(18.207.238.169) 您好!臺灣時間:2019/12/09 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:許岳蒼
研究生(外文):YuehTsang Sheu
論文名稱:酵素結合免疫吸附法對豬瘟抗體、抗原之檢測及應用
論文名稱(外文):The Application of ELISA Methods in Classical Swine Fever Antibody and Antigen Detection
指導教授:劉正義劉正義引用關係李維誠李維誠引用關係
指導教授(外文):Liu, Cheng-ILee, Wei-Cheng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫病理學研究所
學門:獸醫學門
學類:獸醫學類
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:110
中文關鍵詞:豬瘟酵素結合免疫吸附法抗體
外文關鍵詞:Classical Swine FeverELISAantibody
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1300
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在我國以LPC疫苗免疫及對豬瘟抗體之監控,為加強豬場豬瘟自衛防疫之重點,但由於血清中和抗體檢測法耗時耗力。因此本研究之目的,乃藉由比較四種市售豬瘟抗體ELISA檢測套組與中和抗體間之相關性,進而評估應用於豬瘟免疫接種適期之預測及血清監控之可行性。在試驗中,首先以簡單直線迴歸分析比較不同END血清中和抗體力價與CHEKIT®、IDEXX®、Ceditest® 及CivtestTM 四種豬瘟抗體ELISA檢測套組之相關性,檢測之結果相係數r值分別為0.892、0.863、0.795及0.766,其中以CHEKIT® ELISA抗體力價與中和抗體力價相關性最高。因此,進一步利用CHEKIT® ELISA檢測套組分析台中、彰化及南投縣20個豬場中,呈現免疫反應正常豬場 (陽性率≧80%) 之上市肉豬 (n=300) 血清ELISA抗體力價 (% of value),抗體平均力價為104.553 ±32.418%,此可作為正常上市肉豬經LPC免疫後抗體力價之參考值。進而以ELISA法評估仔豬移行抗體對於LPC疫苗免疫之干擾現象,其結果顯示,如將豬隻LPC疫苗免疫前以CHEKIT® ELISA所測得之抗體力價,區分為≦30%、31-60%、61-90%、91-110及≧111% 五區間,在經LPC疫苗一次免疫後6週,血清抗體轉陽率分別是100%、84.6%、77.7%、30.56%及0%,此顯示當CHEKIT® ELISA抗體力價≧90%時,對於LPC疫苗之免疫,則具有約50%之干擾現象。另外以ELISA法監控潛在豬瘟污染場中高豬瘟抗體力價豬隻之實驗中,結果亦顯示血清經20倍稀釋後再以CHEKIT® ELISA套組檢測,可有效區分高ELISA抗體力價介於130-160%間之LPC疫苗正常免疫豬隻 (48.43 ±13.22%) 及豬瘟病毒感染耐過豬隻之血清 (105.00 ±13.60%),因此血清樣品經20倍釋稀後,若ELISA抗體力價≧80%時,則可懷疑曾遭受豬瘟病毒之潛在感染。本實驗中亦利用自然豬瘟感染豬隻,進行各種抗原檢測方法之比較,評估各種抗原檢測法之適用性,以配合抗體ELISA對豬瘟進行監控。實驗結果顯示,在急性豬瘟感染場,病毒分離、RT-PCR及豬瘟抗原ELISA均可應用作為本病之診斷;而在慢性豬瘟感染場,則以病毒分離及RT-PCR檢測較為適宜。綜合以上結果顯示豬瘟抗體檢測在blocking ELISA與中和抗體檢測間具有相關性,可應用於大量豬瘟血清抗體監測、豬場免疫計劃評估及豬場是否遭受野外病毒污染之監控上。
Both prevention with LPC vaccine and immunosurveillance for classical swine fever (CSF) are the most important issues in control and CSF eradication program in Taiwan. Serum neutralization (SN) test has been thought as the golden standard method for CSF, but it is not suitable for large-scale screening due to arduous and time-consuming. The experiment was aimed to compare the correlation between SN and commercial CSF antibody enzyme-linked immunosorbent assay (ELISA) kits and further evaluate the application of ELISA test on LPC vaccination program and other CSF immunosurveillance. First, we compared the correlation between different levels of SN titers and four CSF antibody ELISA titers. The results show that the correlation (r value) between SN titers and 4 