跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳明哲
研究生(外文):Ming-Che Chen
論文名稱:添加矽對ZrAlCuNi塊狀非晶質合金結晶行為的影響
論文名稱(外文):Crystallization Behavior of ZrAlCuNi Bulk Amorphous Alloy Doped with Silicon
指導教授:鄭憲清
指導教授(外文):Jason S. C. Jang
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:塊狀非晶質合金結晶化鋯基合金熱性質
外文關鍵詞:bulk amorphouscrystallizationzirconium-dased alloythermal properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ZrNiAlCu系非晶質合金為一種具優良工程性質之材料,諸如優異的機械強度、耐磨耗性及耐腐蝕特性,並且具有高的衝擊破壞能。特別是ZrNiAlCu系非晶質合金具有較大玻璃轉化溫度區△Tx及較大玻璃轉化活化能,所以該合金可以非常容易的於其玻璃轉化溫度區進行自動化之精密淨形加工,加上非晶質合金為一種過冷液態,所以無傳統液-固相轉化時之收縮行為,對於微小精密零組件的設計及製作將有非常大的助益。但一般而言,玻璃形成能力及熱穩定性是影響非晶質合金的兩個主要因素。因此若能有效的提升玻璃形成能力及熱穩定性,當可突破其應用限制。
本實驗之Zr65-xAl7.5Cu17.5Ni10Six非晶質合金係利用 Arc melting 及 Drop Cast 於水冷銅模中,製成0.5~2mm厚的試片,在利用melt spinning 製作厚約100~200μm之薄帶。非晶質合金於加熱過程中,利用 Differential thermal analysis (DTA)、 Differential scanning calorimetry (DSC)及高溫顯微鏡(hot stage)來觀察合金的結晶行為與微結構的改變。
由實驗之結果發現,Zr65-xAl7.5Cu17.5Ni10Six可在較低的冷卻速率下得到非晶質相,簡化玻璃溫度高達0.62。玻璃轉換溫度Tg與結晶溫度Tx會隨著Si的增加而上升,因而增加了非晶質合金的熱穩定性,同時Si的添加可提升合金之結晶活化能。在加熱過程中,非晶質合金的結晶相也從非晶質基地中,清楚的顯示玻璃及結晶的狀態轉換。利用TEM及XRD鑑定出非晶質基地內存在著之微晶Zr2Cu,尺寸約20~40nm。Zr65-xAl7.5Cu17.5Ni10Six合金之薄帶在鑄造後呈延性破斷,而在600℃退火後則因結晶而呈脆性破斷,也證實了非晶質相具有較好之韌性。

The System of ZrNiAlCu amorphous alloy material exhibit good engineering properties, such as high mechanical strength, high wear-resisting, relatively high impact fracture and high corrosion resistance. Especially the system of ZrNiAlCu amorphous alloys to be provided with a larger zone of glass transition temperature △Tx and glass transition activation energy, so alloys can be greatly simple to proceed precision net-shape forming in the zone of glass transition temperature. The amorphous alloy is a kind of under-cooling liquid hence without the shrink behior from liquid to solid state, it will benefit to design and manufacture for precise of component. In general, two important factors of glass formation ability and thermal stability had effect in amorphous alloys. Therefore, how to improve the glass formation ability and thermal stability will be widespread the applications of ZrNiAlCu amorphous alloy.
In this experiment, the amorphous Zr65-xAl7.5Cu17.5Ni10Six with 0.5~2mm thickness were prepared by arc melting and drop cast in a water-cooled copper mold and 100~200μm thickness of ribbon were prepared by melt spinning. The crystallization behavior and microstructure development during the annealing of amorphous alloys has been investigated by combination of differential thermal anal8sis, differential scanning calorimetry, and high-temperature optical microscope.
According to the result of this study, the amorphous phase can be obtained by lower cooling rate in Zr65-xAl7.5Cu17.5Ni10Six alloy. The reduced glass temperature can reach about 0.62. Thermal stability of the amorphous alloy will be rose by improves the glass transition temperature and crystallization temperature with increases the silicon, simultaneously to add silicon can rise the crystal activation energy. Meanwhile, the crystallization metallography during annealing the amorphous alloy also revealed a clear glass-crystalline transition from the amorphous matrix. Nanocrystall of the Zr2Cu was identified with size around 20~40nm by TEM and XRD from amorphous matrix. The ribbon of Zr65-xAl7.5Cu17.5Ni10Six amorphous alloy shows ductile fracture after casting , and shows brittle fracture by annealing at 600℃. This result can prove the amorphous phase that has better toughness.

