跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/24 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林德峰
研究生(外文):Lin, Der-Phone
論文名稱:無線通訊上某些電磁波傳播之應用研究
論文名稱(外文):Some Applications of EM Wave Propagation for Wireless Communications
指導教授:陳興義陳興義引用關係周錫增
指導教授(外文):Chen, Hsing-YiChou,Hsi-Teeng
學位類別:博士
校院名稱:元智大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:133
中文關鍵詞:幾何繞射理論等效電流源擴充截面積經驗公式雨衰減無線通訊電磁干擾
外文關鍵詞:Geometric Theory of DiffractionEquivalent Current SourceExtinction Cross SectionEmpirical FormulaSpecific Rain AttenuationWireless CommunicationElectromagnetic Interference
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
論文中提出以「場源等效模式」之方式並結合「均勻幾何繞射理論」(UTD)來加速高頻電磁波問題之分析速度。經過實例比較證實後,再將「場源等效模式」與「均勻幾何繞射理論」之結合應用在電磁干擾(EMI)問題上,用來處理船艦上天線間電磁波之耦合情形並評估是否有干擾的情況發生。對於高頻且如此龐大之幾何物體,此種高頻近似技術能快速且有效的解決這類問題。
在處理電磁耦合問題時,船艦上天線間之電磁干擾是「場源等效模式」之很好的應用之一。研究中可以場源等效模式來分析船艦椲桿上之號角之天線,由於船上之天線實際上之體積很大,尤其在高頻時會使得場源分析更加困難,因此必須使用場源等效之方式來取代,以場源取代之天線所產生之場型必須與原來之場型相同,利用此等效得出來之場源放在船艦桅桿上,並以幾何繞射理論計算船艦上天線與天線間之電磁耦合,據以得出天線與天線間之干擾情形。
在電磁干擾中,「雨衰減」亦是無線通訊干擾情況中之一種。本論文首先以一有效率且準確之「體積分方程公式法」(the volume integral equation formulation),簡稱VIEF,數值方式計算出雨滴之擴充截面積(extinction cross section),簡稱ECS。將利用VIEF所求得之擴充截面積與其他研究學者,如橢球體模式之Morrison and Cross、Warner and Hizal、Morgan以及修正後P-P模式(MPP)之Li等人研究之數據相互比較並證實VIEF之準確性之後,再以VIEF法大量計算頻率範圍由0.6 GHz 到100 GHz時雨滴之擴充截面積,本論文採用最接近於真實之雨滴模型MPP Model,雨滴之均值半徑由0.25 mm 到 3.5 mm。所計算得出之ECS數據接著再輔以「最小平方曲線密合法」(the least squares curve fitting)逐步找尋出ECS之經驗公式。將ECS經驗公式之值與VIEF之值相互比較所得之誤差值在百分之十之內。
將此ECS經驗公式在最接近於真實雨滴模型(MPP)之情況下代入雨衰減公式中,進一步推導出適合各種不同降雨量之數值式雨衰減經驗公式,此雨衰減經驗公式可適用之範圍極廣; 雨滴之等效均值半徑由0.25 mm至3.5 mm及頻率範圍由0.6 GHz至100 GHz。利用此一推導出之雨衰減經驗公式和台灣地區之實際雨衰減之量測值相比較,得到之結果非常吻合。
本論文所研究推導出之雨衰減經驗公式是一種數值運算之方式,較之以往之解析(analytical)方法更簡便同時更方便計算求值,由於它同時適合在各種不同之雨滴均值半徑、頻率範圍及降雨量下求出雨衰減值,因此可謂一廣域之雨衰減經驗公式
In this dissertation, an approach of current source equivalent technique implemented in the uniform geometrical theory of diffraction (UTD) is first proposed for fast analysis of high frequency radio wave problems. After checking the validity of this technique by comparing results of radiation patterns with those obtained from regular UTD solutions, this new proposed technique is then used to study the electromagnetic interference (EMI) between antennas located at the mast of a ship. Based on this study, the EMI problems on this modern ship may not be happened and below the safety margin. In order to extend the study of EMI problems on rain attenuation for wireless communication, the volume integral equation formula (VIEF) is proposed to calculate the scattering and absorption cross sections by raindrops. The validity of the VIEF is checked by comparing the obtained extinction cross section values with those obtained from Morisson and Cross, Wanrer and Hizal, and Morgan''s solutions for spheroidal models and Li et al''s solution for new modified P-P models. After checking the validity and accuracy of the solution procedure, the VIEF is extensively used to calculate the extinction cross sections by raindrops in the frequency range from 0.6 to 100 GHz. Based on extensive calculations made on a widely varying in mean radius of modified P-P (MPP) raindrop models, an empirical formula for calculating the extinction cross section (ECS) by raindrops over a broad frequency range is derived. Numerical results