ELISA kits, CHEKIT®, IDEXX®, Ceditest®, and CivtestTM, are 0.892, 0.863, 0.795, and 0.766, respectively. As CHEKIT® ELISA kit displays higher r value than other ELISA test kits, it is applied in following tests. To establish the reference data of ELISA titer of normal distribution of CSF antibody of pigs after LPC vaccination, 300 serum samples from 20 pig farms displaying > 80% positive prevalence in marking pigs were collected and assayed. The result indicated that the mean of ELISA titers (% value) was 104.553 ± 32.418% in those pigs. It can be set as a reference data for herd immune status of marketing pigs after LPC vaccination. Furthermore, we evaluated the interference of maternal antibodies on LPC vaccination using ELISA method. The maternal antibody of ELISA titers before LPC vaccination were divided into five groups, ≦30%, 31-60%, 61-90%, 91-110%, and ≧111%, and the seroconversion rates 6 weeks after LPC vaccination were 100%, 84.6%, 77.7%, 30.56% and 0%, respectively. Thus, depending on quadratic regressive equation, when ELISA titer (% value) of maternal antibody is equal to 90%, there will be 50% interference on LPC vaccination. To evaluate whether the ELISA test can be applied in detecting CSF virus infected pigs with high CSF antibodies, a serial diluted sera from LPC vaccinated and experimental CSF virus infected pigs with high ELISA titers (% value>130%) were evaluated by the test kit. The results show that ELISA titer in 20-fold diluted sera can be significantly discriminated between LPC-vaccinated (48.43 ± 13.22%) and CSF virus experimentally infected (104.99 ± 13.59%) pigs. Thus, those pigs may be suspected with CSF virus infection when their 20-fold diluted serum with ELISA titer is more than 80%. Moreover, in accordance with CSF antibody surveillance, several different CSF antigen detecting methods were also evaluated. The result displays that antigen ELISA, flow cytometry, virus isolation, and RT-PCR are all satisfied with virus antigen detection in acute infected cases. However, virus isolation and RT-PCR methods were more suitable for chronic CSF virus infection than others. Conclusively, the SN titer was moderately high correlation with blocking ELISA kits, CHEKIT® and IDEXX® CSF antibody tests. It can be applied in large scale of immunosurveillance, evaluation of LPC vaccination program and efficacy, and, perhaps screen of CSF virus persistent infection in pig farms.