頁次
中文摘要 Ⅰ
英文摘要 Ⅲ
致謝 Ⅴ
總目錄 Ⅵ
圖目錄 Ⅸ
表目錄 XII
第一章 前言 1
第二章 理論基礎 2
2-1 前言 2
2-2 非晶質合金 3
2-2-1 非晶態合金的特性 3
2-2-2 非晶質合金的製造方法 7
2-3 強度韌性及耐蝕性 7
2-3-1 強度韌性 7
2-3-2 耐蝕性 11
2-4非晶質的形成和穩定性的熱力學基礎和微觀機制 13
2-4-1 玻璃轉換與熱穩定性 13
2-4-2 非晶態形成的熱力學及結構因素 17
2-4-3 非晶質合金的熱穩定性 23
2-4-4 結晶活化能與熱穩定性的關係 26
2-5 結晶動力學 26
第三章 實驗步驟 29
3-1 合金試片之熔煉與加工 29
3-1-1 合金組成 29
3-1-2 電弧溶解與墬落式鑄造 30
3-1-3 薄帶的製作 30
3-1-4 試片取樣 31
3-2 熱分析 31
3-2-1 熱差分析儀 31
3-2-2 示差熱掃描分析儀 32
3-3 微硬度分析 32
3-4 微觀組織分析 33
3-4-1 穿透式電子顯微鏡(TEM) 33
3-4-2 光學顯微鏡(OM) 34
3-4-3高溫顯微分析 34
3-4-4 掃瞄式電子顯微鏡(SEM)與EDS 35
第四章 結果與討論 41
4-1 熱性質分析 41
4-1-1 玻璃形成能力 41
4-1-2 熱穩定性 42
4-1-2-1 Tg、Tg、與△Tx 42
4-1-2-2 活化能 43
4-1-3 DSC恆溫結晶及Avrami Equation結果 45
4-2 微結構組織分析 64
4-2-1 SEM薄帶表面型態觀察 64
4-2-2 成分分析 65
4-2-3 Hot stage金相觀察 65
4-2-4 X光繞射分析 65
4-2-5 穿透式電子顯微鏡(TEM)與擇域繞射(SAD) 66
4-3 機械性質分析 80
4-3-1 微硬度 80
4-3-2 韌性 81
第五章 結論 85
參考資料 87

1. W. Klement, R. H. Wilens, P. Duwez, P. Duwez, Nature 187 (1960) pp. 869.
2. D. Turnbull, Contemp. Phys. 10 (1969) pp. 473.
3. T. Masumoto and K. Suzuki (eds.), “Rapidly Quenched Metals Ⅳ”
(Japan Institute of Metals, Sendai, 1981).
4. F. E. Luborsky (ed.), “Amorphous Metallic Alloys” (Butterworth, London, 1983).
5. S. Steeb and H. Warlimont (eds.), “Rapidly Quenched Metals Ⅵ”
(Elsevier, Amsterdam, 1985).
6. A. Inoue,T.Zhang and T.Masumto,Mater.trans.JIM31, pp.177,1990.
7. A. Inoue,T.Zhang and T.Masumto,Mater.trans.JIM31, pp.425,1990.
8. A. Inoue, T. Zhang and T. Masumto, Mater. Trans. JIM32, pp.1005,1990.
9. A. Inoue, T. Nakamura, N. Nishiyama and T.Masumoto,JIM33, pp.937, 1992.
10.A.Inoue,T.Zhang, N. Nishiyama, K. Ohbaand, T. Masumoto, JIM 34, pp.1234, 1992.
11. A. Paker and W. L. Johnson, Appl.Phys.Lett.,67, pp. 2342,1993.
12. R. Busch, S. Schneider, A. Peker and W. L. Jonson, Appl. Phys. Lett., 67, pp. 1544, 1995.
13. S. Schneider, A. Peker and W. L. Johnson, Appl. Phys. Lett., 67, pp.1544, 1995.
14. S. Schneider, P. Thiyagarajan and W. L. Johnson, Appl. Phys. Lett., 68,
pp. 493, 1996.
15. W. L. Johnson, Materials Science Forum 225-227,pp.35, 1996.
16. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM 36 (1995) 391.
17. A. Inoue, Mater. Trans. JIM 36 (1995) 886.
18. A. Inoue, M. Koshiba, T. Zhang, and T. Masumoto, J. Appl. Phys. 83 (1998) 1967.
19. T. Itoi and A. Inoue, Mater. Trans. JIM 39 (1998) pp. 762.
20. A. Inoue, M. Koshiba,T. Zhang and A. Makino, Appl. Phys. Lett., 73,
pp. 744,1998.
21. A Inoue, T. Negishi, H. M. Kimura, T. Zhang, and A. R. Yavari, Mater. Trans. JIM 39 (1998) pp. 318.
22. D. R. Uhlmann, J. F. Hays, and Turnbull, Phy. Chem. Glasses 7 (1966) 159.
23. H. A. Davies, Phys. Chem. Glasses 17(1976)159.
24. D. R. Uhlmann, J. F. Hays, and Turnbull, Phy. Chem. Glasses 7 (1966)159.
25. H. A. Davies, Phys. Chem. Glasses 17 (1976)159.
26. A. Inoue, T. Zhang, and T. Masumoto, J. Non-Cryst. Solids 56-158 (1993) 173-480.
27. A.Inoue, Acta Mater. 48 (2000) 179-306.
28. 戴道生、韓汝琪 等編著, “非晶態物理”,高等學校教學用書, 電子業出版社,. China. 1984.11.