obtained from the empirical formula for calculating the ECS are generally in good agreement with those calculated by the VIEF for raindrops with mean radius varying from 0.25 to 3.5mm in the frequency range from 0.6 to 100 GHz. The formula provides a simple and inexpensive method for calculating the ECS of raindrops, which otherwise requires complicated and expensive method of calculation. By implementing this empirical formula of ECS into the rain attenuation equation, a new numerically empirical formula for calculating the specific rain attenuation is also proposed in this dissertation. The validity of the empirical formula for calculating the specific rain attenuation is also checked by comparing the obtained results of specific rain attenuation with those obtained from Li et al''s solution, Yeo et al''s measurement, and Olsen et al''s power-law equation. Finally, the empirical formula for calculating the specific rain attenuation is applied in determination of rain attenuation in Taiwan. Numerical results obtained from the empirical formula for calculating the specific rain attenuation in Taiwan are generally in good agreement with measurement data.
Cover
ABSTRACT(中 文)
ABSTRACT(ENGLISH)
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
NOMEMCLATURE
Chapter1.INTRODUCTION
2.AN APPROACH OF SOURCE EQUIVALANCE FOR THE FAST ANALYSIS OF HIGH FREQUENCY RADIO WAVE PROBLEMS VIA UNIFORM GEOMETRICAL THEORY OF DIFFRACTION
2.1 Introduction
2.2 Concept of an Equivalent Point Source for a Known EM Radiation
2.3 Source Equivalence for a Large Complex Current Source
2.4 Numerical Results and Discussion
2.5 Conclusions
3.CALCULATIONS OF ANTENNA-TO-ANTENNA COUPLING ON SHIPBOARD BY GTD METHOD
3.1 Introduction
3.2 The GTD Method
3.3 Modeling Guidelines
3.4 Numerical Results
3.5 Conclusions
4.VOLUME INTEGRAL EQUATION SOLUTION OF EXTINCTION CROSS SECTION BY RAINDROPS IN THE RANGE 0.6-100 GHz
4.1 Introduction
4.2 Modified P-P Model of Raindrops
4.3 VIEF Implemented with Moment Method
4.4 Numerical Results
4.5 Conclusions
5. AN EMPIRICAL FORMULA FOR THE PREDICTION OF RAIN ATTENUATION IN FREQUENCY RANGE 0.6-100 GHz
5.1 Introduction
5.2 Empirical Formula of ECS
5.3 Least Squares Curve Fitting
5.4 Comparisons Between VIEF and Empirical Formula Results
5.5 Rain Attenuation
5.6 Conclusions
6. DETERMINATION OF RAIN ATTENUATION IN TAIWAN BY EMPIRICAL FORMULA AND MEASUREMENT
6.1 Introduction
6.2 Empirical Formula of Rain Attenuation
6.3 Comparison of Empirical Formula and Measurement
6.4 Conclusions
7. CONCLUSIONS
REFERENCES
VITA
REFERENCES
[1]J. B. Keller, "Geometrical Theory of Diffraction," Journal of the Optical Society of America, Vol. 52, pp. 116-130, February 1962
[2]R. G. Kouyoumjian and P. H. Pathak, "A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly Conducting Surface," Proc. IEEE, Vol. 62, pp. 1448-1461, Nov. 1974.
[3] D. C. Hogg and T. S. Chu, "The role of rain satellite communications," proceeding of the IEEE, vol. 63, no. 9, pp. 1308-1331, 1975.
[4] J. W. Ryde, "Attenuation of centimetre and millimetre wave by rain, hail, fog, and clouds," Rep. 8670, General Electric Co. Res. Lab., Wembley, England, 1945.
[5] H. E. Bussey, "Microwave attenuation statistics estimated from rainfall and water vapor statistics," Proc. IRE, Vol. 38, pp. 781-785, 1950.