第一章 緒言----------------------------------------------1
第二章 文獻探討------------------------------------------3
2.1 豬瘟病毒---------------------------------------------3
2.2 豬瘟疫苗之免疫反應-----------------------------------13
2.3 豬瘟抗體之檢測---------------------------------------22
第三章 材料與方法----------------------------------------30
3.1 比較各種ELISA檢測試劑與中和抗體試驗之相關性----------30
3.2 建立豬瘟血清監控參考資料-----------------------------35
3.3 以ELISA法評估豬隻以不同LPC免疫方式免疫後抗體之變化---36
3.4 以ELISA法評估移行抗體對LPC疫苗免疫之干擾現象---------37
3.5 評估利用ELISA法測檢可能遭受豬瘟自然感染之血清樣品----37
3.6 比較各種豬瘟抗原檢測法-------------------------------38
第四章 結果----------------------------------------------43
4.1 比較各種ELISA檢測試劑與中和抗體試驗之相關性----------43
4.2 建立豬瘟血清監控參考資料-----------------------------46
4.3 以ELISA法評估豬隻以不同LPC免疫方式免疫後抗體之變化---47
4.4 建立LPC疫苗免疫後豬群血清抗體之預估轉陽率公式--------48
4.5 以ELISA法檢測可能遭受豬瘟病毒自然感染之血清樣品------49
4.6 比較各種豬瘟抗原檢測法-------------------------------50
第5章 討論-----------------------------------------------77
參考文獻--------------------------------------------------93
附錄------------------------------------------------------102
王金順。1997。豬瘟病毒之持續性感染現象。碩士論文。國立中興大學獸醫學研究所。台中市。中華民國。
何維莊、黃天祥、賴秀穗。1991。豬瘟疫苗免疫仔豬適期的研究。中華民國獸醫學會雜誌。17: 89-91。
呂濟洋。1998。豬瘟病毒持續污染場之監控及豬瘟病毒感染對血液中淋巴次族群之影響。碩士論文。國立中興大學獸醫學研究所。台中市。中華民國。
林永男。2001。台灣慢性豬瘟污染之調查與監控。碩士論文。國立中興大學獸醫病理學研究所。台中市。中華民國。
林再春、謝竹茂、陳由昌、陳正吉、李正雄、賴秀穗。1969。本省小豬之豬瘟抗體分布情形及移行抗體與活毒疫苗接種後免疫產生之關係。台灣省畜衛試所研報。6: 11-22。
林敬覆、賴秀穗、黎南榮、曹素華、費昌勇、詹益波。1985。豬瘟免疫疫學再檢討。台灣省畜衛試所研報。21: 51-56。
林榮培、黎南榮、陳金蘭、潘居祥、鍾明華。1996。八十五年度本省豬瘟病例之監測。台灣省畜衛試所研報。32: 17-21。
張靖男、廖朝政、黃天祥。1994。市售豬瘟疫苗品質及實際應用效果之探討。台糖畜產研究所 82/83 年期研究試驗報告。pp. 183-203。
陳金蘭。1998。利用抗體分析及RT-PCR技術建立野外豬瘟病毒感染豬隻篩檢之模式。碩士論文。國立中興大學獸醫學研究所。台中市。中華民國。
黃天祥、杜文珍、鍾明華、劉培柏。1997。不同週齡仔豬對豬瘟疫苗之免疫反應。台灣省畜衛試所研報。33: 7-12。
黃天祥、林有良、陳聖怡、潘居祥、李淑慧、楊揚輝、潘英章。1993。本省豬瘟免疫方式之探討。台灣省畜衛試所研報。29: 23-31。
黃天祥、楊揚輝、陳聖怡、潘居祥、林有良、李淑慧、潘英章。1991。健全豬瘟免疫方式的探討。台灣省畜衛試所研報。27: 105-135。
黃金城、鄧明中、黃天祥、鍾明華、林士鈺。2001。台灣1993-2001年流行豬瘟病毒之分子特徵。台灣畜牧獸醫學會九十年度聯合年會暨學術論文發表會。50。
楊喜金、賴俊雄、張天桂、劉燃炎、吳義興、詹益波、劉義雄、陳守仕。1972。豬瘟中和抗體之研究,第三報,仔豬豬瘟預防注射適當時期之預測。台灣省畜衛試所研報。9: 21-42。
楊喜金、賴俊雄、張天桂、劉燃炎、吳義興、詹益波。1971。豬瘟中和抗體之研究,第二報,母豬初乳對豬瘟免疫抗體產生之研究。台灣省畜衛試所研報。8: 25-34。
楊揚揮、劉培柏、林有良、黃天祥、林敬覆、林榮培。1994。建立家衛所以聚合酵素鏈反應方法診斷動物病毒性疾病能力 II:建立以PCR方法區別豬瘟強毒與疫苗株及牛病毒性下痢病毒。台灣省畜衛試所研報。30: 53-59。
劉培柏、黎南榮、費昌勇、邱仕炎。1987。哺乳前及哺乳後新生仔豬之豬瘟免疫。台灣省畜衛試所研報。23: 109-119。
劉燃炎、葉明得、劉義雄。1968。豬瘟免疫抗體消長試驗。台灣省畜衛試所研報。5: 45-52。
賴秀穗。1981。初生豬仔哺乳前免疫兔化豬瘟疫苗試驗。現代畜殖。15: 45-49。
Abbas, A. K., A. H. Lichtman, and J. S. Pober. 2000. Cellular and Molecular Immunology, 4th ed., W. B. Saunders Company, Philadelphia, Pennsylvania, USA.
