(18.207.134.98) 您好!臺灣時間:2019/10/23 23:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:陳怡欣
研究生(外文):Yi-Shin Chen
論文名稱:牛樟芝發酵過濾液對大白鼠肝臟生理機能之影響
論文名稱(外文):Effects of filtrate of fermented mycelia of Antrodia camphorata (FFMA) on the physiological function of rat liver
指導教授:龍 鳳 娣沈 立 言
學位類別:碩士
校院名稱:中國醫藥學院
系所名稱:營養研究所
學門:醫藥衛生學門
學類:營養學類
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:牛樟芝菌絲體發酵過濾液肝臟
相關次數:
  • 被引用被引用:43
  • 點閱點閱:1944
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
本研究採用食品工業發展研究所菌種中心所生產之牛樟芝菌絲體發酵過濾液(filtrate of fermented mycelia of Antrodia camphorata, FFMA)為實驗樣品,探討其對四氯化碳誘導大白鼠慢性肝損傷之影響。本實驗共分為六組,為正常對照組(未經四氯化碳處理),其餘皆經四氯化碳處理組,分別為負對照組(僅投予四氯化碳之處理組)、正對照組(Silymarin之處理組)及三組實驗組。三組實驗組分別為低、中、高劑量,3、12.4及24.8 ml/kg BW/day FFMA處理組。大白鼠於四氯化碳投予前一週每日一次經口投予FFMA,直到實驗終了。實驗結果顯示,在第八週的血清生化值glutamic oxaloacetic transaminase (GOT)、glutamic pyruvic transaminase (GPT)方面,三組FFMA實驗組及正對照組的GOT、GPT值皆較負對照組低且有顯著性差異(P<0.05)。在第八週血清中triglyceride (TG)、cholesterol (Chol.)值方面,中、高劑量FFMA實驗組與正對照組之TG、Chol.皆較負對照組為高且有顯著性差異(P<0.05)。在肝臟脂質過氧化方面,三組FFMA實驗組與正對照組與負對照組比較皆有顯著性下降的現象(P<0.05);血漿脂質過氧化方面,高劑量FFMA實驗組之TBARS值較負對照組為低且有顯著性差異(P<0.05)。在肝臟抗氧化及解毒代謝酵素活性方面,經中、高劑量FFMA處理之實驗組之glutathione peroxidase (GPx)、glutathione reductase (GRd)及glutathione S-transferase (GST)活性均顯著較負對照組高(P<0.05);紅血球中抗氧化與解毒代謝酵素GPx、GRd及GST活性方面,高劑量FFMA實驗組皆較負對照組有顯著性上升的現象(P<0.05)。在肝臟GSH影響方面,中、高劑量FFMA實驗組GSH含量與負對照組比較有顯著性的上升的情形(P<0.05);紅血球中GSH含量方面,FFMA實驗組與負對照組比較有顯著性的上升的情形(P<0.05)。而中、高劑量FFMA實驗組之肝臟superoxide dimutase (SOD)活性與負對照組比較亦有顯著性上升的情形(P<0.05),三組FFMA實驗組之肝臟Catalase (CAT)活性與負對照組比較則有上升的情形,但未達顯著性差異。另外,而高劑量FFMA實驗組之紅血球SOD及Catalase活性與負對照組比較,皆有顯著性的上升的情形(P<0.05)。在肝臟TG及Chol.值方面,FFMA實驗組之TG值均較負對照組為低且有顯著性差異(P<0.05);正對照組及FFMA實驗組之Chol.值與負對照組比較雖有下降情形,但無顯著性差異。在第八週經四氯化碳誘發慢性肝損傷之大白鼠hydroxyproline (HYP)值皆顯著性高於正常對照組(P<0.05);三組不同劑量FFMA實驗組之HYP值皆較負對照組為低且有顯著性差異(P<0.05)。肝臟組織病理學觀察方面,三組FFMA實驗組之肝變性程度均較負對照組顯著性降低 (P<0.05),又以中、高劑量效果最明顯(P<0.01)。在肝纖維化方面,三組FFMA實驗組較負對照組皆有顯著性降低纖維化程度。因此適量的牛樟芝菌絲體發酵過濾對肝臟生理機能性具有正面的影響,可降低肝纖維化及變性程度,增加肝臟與紅血球中GSH含量及增加抗氧化酵素活性,降低肝臟脂質過氧化程度,而有利於體內氧化壓力的下降。
中文摘要……………………………… ………………………Ⅳ