[6] T. Oguchi, "Attenuation of electromagnetic wave due to rain with distorted raindrops," J. Radio Res. Lab., Vol. 7, pp. 467-485, 1960.
[7] R. G. Medhurst, "Rainfall Attenuation of Centimeter Waves: comparison of theory and measurement," IEEE Trans. Antennas Propagat., Vol. AP-13, pp. 550-564, July 1965.
[8] D. T. Thomas, "Cross-polarization distortion in microwave radio transmission due to rain," Radio Sci., Vol. 6, No. 10, pp. 833-839, 1971.
[9] T. Oguchi, "Attenuation and phase rotation due to rain : Calculation at 19.3 and 34.8 GHz," Radio Sci., Vol. 8, No. 1, pp. 31-38, 1973.
[10] J. A. Morrison and M. J. Cross, "Scattering of a plane electromagnetic wave by axisymmetric raindrops," Bell Syst. Tech. J., Vol. 53, pp. 955-1019, July-Aug. 1974.
[11] C. Warner and A. Hizal, "Scattering and depolarization of microwave by spheroidal raindrops," Radio Sci., Vol. 11, No. 11, pp. 921-930, 1976.
[12] M. A. Morgan, " Finite element computation of microwave scattering by raindrops," Radio Sci., Vol.15, No. 6, pp. 1109-1119, 1980.
[13] T. Oguchi, "Scattering from hydrometeors: A survey," Radio Sci., Vol. 16, pp. 691-730, 1981.
[14] T. Oguchi, "Electromagnetic wave propagation and scattering in rain and other hydrometeors," IEEE Proc., Vol. 71, pp. 1029-1078, 1983
[15] T. S. Yeo, P. S. Kooi, and M. S. Leong, " A Two-Year measurement of rainfall attenuation of CW microwaves in Singapore," IEEE Trans. Antennas Propagat., Vol. 41, No. 6, pp. 709-712, 1993.
[16] S. O. Ajose, M. N. O. Sadiku, and U. Goni, "Computation of attenuation, phase rotation, and cross-polarization of radio waves due to rainfall in tropical regions," IEEE Trans. Antennas Propagat., Vol. 43, No. 1, pp. 1-5, Jan. 1995.
[17] L. W. Li, P. S. Kooi, M. S. Leong, T. S. Yeo, and M. Z. Gao, "Microwave attenuation by realistically distorted raindrops : Part I - Theory," IEEE Trans. Antennas Propagat., Vol. 43, No. 8, pp. 811-821, 1995.
[18] L. W. Li, P. S. Kooi, M. S. Leong, T. S. Yeo, and M. Z. Gao, "Microwave attenuation by realistically distorted raindrops : Part II - Predictions," IEEE Trans. Antennas Propagat., Vol. 43, No. 8, pp. 821-828, 1995.
[19] R. K. Crane, Electromagnetic wave propagation through rain, New York, John Wiley & Sons Inc. 1996.
[20] J. W. Ryde, “Echo intensity and attenuation due to clouds, rain, sand, and duststoms at centimetre wavelengths,” Rep. 7831, General Electric Co. Research Labs., Wembley, England, Oct. 1941.
[21] J. W. Ryde and D. Ryde, “Attenuation of centimetre waves by rain, hail, and clouds,” Rep. 8516, General Electric Co. Research Labs., Wembley, England, Oct. 1944.
[22] G. Mie, “Beitrüge zur Optik trüber Medien, Speziell Kolloidaler Metallosungen,” Ann. Der phys., Vol. 25, pp. 377-445, Mar. 1908.
[23]T. Oguchi, "Attenuation of electromagnetic wave due to raindrops (Part II)," J. Radio Res. Labs. Vol. 11, pp. 19-44, 1964.
[24]A. R. Holt, N. K. Uzunoglu, and B. G. Evans, “An integral Solution to Scattering of Electromagnetic radiation by dielectric spheroids and ellipsoids,” IEEE Trans. Antennas and Propag., Vol. AP-26, No. 5, Sep. 1978.
[25]P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE., Vol. 53, No. 8, pp. 805-812, 1965.
[26]S. K. Chang and K. K. Mie, “Application of the Unimoment method to electromagnetic scattering of dielectric cylinders,” IEEE Trans. Antennas Propag., Vol. 24, No. 1, pp. 35-42, 1976.
