraw-Hill, (1995).
8.陳文彥,「單晶片構裝的明日之星-塑膠BGA」, 工業材料116期,85年8月。
9.J. J. Liu, H. Berg, Y. Wen, S. Mulgaonker, R. Bowlby and A. Mawer, “ Plastic Ball Grid Array (PBGA) Overview ”, Mat. Chem. Phys., Vol. 40, (1995) 236-244.
10.A. Fukuda, “Compaq, Motorola Lead US Drive for BGA Packages”, NIKKEI Electronics Asia, May (1944) 40-47.
11.溫啟宏,「IC封裝專題」,工研院電子所,1996年6月。
12.鄭煇穎、陳亦達,「電化學對噴錫板氧化物與共化物之研究」,電路板會刊第七期,(1999) 14-21。
13.Sunchana P. Pucic, “Diffusion of Copper into Gold Plating”, National Institute of Standards and Technology, (1993) 114-117.
14.P. L. Liu and J. K. Shang, “Influence of Microstructure on Fatigue Crack Growth Behavior of Sn-Ag Solder Interfaces”, Journal of Electronic Materials, Vol. 29. No. 5, (2000) 622-627.
15.鄭福元、周立飛、虎軒東,「厚薄膜混合集成電路─設計、製造和應用」,科學出版社,(1984) 59-60。
16.S. A. Watson, “Application of Engineering Nickel Plating,” Nickel Development Technical Series, No. 10051, Toronto (1989).
17.J. K. Dennis and T. E. Such, “Nickel and Chromium Plating,” 3rd edition, Publishing by Woodhead Publishing Ltd., England.
18.J. H. Lau, J. Miremadi, J. Gleason, R. Hauen, S. Ottoboni and S. Mimura, “No Clean Mass Reflow of Large Plastic Ball Grid Array Package”, Circuit World, Vol. 20 (1994) 15-22.
19.“Reliability of Plastic Ball Grid Array Assembly”, in: Ball Grid Array Technology, ed. J. H. Lau, Mc Graw-Hill, (1995) 400-410, Ch13.
20.B. Trumble, “Get the Lead Out”, IEEE Spectrum, May (1998) 55-60.
21.詹益淇、莊東漢,「無鉛銲錫的回顧與最新發展」,電子月刊(2000 )。
22.N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering & Surface Mount Technology, No. 26, July (1997) 65-69.
23.C. E. T. White, “Indium:High-Technology Metal”, Advanced Materials& Processes inc. Metal Progress, (1997) 69-72.
24.S. J. Krumbein, “Metallic Electromigration Phenomena,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 11, No. 1, March (1988) 5-14.
25.H. C. Ling, and A. M. Jackson, “Correlation of Silver Migration with Temperature-Humidity-Bias (THB) Failures in Multilayer Ceramic Capactors,” IEEE Trans. Comp., Hybrids, Manuf. Technol., Vol. 12, No. 1, March, (1989) 130-137.
26.P. Dumoulin, J. P. Seurin, and P. Marce, “Metal Migrations Outside the Package During Accelerated Life Tests,” IEEE, Trans. Comp., Hybrids, Manuf. Technol., Vol., chmt-5, No. 4, DEC., (1982) 470-485.
27.D. E. Riemer, “Meteria Selection and Design Guidelines for Migration-Resistant Thick-Film Circuits with Silver-Bearing Conductors,” IEEE, Trans. Comp. Hybrids, Manuf. Technol. (1981).
28.T. Kawanobe, and K. Otsuka, “Metal Migration in Electronic Components,” IEEE Trans. Comp., Hybirds, Manuf. Technol., (1982) 220-228.
29.A. J. Bard, “Electrochemical Methods: Fundmentals and Applications,” John Wiley & sons. Inc., U. S. A., (1980) 119.
30.Gàbor Harsànyi, “Copper May Destroy Chip-Level Reliability:Handle with Care-Mechanism and Conditions for Copper Migrated Resistive Short Formation,”IEEE Electron Device Letters, Vol. 20, No. 1, January, (1999) 5-8.
31.Kenji Okamoto, Takahiko Maeda, and Kohji Haga, “Copper Ion Migration in Insulated Metal Substrates, ”Fuji Electric Corporate Research & Development, Ltd. (1995) 659-663.
32.R. E. Lobnig, R. P. Frankenthal, D. J. Siconolfi and J. D. Sinclair, “The Effect of Submicron Ammonium Sulfate Particles on the Corrosion of Copper, ”AT&T BELL Laboratories. Murray Hill, NJ 07974.