Aiken, J. M., and I. C. Blore. 1964. Immunology of new born pigs: response to lapinized hog cholera virus in colostrums-deprived and suckling pigs. Am. J. Vet. Res. 25: 1134-1140.
Albina, E., A. Mesplede, B. Chenut, P. M. F. Le, G. Bourbao, G. S. Le, and Y. Leforban. 2000. A serological survey on classical swine fever (CSF), Aujeszky''s disease (AD) and porcine reproductive and respiratory syndrome (PRRS) virus infections in French wild boars from 1991 to 1998. Vet. Microbiol. 77: 43-57.
Bouma, A., A. F. de Smit, E. P. de Kluijver, C. Terpstra, and R. F. M . Moormann. 1999.Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus. Vet. Microbiol. 66: 101-114.
Cheville, N. F. and W. L. Mengeling. 1969. The pathogenesis of chronic hog cholera (Swine fever). Histologic, immunofluorescent, and electron microscopic studies. Lab. Invest. 20: 261-274.
Clavijo, A., M. Lin, J. Riva, and E-M. Zhou. 2001b. Application of competitive enzyme-linked immunosorbent assay for serologic diagnosis of classical swine fever virus infection. J. Vet. Diagn. Invest. 13: 357-360.
Clavijo, A., M. Lin, J. Riva, M. Mallory, F. Lin, and E-M. Zhou. 2001a. Development of a competitive ELISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus. Res. Vet. Sci. 70: 1-7.
Colijn, E. O., M. Bloemraad, and G. Wensvoort. 1997. An improved ELISA for the detection of serum antibodies directed against classical swine fever virus. Vet. Microbiol. 59: 15-25.
Corthier, G. 1978. Cellular and humoral immune responses in pigs given vaccinal and chronic hog cholera virus. Am. J. Vet. Res. 39: 1841-1844.
Corthier, G., and B. Charley. 1978. Influence of colostral antibodies on pig immunization against hog cholera virus. Ann. Rech Vet. 9: 245-253.
Cowart, W. O. and L. G. Morehouse. 1967. Effects of attenuated hog cholera virus in pregnant swine at various stages of gestation. J. Am. Vet. Med. Assoc. 150: 1321-1322.
Crowther, J. R. 2001. Systems in ELISA. In The ELISA guidebook, Jumana Press Inc., Totowa, New Jersey, USA, pp. 17-22.
De Smit, A.J., A. Bouma, C. Terpstra, and J. T. Van Oirschot. 1999. Transmission of classical swine fever virus by artificial insemination. Vet. Microbiol. 67: 239-249.
Dewulf, J., H. Laevens, F. Koenen, K. Mintiens, and A. De Kruif. 2001. Evaluation of the potential of dogs, cats, and rats to spread classical swine fever. Vet. Record. 149: 213-214.
Dunne, H. W. 1975. Hog cholera. In Disease of Swine, 4th ed., A. D. Leman, B. E. Straw, W. L. Mengeling, S. D,Allaire, and D. J. Taylor (eds.), Iowa State University Press, Ames, Iowa, USA, pp. 189-255.
Dunne, H. W., A. J. Luedke, C. V. Reich, and J. F. Hokanson. 1957a. The in vitro growth of hog cholera virus in cells of peripheral blood. Am. J. Vet. Res. 18: 502-507.
Dunne, H. W., and C. D. Clark. 1968. Embryonic death, fetal mummification, stillbirth, and neonatal death in pigs of gilts vaccinated with attenuated live virus hog cholera vaccine. Am. J. Vet. Res. 29: 787-796.
Dunne, H. W., J. F. Hokanson, and A. J. Luedke. 1959. The pathogenesis of hog cholera. I. Route of entrance of the virus into the animal body. Am. J. Vet. Res. 20: 615-618.
Dunne, H. W., S. C. Benbrook, E. M. Smith, and R. A. Runnels. 1957b. Bone changes in pigs infected with hog cholera. J. Am. Vet. Med. Assoc. 130: 260-265.