[27]D. J. Fang, and F. J. Lee, “Tabulations of raindrop induced forward and backward scattering amplitudes,” COMSAT Tech. Rev., Vol. 8, No. 2, pp. 455-486, 1978.
[28]K. K. Mie, “Unimoment method of solving antenna and scattering problems,” IEEE Trans. Antennas Propag., Vol. 22, No. 6, pp. 760-766, 1974.
[29]L. W. Li, P. S. Kooi, M. S. Leong, and T. S. Yeo, "On the simplified expression of realistic raindrop shapes," Microwave Opt. Technol. Lett., Vol. 7, No. 4, pp. 201-205, 1994.
[30]A. R. Cherrette, S. W. Lee and R. J. Acosta, "A Method for Producing a Shape Contoured Radiation Pattern using a Single Reflector and a Single Feed," IEEE Trans. Ant. Propagat., Vol. 37, No. 6, pp. 698-706, June 1989.
[31]J. Michael Johnson and Yahya Rahmat-Samii, "Genetic Algorithms in Engineering Electromagnetic," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, pp. 7-25
[32]M. Kline and I. Kay, Electromagetic Theory and Geometrical Optics, Wiley Interscience, New York, 1965.
[33]Roger F. Harrington, "Time Harmonic Electromagnetic Fields," McGraw-Hill, Inc. New York, 1961.
[34]R. F. Harrington, Field Computation by Moment Method, The Macmillan Company, New York, 1968.
[35]R. J. Marhefka, "NEC - basic scattering code, user’s manual (version 3.2)," Final Report 718422-4, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering, Dec. 1990. Prepared under Contract No.. N60530-85-C-0249 for Naval Weapons Center.
[36]W. D. Burnside, J. J. Kim, B. Grandchamp, R. G. Rojas and P. Law, "Airborne Antenna Radiation Pattern Code User’s Manual" Technical Report 716199-4, Sep. 1985.
[37]P.R. Foster, "Recent Enhancements to ALDAS V3.00", ACES-97, Monterey, CA.
[38]Tatsou Itoh, "Numerical Techniques for Microwave and Millimeter-Wave Passive Structures," John Wiley and Sons Inc.
[39]Karls Kunz And Raymond J. Luebbers, "The Finite Difference Time Domain Method for Electromagnetics," CRC Press, Inc. 1993
[40]G. A. Deschamps, "Ray Techniques in Electromagnetics," Proc. IEEE, Vol. 60, Sept. 1972.
[41]R. G. Kouyoumjian, and P. H. Pathak, "A Uniform GTD Approach to EM Scattering and Radiation, " in Acoustic, Electromagnetic and Elastic Wave Scattering-High and Low Frequency Asymptotics, Vol. 2,edited by Varadan and Varadan, North Holland Publishers, 1986
[42]P. H. Pathak, Nan Wang and W. D. Burnside and R. G. Kouyoumjian, "A Uniform GTD solution for the radiation from sources on a convex surface," IEEE Trans. Antennas and Propagat., Vol.Ap-29, no. 4, pp. 609-622, July 1981
[43]P. H. Pathak and R. G. Kouyoumjian, "An analysis of the Radiation from Apertures in Curved Surfaces by the Geometry Theory of Diffraction," Proceedings of the IEEE, Vol. 62, No. 11, pp. 1438-1447, November 1974.
[44]P. H. Pathak, "Techniques for high frequency problems," Ch. 4 in Antenna Handbook - Theory, Application, and Design, Y. T. Lo and S. W. Lee, Eds. New York, Van Nostrand Reinhold, 1988.
[45]S. K. Jeng, “Near-field scattering by physical theory of diffraction and shooting and bouncing rays,” IEEE Trans. Antennas Propagat., Vol. 37, pp. 194-205, Feb. 1989.
[46]H. Ling, R-C. Chou and S. W. Lee, "Shooting and Bouncing Rays: Calculating RCS of an Arbitrary Cavity," IEEE Trans. Antennas Propagat., Vol.37, pp. 194-205, February 1989.
[47]S. W. Lee, R-C. Chou, and H. Ling, "SBRI:Computer Code for Calaulating RCS of an S-inlet," University of Illinois, Urbana, IL., August 1988.