33.M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions, ”Pergamon Press, Oxford, (1966) 384-389.
34.M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions, ”Pergamon Press, Oxford, (1966) 330-334.
35.V. Rothmund, “Ueber den Einfluss der Anionen auf die Passivierbarkeit der Metalle,” Z. Physics and Chemistry, Vol. 110, (1924) 384-392.
36.M. Pourbaix, “Corrosion du fer par les solutions de soude caustique [Thesis, Brussels, 1945 (exact)],” Bull. Techn. A. I. Br., (1946) 67-86 (1947) 109-120.
37.L. M. Voltchkova, L. G. Antonova and A. J. Krasilschikov, “Comportement Anoidique du Nickel dans les Solutions Alcalines,” J. Fiz. Khim. Vol. 23, (1949) 714-718.
38.林智賢,「鎳、銦表面鍍層對含銀厚膜之抗遷移性研究」,國立中央大學機械工程學系碩士論文,指導教授:林景崎 博士(2000)。
39.M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions, ”Pergamon Press, Oxford, (1966) 476-480.
40.M. Datta, “Anodic Dissolution of Metals at High Rates,” IBM J. RES. Develop. Vol. 37, No. 2 (1993).
41.H. W. Pickering, “Characteristic Features of Alloy Polarization Curves,” Corrosion Science, Vol. 23, No. 10, (1983) 1107-1120.
42.P. Nash and A. Nash, “Ni-Sn Phase Diagram”, Binary Alloy Phase Diagrams, (1991) 2864.
43.D. Gur and M. Bamberger, Acta Meter. 46, (1998) 4917.
44.J. A. van Beek, S. A. Stolk, and F. J. J. van Loo, Zeitschrift fur Metallkunde, Vol. 73, (1982) 439-444.
45.S. Bader, W. Gust and H. Hieber, Acta Metallurgica et Materialia, Vol. 43(1), (1995) 329-337.
46.劉家明,「錫銀無鉛銲料與BGA封裝內墊層反應之研究」,國立中央大學化學工程學系碩士論文,指導教授:高振宏 博士(2000)。
47.I. Karakaya and W. T. Thompson, “Ag-Sn Phase Diagram”, Binary Alloy Phase Diagrams, (1987) 96.
48.M. Singleton and P. Nash, “Ag-Ni Phase Diagram”, Binary Alloy Phase Diagrams, (1991) 65.
49.N. Saunders and A. P. Miodownik, “Cu-Sn Phase Diagram”, Binary Alloy Phase Diagrams, (1990) 1482.
50.P. L. Liu and J. K. Shang, “Influence of Microstructure on Fatigue Crack Growth Behavior of Sn-Ag Solder Interfaces”, Journal of Electronic Materials, Vol. 29. No. 5, (2000) 622-627.
51.A. W. Gibson, K. N. Subramanian and T. R. Bieler, “Comparison of Mechanical Fatigue Fracture Behavior of Eutectic Sn-Ag Solder With and Without Cu6Sn5 Intermetallic Particulate Reinforcement”, Journal of Advanced Materials, 19-24.
52.黃隆瑋,「銀厚膜表面蒸鍍銦、錫後之固液擴散接合研究」, 國立中央大學機械工程學系碩士論文,指導教授:林景崎 博士(1999)。
53.Zequn Mei, Matt Kaufmann, Ali Eslambolchi, and Pat Johnson, “Brittle Interfacial Fracture of PBGA Packages Soldered on Electroless Nickel/Immersion Gold”, Electronic Components and Technology Conference, (1998) 952-961.
54.莊萬發,「無電解鍍金-化學鍍金技術」,復漢出版社,(1996)74-77。
55.賴耿陽,「實用電鍍技術全集」,復漢出版社,(1998)。
56.Masao Nakazawa, and Shin-ichi Wakabayashi, “Ceramic Packages and Substrates Prepared by Electroless Ni-Au Process”, IEEE/CHMT ’91 IEMT Symposium, (1991) 366-370.
57.楊松堅,「鍍金技術處理」,五洲出版社,(1980)19-28。
58.羅煥然,「鍍金層在焊接上之應用」,表面黏著技術27期,32-38。
59.R. N. Wild, “Effects of Gold on Solder Properties”, Proc. Internepcon,
Brighton, (1968) 27-42.
60.Donald H. Daebler, “An Overview of Gold Intermetallics in Solder Joints”, Surface Mount Technology, (1991) 43-46.