Ehrensperger, F. 1988. Immunological aspects of the infection. In Classical Swine Fever and Related Viral Infections, B. Liess (ed.), Martinus Nijhoff Publishing, Boston, USA, pp. 143-163.
Engvall, E., P. Perlman. 1971. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 8: 871-874.
Fenner, F. J., E. P. J. Gibbs, F. A. Murphy, R. Rott, M. J. Studdert, and D. O. White. 1993. Flaviviridae. In Veterinary Virology, 2nd ed., Academic Press, Inc., San Diego, USA, pp. 441-455.
Floegel-Niesmann, G. 2001. Classical swine fever (CSF) marker vaccine Trial III. Evaluation of discriminatory ELISAs. Vet. Microbiol. 83: 121-136.
Fritzemeier, J., J. Teuffert, I. Greiser-Wilke, Ch. Staubach, H. Schluter, and V. Moennig. 2000. Epidemiology of classical swine fever in Germany in the 1990s. Vet. Microbiol. 77: 29-41.
Gohm, D. S., B. Thur, L. Audige, M. A. Hofmann. 1999. A survey of Newcastle disease in Swiss laying-hen flocks using serological testing and simulation modeling. Preventive Vet. Med. 38: 277-288
Hammond, F. M., R. J. McCoy, E. S. Jansen, C. J Morrissy, A. L M. Hodgson, and M A. Johnson. 2000. Vaccination with a single dose of a recombinant porcine adenovirus expressing the classical swine fever virus gp55 (E2) gene protects pigs against classical swine fever. Vaccine. 18: 1040-1050.
Hanson, R. P. 1957. Oirgin of hog cholera. J. Am. Vet. Med. Assoc. 131: 211.
Have, P. 1984. Detection of antibodies against swine fever virus by enzyme-linked immunosorbent assay (ELISA). Acta. Vet. Scand. 20:462-465.
Houwers, D. J., and J. J. Schaake. 1987. An improved ELISA for the detection of antibodies to ovine and caprine lentiviruses, employing monoclonal antibodies in a one-step assay. J. Immunol. Methods. 98: 151-154
Hubert, P., P. Steinhagen, and V. Kaden. 1999. Flow cytometry as a diagnostic tool for classical swine fever. Tierarztliche Umschau. 54: 326-331.
Hulst, M. M., D. F. Westra, G. Wensvoort, and R. J. M. Moormann. 1993. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J. Virol. 67: 5435-5442.
Hwang, E. K., J. H. Kim, S. S. Yoon, B. H. Kim, and Y. O. Yoon. 1994. Lynphocyte subpopulations of the peripherial blood of pigs experimentally inoculated with swine fever virus. RDA J. Agricul. Sci., Vet. 36: 576-586.
Johnson, K. P., L. C. Ferguson, D. P. Byington, and D. R. Redman. 1974. Multiple fetal malformations due to persistent viral infection. I. Abortion, intrauterine death, and gross abnormalities in fetal swine infected with hog cholera vaccine virus. Lab. Invest. 30: 608-617.
Johnstone, A., and R. Thorpe. 1996. Immunoassays. In Immunochemistry in practice, 3rd ed., Blackwell Science Inc., Cambridge University Press, Cambridge, USA, pp. 290-312.
Kaden, V., H. Steyer, G. Strebelow, E. Lange, P. Hubert, and P. Steinhagen. 1999. Detection of low- virulent classical swine fever virus in blood of experimentally infected animals: comparison of different methods. Acta Virologica. 43: 373-380.
Kimman, T. G., A. T. J. Bianchi, G. Wensvoort, T. G. M. de Bruin, and C. Meliefste. 1993. Cellular immune response to hog cholera virus (HCV): T cells of immune pigs proliferate in vitro upon stimulation with live HCV, but the E1 envelope glycoprotein is not a major T-cell antigen. J. Virol. 67: 2922-2927.
Koenen, F., A. Cay, J. Lefebvre, and A. Desmet. 1992. Evaluation of the complex trapping blocking-ELISA in a serological survey during the Belgian classical swine fever epizootic in 1990. Vet. Rec. 131: 396
Kohnse, K. O., H. Wisser. 1990. Antibodies as a source of analytical errors. J. Clin. Chem. Clin. Biochem. 28: 881-892.