[48]R. J. Burkholder, "High-Frequency Asymptotic Methods for Analyzing the EM Scattering by Open-Ended Waveguide Cavities," Ph.D. Dissertation, The Ohio State University, June 1989.
[49]P. H. Pathak and R. J. Burkholder and R-C Chou, "Some Extensions to the GRE Analysis of EM Scattering by Non-Uniform Open Waveguide Cavities," Report 719630-5, The Ohio State University ElectroScience Laboratory, December 1991.
[50]P. H. Pathak, "An Equivalent Magnetic Point Current Source for Far Zone Fields of an Aperture in a PEC Surface Which is Convexly Curved,", Class Notes, The Ohio State University ElectroScience Laboratory, December 1995
[51] Hsi-Tseng Chou, "Development of Gaussian Ray Basis Elements for Efficient GRE Analysis of EM Backscatter from Open Cavity," Master Thesis, The Ohio State University ElectroScience Laboratory, 1993.
[52] Pelton, E. L., R. J. Marhefka and W. D. Burnside, "An Iterative Approach for Computing an Antenna Aperture Distribution from Given Radiation Pattern Data," Tech. Report (78) 4586, ElctroScience Lab., The Ohio State University
[53] Mantz, J. R. and R. F. Harrington, "Computational Method for Antenna Pattern Synthesis," IEEE Trans. Antenna Propagation, Vol.23, No. 4, pp. 507-512, July 1975.
[54] R. J. Burkholder, P. H. Pathak and G. Zogbi, "Efficient Planar Antenna Near Field Analysis using Gaussian Aperture Elements," Report 725521-1, The Ohio State University ElectroScience Laboratory, October 1992
[55] J. J. Maciel and L. B. Felson, "Systematic Study f Fields Due to Extended Aperture by Gaussian Beam Discretization," IEEE Tans. on Antennas and Propagat. Vol. 37, pp. 884-892, July 1989.
[56] Einziger, P. D., S. Raz and M. Shapira, "Gabor Representation and Aperture Theory," Journal Opt. Soc. Am., Vol.3, pp. 508-522, April 1986.
[57] J. B. Keller, "Diffraction by Aperture," Journal of Applied Physics, Vol. 28, pp. 426-444, April 1957.
[58] D. R. M. Lewis, and J. Boersma, "Uniform Asymptotic Theory of Diffraction by a Plane Screen," SIAM Journal of Applied Mathematics, Vol. 16, pp. 783-807, 1968.
[59] A. K. Bhattacharyya and D. L. Sengupta, Radar Cross Section Analysis and Control, Arteh House, Norwood, MA, pp. 36-38, 1991.
[60] A. K. Bhattacharyya and D. L. Sengupta, Radar Cross Section Analysis and Control, Arteh House, Norwood, MA, pp. 51-53, 1991.
[61] P. Y. Ufimtsev, "Approximate Computation of the Diffraction of Plane Electromagetic Wave at Certain Metal Bodies," Sov. Phys., Tech. Phys., pp. 1708-1718, 1957.
[62] P. Y. Ufimtsev, "Method of Edge Waves in Physical Theory of Diffraction," translated by U. S. Airforce Foreign Tech. Divn., Wright-Patterson AFB, OH, Sept. 1971.
[63] R. Mittra, Y. Rahmat Sammi, and W. L. Ko," The Spectral Theory of Diffraction," Applied Physics, Vol. 10, pp. 1-13, 1976.
[64] G. J. Burke, and A. J. Poggi, "Numerical Electromagnetic Code (NEC) - Method of Moment,, " NOSC/TD 116, Naval Ocean System Center, San Diego, California, 1977.
[65] J. Doble, Introduction to radio propagation for fixed and Mobil communications, Boston, Artech House Publications, 1996.
[66] G. Feldhake, "Estimating the attenuation due to combined atmospheric effects on modern earth-space paths," IEEE Antennas Propagat. Magazine, Vol. 39, No. 4, pp. 26-34, Aug. 1997.
[67] H. R. Prupacher and R. L. Pitter, "A semi-empirical determination of the shape of cloud and rain drops," J. Atmos. Sci., Vol. 28, pp. 86-94, 1971.