61.R. S. Schrebler-Gutzman, J. R. Vilche and A. J. Arvia, “The Kinetics and Mechanism of the Nickel Electrode—Ⅲ. The Potentiodynamic Response of Nickel Electrodes in Alkaline Solutions in the Potential Region of Ni(OH)2 Formation”, Corrosion Science, Vol. 18, (1978) 765.
62.汪建民,「材料分析」,中國材料科學學會,(1998) 305-351及353-382。
63.D. J. Chakrabarti, S. W. Chen, and Y. A. Chang, “Cu-Ni Phase Diagram”, Binary Alloy Phase Diagrams, (1991) 1444.
64.K. N. Tu, “Cu/Sn interfacial reactions:thin-film case versus bulk case”, Materials Chemistry and Physics, Vol. 46, (1996) 217-223.
65.H. Okamoto and T. B. Massalski, “Au-Ni Phase Diagram”, Binary Alloy Phase Diagrams, (1987) 403.
66.Abhijit Palit, and Simo O. Pehkonen, “Copper Corrosion in Distribution Systems: Evaluation of a Homogeneous Cu2O Film and a Natural Corrosion Scale as Corrosion Inhibitors,” Corrosion Science, Vol. 42, (2000) 1801-1822.
67.C. F. Zinola, and A. M. Castro Luna, “The Inhibition of Ni Corrosion in H2SO4 Solutions Containing Simple Non-saturated Substances,” Corrosion Science, Vol. 37, No. 12, (1995) 1919-1929.
68.S. Colin, E. Beche, R. Berjoan, H. Jolibois, and A. Chambaudet, “An XPS and AES Study of the Free Corrosion of Cu-, Ni- and Zn-based Alloys in Synthetic Sweat,” Corrosion Science, 41 (1999) 1051-1065.
69.P. Druska, and H.-H. Strehblow, “Surface Analytical Examination of Passive Layers on Cu-Ni Alloys part Ⅱ. Acidic solutions,” Corrosion Science, Vol. 38, No. 8, (1996) 1369-1383.
70.R. S. Schrebler-Gutzman, J. R. Vilche and A. J. Arvia, “The Kinetics and Mechanism of the Nickel Electrode—Ⅲ. The Potentiodynamic Response of Nickel Electrodes in Alkaline Solutions in the Potential Region of Ni(OH)2 Formation,” Corrosion Science, Vol. 18, (1978) 765.
71.T. Robert, M. Bartel and G. Offergeld, “Characterization of Oxygen Species Adsorbed on Copper and Nickel Oxides by X-ray Photoelectron Spectroscopy”, Surface Science, Vol. 33, (1972) 123-130.
72.Jun Li and David Lampner, “In-situ AFM Study of Pitting Corrosion of Cu Thin Films,” Colloids and Surfaces, Vol. 154, (1999) 227-237.
73.Kosaku Kishi, Yoshinobu Hayakawa, and Katsuya Fujiwara, “Preparation of Ultrathin Nickel Oxide on Ordered Vanadium Oxide Films Grown on Cu(100) Surface Studied by LEED and XPS,” Surface Science, Vol. 356, (1996) 171-180.
74.S. A. M. Refaey, “The Corrosion and Passivation of Tin in Borate Solutions and the Effect of Halide Ions,” Electrochimica Acta, Vol. 41, No. 16, (1996) 2545-2549.
75.M. Seruga, M. Metikos-Hukovic, T. Valla, M. Milun, H. Hoffschultz, and K. Wandelt, “Electrochemical and X-ray Photoelectron Spectroscopy Studied of Passive Film on Tin in Citrate Buffer Solution,” Journal of Electroanalytical Chemistry, Vol. 407, (1996) 83-89.
76.S. Takemura, H. Kato, and Y. Nakajima, “Photoelectron Studies of Electrochemical Diffusion of Conducting Polymer/Transparent Conductive Metal Oxide Film Interfaces,” Applied Surface Science 144-145 (1999) 360-365.
77.K. S. Subramanian, V. S. Sastri, M. Elboujdaini, J. W. Connor, and A. B. C. Davey, “Water Contamination: Impact of Tin-Lead Solder,” Wat. Res. Vol. 29, No.8, (1995) 1827-1836.
78.S. C. Hung, P. J. Zheng, S. C. Lee and J. J. Lee, “The Effect of Au Plating Thickness of BGA Substrates on Ball Shear Strength Under Reliability Tests,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, (1999) 7-15.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top