29. F.E. Luborsky, “Amorphous Metallic Alloys” , P1 ,USA, 1983.
30. ”固態物理” , 中國材料學會網頁, 2000.
31. Brenner, A, Couch, D. E. and Williams, E. K, J.Res, natn. Bur. Stand, 44,109,1950
32. 陳力俊等著, ”材料電子顯微鏡學”, 國科會精儀中心, P268, Taiwan, 1990.3
33. Duwez, P. and Lin, S. C. H., J. appl. Phys, 38, 4096 (1967)
34. 鄭振東 編譯, “非晶質金屬漫談”, 建宏出版社, pp. 39, Taiwan, 1990, 3.
35. S. R. Elliot, “Physics of Amorphous Materials”, pp.30, USA, 1990.
36. H. S. Chen, Rep. Prog. Phys., 43(1980), 353.
37. H. S. Chen, etal., J. Appl. Phys. Letter, 10(1967), 284.
38. H. S. Chen, etal., J. Chem. Phys., 48(1968), 2560.
39. M. H. Cohen, etal., Nature, 203(1964), 964.
40. D. Wear, etal., Nature, 203 (1971), 779.
41. W. Kauzman, Chem, Rev., 43(1948), 219.
42. D. Turnbull, Physics of Non-Crystalline Solides. Ed. By J. A. prins(North-Holland, 1965), pp. 41.
43. R. J. Greet, etal., J. Chem. Phys., 47(1967), 2185.
44. J. H. Gibbs, etal., J. Chem. Phys., 28(1958),373.
45. M. Hansen, etal., in Constitution of Binary Alloys,(McGrew-Hill, 1958), pp. 206.
46. P. Duwez, Trans. Met. Soc. AIME, 60 (1967), 605
47. M. H. Cohen, etal., J. Chem. Phys., 31 (1959), 1164.
48. H. S. Chen, Acta. Met., 22(1974), 1505.
49. H. S. Chen, Acta. Met., 22(1974),897
51. H. S. Chen, J. non-Cryst. Solid, 12 (1973), 333.
52. J. Hafner, Phys. Rev., A16 (1977), 351.
53. H. S. Chen, etal., Acta. Met., 17 (1969), 1021.
54. P. L. Maitrepierre, J. Appl. Phys., 40 (1969), 4826.
55. J. Dixmixer, etal., Physics of Non-Crystalline Solids. Ed. By J.A. Prins (North-Holland, 1956), pp. 67.
56. B. C. Giessen, etal., Physics and Chemistry of Liquid Metals, ed. By S.Z.Beer, pp. 633 (Marcel Dekker, 1972).
57. S. Mader, etal., Acta Met., 15 (1967), 203.
58. G. A. Mansourl, etal., J. Chem. Phys., 54 (1971) 1523.
59. H. S. Chen, etal., J. Non-Cryst. Solids, 13 (1973/1974), 321.
60. H. S. Chen, etal., Acta. Met., 21(1973), 395.
61. G. S. Cargill, J. Appl. Phys., 41 (1970), 12, 2248.
62. D. E. Plok, Scripta Met., 4 (1970), 117, Acta Met., 20 (1972), 485.
63. S. Takayama, J. Mat. Sci., 11 (1976) 164.
64. S. Daves, eal., in Rapidly Quenched Metals Ⅲ, ed. By Cantor, Vol. 2,
pp. 425, (The Metals Soc., London, 1978).
65. Homer E. Kissinger, Analytical Chemistry, Vol. 29, No.11,1957.
66. H. S. Chen, etal., J. Appl. Phys. Letter, 11(1967), 12.
67. J. W. Christian., “The Theory of Transformations in Metals and Alloys” , 1982. 8.
68. Shuichi Nojima, Hideki Tsutsut, Masaru Urushirsura Wataru Kosaka, Narundo Kato, and Tamaichi Ashida, ”A Dynamic Study of Crystallization of Poly(ε-caprolactone) and Poly(ε-caprolactone)/Poly(vinyl chloride) Blend”, Polymer Journal, Vol. 18, No. 6, pp. 451-461(1986)
69. D. V. Louzguine, A. Inoue., J. Mat. Sci., 35 (2000) 4195-4164
70. A. Inoue: Mater. Trans., JIM, 36, 866 (1995)
71. B. D. Cullity, in: Elements of X-ray Diffraction, 2nd Edition, Addison Wesley, Reading, MA, 1978, pp. 84.
72. W. H. Hall, J. Inst. Met. 75 (1950) 1127.
73. B. D. Cullity, in: Elements of X-ray Diffraction, 2nd Edition, Addison Wesley, Reading, MA, 1978, pp. 84.
74. W. H. Hall, J. Inst. Met. 75 (1950) 1127.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top