前言 …..…………………………………………………1
文獻回顧………………………………………………………3
一、牛樟芝…………………………………………………… 3
(一) 牛樟芝簡介……………………………………………3
(二)成份分析……………………………………………………5
(三)生理機能研究………………………………………………7
(四)安全毒性研究………………………………………………8
二、四氯化碳誘導慢性肝損傷 ……………………….................11
三、自由基與抗氧化……………………………………………….14
材料與方法…………………………………… ………………………19
一、實驗材料……………………………………………………….20
二、實驗動物……………………………….……………………....20
三、實驗分組……………………………………………………….20
四、四氯化碳誘導慢性肝損傷…………………………………….21
(一)投予方法…………………………………………………...21
(二)實驗設計…………………………………………………...21
(三)犧牲當天實驗流程……………………………………… .22
五、樣品製備……………………………………………………….22
(一)肝臟………………………………………………………..22
(二)血液………………………………………………………..22
六、實驗樣品分析………………………………………………….23
(一)血液生化值檢測……………………………………………23
(二)肝臟麩胱甘(glutathione, GSH)含量之分析………….23
(三)紅血球中麩胱甘(glutathione, GSH)含量之分析…….25
(四)肝臟脂質過氧化之分析…………………………………….26
(五)肝臟與紅血球內麩胱甘過氧化(glutathione peroxidase,
GPx)活性之分析…………………………………………….27
(六)肝臟與紅血球內麩胱甘還原(glutathione reductase, GRd)活性之分析…………………………………………….28
(七)肝臟與紅血球內麩胱甘硫轉移(glutathione S-transferase, GST)活性之分析……………………………..29
(八)肝臟與紅血球中超氧化物岐化(superoxide dismutase, SOD)活性之分析…………………………………………….30
(九)肝臟與紅血球中過氧化氫(catalase, CAT)活性之分析………………………………………………………………31
(十)蛋白質定量分析………..........................32
(十一)組織病理學觀察…. …………………………………32
(十二)肝臟膠原蛋白含量之定量分析……… ………………33
七、統計分析…………………………………………………34.
結 果………………………………………….. …………37
一、肝臟重/體重比....................................................37
二、平均體重變化………………………………………………….37
三、在血清生化值………………………………………………….38
四、肝臟脂質過氧化……………………………………………….42
五、肝臟之抗氧化與解毒代謝酵素活性………………………….42
六、肝臟之麩胱甘(GSH/GSSG)活性………………………….43
七、肝臟其他抗氧化酵素活性…………………………………….44
八、肝臟TG及Chol.值……………………………………………45
九、肝臟Hydroxyproline(HYP)含量…………………………..45
十、肝臟組織病理學觀察………………………………………….46
十一、血漿脂質過氧化…………………………………………….46
十二、紅血球抗氧化與解毒代謝酵素活性……………………….47
十三、紅血球麩胱甘(GSH/GSSG)…………………………….48
十四、紅血球其他抗氧化酵素活性……………………………….49
討 論………………………………………………………………50
結 論…………………………………………………… .… …58
表………………………………………………………………………59
圖………………………………………………………… … ………35
參考文獻………………………………………………………………75.
江素瑛, 吳焜裕, 王秋萍, 魏逸杰, 施睿宏, 高尚德, 謝慶良. 樟芝之致基因毒性與抗基因毒性評估. 91年度保健食品研究開發與管理研討會. 2002.