Konig, M., T. Lengsfeld, T. Pauly, R. Stark, and H. J. Thiel. 1995. Classical swine fever virus: Induction of protective immunity by two structural glycoproteins. J. Virol. 69: 6479-6486.
Kumagai, T., T. Shimizu, and M. Matumoto. 1958. Detection of hog cholera virus by its effect on Newcatle disease virus in swine tissue culture. Science. 128: 336.
Lai, S. S., C. S. Chen, T. S. Huang, W. C. Ho, J. T. Wang and F. M. Wu. 1980. Immune response of pigs with different levels of colostral antibody to inoculation with LPC-China strain of hog cholera vaccine. J. Chinese Soc. Vet. Sci. 6: 77-81.
Lai, S. S., W. C. Ho, and S. H. Tsao. 1986. Absorption of colostral antibodies and neonatal vaccination against hog cholera. J. Chinese Soc. Vet. Sci. 12: 112-123.
Lee, Robert C. T., J. T. Wang, S. S. Lai, F. M. Wu and Tracy T. C. Lin. 1980. Studies on precolostral vaccination against hog cholera using an attenuated virus, LPC-China strain. 6th IPVS Congress Proceeding. 133.
Lee, W. C., C. S. Wang, and M. S. Chien. 1999. Virus antigen expression and alteration in peripheral blood mononucluer cell subpopulation after classical swine fever virus infection. Vet. Microbiol. 67: 17-29.
Levinson, S. S. 1992. The nature of heterophilic antibodies and their role in immunoassay interference. J. Clin. Immunoassay. 15: 108-115.
Lin, T. C. Tracy and Robert C. T. Lee. 1981. An overall report on the development of a highly safe and potent lapinized hog cholera virus strain for hog cholera control in Taiwan. NSC. Spec. Publ. 5: 1-44.
Liu, S. T., S. N. Li, D. C. Wang, S. F. Chang, S. C. Chiang, W. C. Ho, Y. S. Chang and S. S. Lai. 1991. Rapid detection of hog cholera virus in tissues by the polymerase chain reaction. J. Virol Methods. 35: 227-36.
Loan, R. W. 1965. Increased sensitivity of the END (exaltation of Newcastle disease virus) test for hog cholera virus. Am. J. Vet. Res. 26: 1110-1113.
Loan, R. W. and D. E. Rodabaugh. 1966. Serological studies of hog cholera immunization. Am. J. Vet. Res. 27: 1333-1338.
Mattews, R. E. F. 1982. Togaviridae. In Classification and nomenclature of virus. Fourth report of the international committee on taxonomy of virus. Intervirology 17: 1-109.
Matthaeus, W. and G. Korn.1967. Die neutralisierenden autikorper im Schwein nach experimentaller infection mit Schweinepestvirus. Zbl. Vet. Med. B. 13:173-180.
Mengeling, M. L. and N. F. Cheville. 1969. Host response to persistent infection with hog cholera virus. In Proc. 72nd. Annual Meeting of the United States Animal Health Association. pp. 238-296.
Mengeling, W. L. and R. A. Packer. 1969. Pathogenesis of chronic hog cholera: host response. Am. J. Vet. Res. 30: 409-417.
Meyers, G., T. Rumenapf, and H. J. Thiel. 1989. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology 171: 555-567.
Miller, J. J., and S. S. Levinson. 1996. Interference in immunoassays. In Immunoassay., E. P. Diamandis, and T. K. Christopoulos (eds.), Academic Press, New York, pp. 165-190.
Moennig, V. 2000. Introduction to classical swine fever: virus, disease and control policy. Vet. Microbiol. 73: 93-102.
Moennig, V., and P. G. Plagemann. 1992. The pestiviruses. Adv. Virus Res. 41:53-98.
Moormann, R. J. M., A. Bouma, J. A. Kramps, C. Terpstra, and H. J. De Smit. 2000. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet. Microbiol. 73: 209-219.