[68] T. Oguchi, "Scattering properties of Pruppacher-and-Pitter from raindrops and cross polarization due to rain : Calculations at 11, 13, 19.3 and 34.8 GHz," Radio Science., Vol. 12, pp. 41-51, 1977.
[69] J. O. Laws and D. A. Parson, "The relation of raindrop-size to intensity," Trans. Amer. Geophys. Union, Vol. 24, pp. 452-460, 1943.
[70] M. F. Iskander, H. Y. Chen, and J. E. Penner, "Optical scattering and absorption by branched chains of aerosols," Appl. Opt. Vol. 28, No. 15, pp. 3083-3091, 1989.
[71] H. Y. Chen and M. F. Iskender, "Light scattering and absorption by fractal agglomerates and coagulations of smoke aerosols," J. Modern Opt. Vol. 37, No. 2, pp. 171-181, 1990.
[72] M. F. Iskender, H. Y. Chen, and J. E. Penner, "Resonance optical absorption by fractal agglomerates of smoke aerosols," Atmos. Environ., Vol. 25A. No. 11, pp. 2563-2569, 1991.
[73] J. Van Bladel, "Some remarks on Green’s Dyadic for infinite space," IRE Trans. Antennas Propagat. Vol. AP-90, pp. 563-566, Nov. 1961.
[74] D. E. Livesay and K. M. Chen, "Electromagnetic field induced inside arbitrarily shaped biological bodies," IEEE Trans. Microwave Theory and Tech., Vol. MTT-22, no. 12, pp. 1273-1280, Dec. 1974.
[75] P. S. Ray, "Broadband complex refractive indices of ice and water," Appl. Opt., Vol. 11, No. 8, pp. 1836-1844, 1972.
[76] M. N. O. Sadiku, "Refractive index of snow at microwave frequencies," Appl. Opt., Vol. 24, No. 4, pp. 572-575, 1985.
[77] P. C. Waterman, "Scattering by dielectric obstacles," Alta Freq., Vol. 38, no. 7, pp. 348-362, 1969.
[78] D. P. Lin and H. Y. Chen, " An empirical formula for the prediction of rain attenuation in frequency range 0.6-100 GHz," accepted for IEEE Trans. Antennas Propagat., Nov. 2001.
[79] D. V. Rogers and R. L. Olsen, "Calculation of radiowave attenuation due to rain at frequency up to 1000GHz," Rep. 1299, Communications Res. Cen. Dept. of Commun. (Ottawa, Canada), Nov. 1976.
[80] J. A. Stratton, Electromagnetic Theory, New York: McGraw-Hill, pp. 563-573, 1941.
[81] D. A. de Wolf and A. J. Zwiesler, "Rayleigh-Mie approximation for line-of-sight propagation through rain at 5-90 GHz, " IEEE Trans.Antennas Propagat., Vol. 44, No. 3, pp. 273-279, Mar. 1996.
[82] W. T. Barnett, "Some experimental results on 18 GHz propagation," in Conf. Rec. 1972 Nat. Telecommunication Conf., pp. 10E-1-10E-4. ( IEEE Publication 72 CHO 601-5-NTC )
[83] D. P. Lin and H. Y. Chen, "Volume Integral Equation Solution of EM Scattering and Absorption by raindrops in the range 0.6-100 GHz,", IEEE Trans. Antennas Propagat., Vol. 49, No. 3, pp. 494-499, Mar. 2001.
[84] L. H. Lafara, Computer Method for Science and Engineering, Hayden, New York, pp. 148-157, 1973.
[85] A. Ishimaru and J. C. Lin, "Multiple scattering effects on wave propagation through rain," in NATO/AGARD Conf. Proc. No. 107, pp. 1-13, North Atlantic Treaty Organization, Brussels, Belgium, 1973.
[86] R. L. Olsen, D. V. Rogers, and D. B. Hodge, "The relation in the calculation of rain attenuation," IEEE Trans. Antennas Propagat., Vol. AP-26, No. 2, pp. 318-329, Mar. 1978.
[87] J. S. Marshall and W. Mck. Palmer, "The distribution of raindrops with size," J. Meteor., Vol. 5, pp. 165-106, Aug. 1948.
[88] J. Joss, J. C. Thams, and A. Waldvogel, "The variation of raindrop size distributions at Loearno," in Proc. Int. Conf. Cloud Physics, pp. 369-373, 1968.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top