宋祖瑩, 吳啟豪, 顏國欽. 樟芝深層培養發酵濾液保護四氯化碳誘導大鼠急性肝損傷之能力. 91年度保健食品研究開發與管理研討會. 2002.
沈立言.牛樟芝菌絲體發酵萃取液對肝臟生理機能性之影響,89年度保健食品研究開發計劃心得發表會 2000; 191-198.
林文鑫, 陳俊憲, 陳勁初, 呂鋒洲.樟芝液態發酵萃取物對腫瘤細胞株之毒殺性分析. 中華民國食品科技學會第三十次會員大會. 2000.
林素民, 白純櫻, 林靜晞, 張基煌, 陳勁初, 喬長誠. 樟芝菌絲體及子實體脂肪酸及麥角固醇之分析. 中華保健食品學會第二屆第一次會員大會. 2001.
施純青,台灣金線蓮之藥理活性研究。中國醫藥學院中國醫藥研究所博士論文.
張東柱. 牛樟芝病害. 牛樟生物學及育林技術研討會論文集. 1997. 林業叢林第72號: 127-131
許勝傑, 鍾煒惠, 陳勁初, 蔡明憲, 王聖耀, 蔡慶龍, 陳巧文. 大白鼠口服高劑量樟芝菌絲體之急性毒性試驗. 中華保健食品學會第二屆第一次會員大會. 2001.
陳勁初, 林文鑫, 陳清農, 許勝潔, 黃仕政, 陳炎鍊. 台灣特有真菌-樟芝菌絲體之開發. 2001. Fungal Sci. 16: 7-22.
陳啟偵, 蘇慶華, 藍明煌. 樟芝固體栽培及其生物活性之研究. 2001. Fungal Sci. 16: 65-72.
陳清農, 林文鑫, 盛莉莎, 黃仕政, 陳勁初, 劉宗榮.樟芝對Sprague-Dawley大白鼠之連續投要口服急性毒性. 中華保健食品會第二屆第一次會員大會. 2001.
陳惠英, 顏國欽. 自由基、抗氧化防禦與人體健康. 中華民國營養學會雜誌 1998. 23: 105-121.
趙靜波, 王泰玲, 張晶等.大白鼠急性酒精性肝損傷模式分析,中日有好醫院學報 1996. 10:17-19
蔡敬民, 劉翠玲.樟芝對倉鼠體內脂質代謝及抗氧化狀態之影響. 91年度保健食品研究開發與管理研討會.2002.
戴宇昀, 蕭學民, 蔡金川, 陳勁初, 黃仕政, 胡淼琳. 樟芝子實體對酒精誘導急性肝損傷之保肝功能評估. 中華保健食品學會第二屆第一次會員大會. 2001.
Aebi H. Catalase in vitro. Methods in Enzymol. 1984; 105: 121-126.
Akahori A, Masui M, Kagawa K, Enomoto M and Saito M. Time course of biochemical
and histological alterations following a single feeding of carbon tetrachloride to mice.
Jpn. J. Exp. Med. 1983; 53: 199-209.
Animal models of liver fibrosis. Scand J Gastroenterol 1996; 31: 1137-1143.
Barry H and John MC. Carbon tetrachloride. Free Rad. Bio. Med. 1998; 547-552.
Bellomo G, Mirabelli F, DiMonte D, Richelmi P, Thor H, Orrenius C and Orrenius S.
Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. Biochem. Pharmacol. 1987; 36: 1313-1320.
Benyon RC. Iredale JP. Is liver fibrosis reversible? Gut. 2000; 46:443-6.
Breene, W.M. Nutritional and medical value of specialty mushroom. J. Food Protect. 1990; 53: 883-894
Bulger EM and Maier RV. Antioxidants in critical illness. Arch. Surg. 2001; 136: 1201-1207
Calabrese V, Renis M, Calderone A, Russo A, Reale S, Barcellona ML and Rizza V. Stress proteins and SH-groups in oxidant-induced cellular injury after chronic ethanol administration in rat. Free Rad. Bio. Med. 1998; 24: 1159-1167.
Camps J, Bargallo T, Gimenez A, Alie S, Caballeria J, Pares A, Joven J, Masana L and Rodes J. Relationship between hepatic lipid peroxidation and fibrogenesis in carbon tetrachloride-treated rats. Clin. Sci. 1992; 83: 695-700.
Chang HL, Chao GR, Chen CC and Man JL. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chem. 2001; 74: 203-207.
Chang TT and Chou WN. Antrodia camphorata sp. Nov. on Cinnamomum kanehirai in Taiwan. Mycol. Tes. 1995; 99: 756-758.
Chojkier M, Houglum K, Solis-Herruzo J, Brenner DA. Stimulation of collagen gene expression by ascorbic acid in cultured human fibroblasts. A role for lipid peroxidation? J. Biol. Chem. 1989; 264: 16957-62.
Ciccoli L, Ferrali M, Casini AF, Comporti M. Effect of reduced fatty liver: various considerations. Bollett. Soc. Ital. Biol. Sperim. 1981; 57: 1463-1469.
Emri T, Pócsi I, Szentirmai A. Glutathione metabolism and protection against oxidative stress caused by peroxides in penicillium chrysogenum. Free Rad. Bio. Med. 1997; 23: 809-814.
Fraga CG, Leibovitz BE and Tappel AL. Lipid peroxidation measured as thiobarbituric acid-reactive substance in tissue slices: characterization and comparison between homogenates and microsomes. Free Rad. Biol. Med. 1988; 4: 155-161.
Gabriele B. Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology 1997; 26: 643-649.
Habig WH, Pabst MJ and Jakoby WB. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974; 249: 7130-7139.
Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Clarendon Press Oxford. 1985; p.p.73-75.
Hanauske-Abel HM. Fibrosis: representive molecular elements, a basic concept, and emerging targets for suppressive treatment. In: Hepatology: A textbook of liver disease. Zakim, D. and Boyer, T.D. (Eds) W.B. Saunders Company, Philadelphia, Third edition 1996; p.p.465-506.
Higgins GM and Aderson RM. Experimental pathology of the liver. Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 1931; 12: 186-202.
Howard RB, Christensen AK, Gibbs FA and Pesch LA. The enzymatic preparation of isolated, intact parenchymal cells from rat liver. J. Cell Biol. 1967; 35: 675-684.
Ischikawa, T and Sies, H. Glutathione as an antioxidant: Toxicological aspects. In: Dolphin, D.; Avramovi´c, O.; Poulson, R ., eds. Glutathione: Chemical, biochemical, and medical aspects. Part B. New York: John Wiley & Sons; 1989: p.p.85-110.
Jiang Z, You DY, Chen XC and Wu J. Monitoring of serum markers of fibrosis during CCl4-induced liver damage. Effect of antifibrotic agents. J. Hepatology 1992; 16: 282-289
Jonker AM, Dijkhuis FWJ, Boes A, Hardonk MJ and Grond J. Immunohistochemical study of extracellular matrix in acute galactosamine hepatitis in rats. Hepatology 1992; 15: 423-431.
Kim SG, Nam SY, Chung HC, Hong SY and Jung KH. Enhanced effectiveness of dimethyl-4,4´-dimethoxy-5,6,5´,6´-dimethylene dioxybiphenyl-2,2´-dicarboxylate in combination with garlic oil against experimental hepatic injury in rats and mice. J.Pharm. Pharmacol. 1995; 47: 678-682.
Kosower, N. S. and Kosower, E. M. The glutathione status of cells. Internatl. Rev. Cytol. 1978; 54: 109-160.
Lawrence RA and Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 1976; 71: 952-958.
Lombardi B and Ugazio G. Serum lipoproteins in rats with carbon tetrachloride-induced fatty liver. J. Lipid Res. 1965; 6: 498-505.
Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951; 193: 265-275.
McLean AE. The effect of diet and vitamin E on liver injury due to carbon tetrachloride. Br. J. Exp. Pathol. 1967; 58: 606-615.
Meister A and Anderson ME. Glutathione. Annu. Rev. Biochem. 1983; 52: 711-760.
Meister A. Glutathione metabolism and its selective modification. J. Biol. Chem. 1988; 263: 17205-17208.
Meister, A. New aspects of glutathione biochemistry and transport--selective alteration of glutathione metabolism. Nutrition Reviews 1984; 42: 397-410.
Mizuno T, Wang G, Zhang J, Kawagishi H, Nishitoba T and Li J. Reishi. Ganoderma Lucidum and Ganoderma Tsugae: Bioactive substances and medicinal effects. Food Reviews Inter. 1995; 11: 151-166.
Muard CA, Begg SJ, Griffiths PJ and Littleton JM. Hepatic triglyceride accumulation and the ethanol physical withdrawal syndrome in mice. Br. J. Exp. Pathol. 1977; 58: 606-615.
Nartinez-Hernandea A and Amenta PS. The extracellular matrix in hepatic regeneration. FASEB J. 1995; 9: 1401-1410.
Neuman RE and Logan MA. The determination of hydroxyproline. J. Biol. Chem. 1950; 184: 299-306.
Perez Tamayo R.. Is cirrhosis of the liver experimentally produced by CCl4 and adequate model of human cirrhosis? Hepatology. 1983; 3:112-20.
Reed DJ, Babson JR, Beatty PW, Brodie AE, Ellis WW and Potter DW. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal. Biochem. 1980; 106: 55-62.
Rice-Evans, C. Iron-mediated oxidative stress and erythrocytes. In: Harris, J.R. (Ed.).1990, Blood Cell Biochemistry, vol. 1. Plenum Press, New York. p.p. 429-453.
Ruwart MJ, Wilkinson KF, Rush BD. The integrated value of serum procollagen Ⅲ peptide over time peptide over time predicts hepatic hydroxyproline content and stainable collagen in a model of dietary cirrhosis in the rat. Hepatology 1989; 10: 801-806.
Sachan DS and Dodson WL. Effects of L-carnitine on carbon tetrachloride-induced changes in serum and liver lipids and acylcarnitine. J. Environ. Pathol. Toxicol. Oncol. 1992; 11: 125-129.
Shaw S, Rubin KP and Lieber CS. Depressed hepatic glutathione and increased diene conjugates in alcoholic liver disease. Evidence of lipid peroxidation. Dig. Dis. Sci. 1983; 28: 585-589.
Sie H. Glutathione and its role in cellular functions. Free Rad. Biol. Med. 1999; 27: 916-921.
Sturgill MG and Lambert GH. Xenobiotic-induced hepatotoxity: mechanisms of liver injury and methods of monitoring hepatic function. Clin. Chem. 1997; 43: 1512-1526.
Tamayo RP. Is cirrhosis of the liver experimentally produced by CCl4 and adequate model of human cirrhosis. Hepatology 1983; 3: 112-20.
Wu SH, Ryvarden L and Chang TT. Antrodia camphorata (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan. Bot. Bull. Acad. Sin. 1997; 38: 273-275.
Ye YN, Liu ESL, So HL, Cho CCM, Sheng HP, Lee SS and Cho CH. Protective effect of polysaccharides-enriched fraction from Angelica sinensis on hepatic injury. Life Sci. 2001; 69: 637-646.
Zang M and Su CH. Ganoderma comphoratum, a new taxon in genus Ganoderma from Taiwan. Acta. Biotheoretica 1990; 12: 395-396.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