Moormann, R. M., P. A. M. Warmerdam, B. van der Meer, W. M. M. Schaaper, G. Wensvoort, and M. M. Hulst. 1990. Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein E1. Virology 177: 184-198.
Moster, C., N. Ruggli, J. D. Tratschin, and M. A. Hofmann. 1996. Detection of antibodies against classical swine fever virus in swine sera by indirect ELISA using recombinant envelope glycoprotein E2. Vet. Microbiol. 51: 41-53.
Muller, A., K. R. Depner, B. Liess. 1996. Evaluation of a gp55 (E2) recombinant-based ELISA for the detection of antibodies induced by classical swine fever. DTW Dtsch Tierarztl Wochenschr. 103: 451-453.
Murphy, F. A., E. P. J. Gibbs, M. C. Horzinek, and M. J. Studdert. 1999. Flaviviridae. In Veterinary Virology, 3nd ed., Academic Press, Inc., San Diego, USA, pp. 555-569.
Narita, M., K. Kawashima, and M. Shimizu. 1996. Viral antigen and B and T lymphocytes in lymphoid tissues of gnotobiotic piglets infected with hog cholera virus. J. Comp. Path. 114: 257-263.
Paredes, J. C. M., L. G. Oliveira, A. de C. Braga, I. M. Trevisol, and P. M. Roehe. 1999. Development and standardization of an indirect ELISA for the serological diagnosis of classical swine fever. Pesquisa Vet. Brasileira. 19: 123-127.
Pauly, T., K. Elbers, M. Konig, T. Lengsfeld, A. Saalmuller, and H. J. Thiel. 1995. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J. Gen. Virol. 76: 3039-3049.
Pauly, T., M. Konig, H. J. Thiel and Saalmuller A. 1998. Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes. J. Gen. Virol. 79: 31-40.
Pearson, J. E. 1992. Hog cholera diagnostic techniques. Comp. Immun. Microbiol. Infect. Dis. 15: 213-219.
Peeters, B., K. Bienkowska-Szewczyk, M. Hulst, A. Gielkens, and T. Kimman. 1997. Biologically safe, non-transmissible pseudorabies virus vector vaccine protects pigs against both Aujeszky’s disease and classical swine fever. J. Gen. Virol. 78: 3311-3315.
Plateau, E., P. Vannier, and J. P. Tillon. 1980. Atypical hog cholera infection: Viral isolation and clinical study of in utero transmission. Am. J. Vet. Res. 41: 2012-2015.
Precausta, P., F. Kato, and A. Brun. 1983. Swine fever. Immunization of piglets. Comp. Immunol. Microbiol. Infect. Dis. 6: 281-289.
Remond, M., E. Plateau, and C. Cruciere. 1981. In vitro study of the cellular response of pigs vaccinated against classical swine fever. Zbl. Vet. Med. B. 28: 743-748.
Ressang, A. A. 1973a. Studies on the pathogensis of hog cholera. I. Demonstration of hog cholera virus subsequent to oral exposure. Zbl. Vet. Med. B. 20: 256-271.
Rumenapf, T., G. Meyers, R. Stark, and H. J. Thiel. 1989. Hog cholera virus: characterization of specific antiserum and identification of cDNA clones. Virology. 171: 18-27.
Rumenapf, T., R. Stark, G. Meyers, and H. J. Thiel. 1991. Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. J. Virol. 65: 589-597.
Schrijver, R. S., and J. A. Kramps. 1998. Critical factor affecting the diagnostic reliability of enzyme-linked immunosorbent assay formats. Rev. Sci. Tech. Off. Int. Epiz. 17: 550-561.
Segre, D. and M. L. Kaeberle. 1962. The immunologic behaviour of baby pigs. I. Production of antibodies in three week old pigs. J. Immunol. 89: 782-789.
Shannon, A. D., C. Morrissy, S. G. Mackintosh, and H. A. Westbury. 1993. Detection of hog cholera virus antigens in experimentally-infected pigs using an antigen-capture ELISA. Vet. Microbiol. 34: 233-248.
Stark, R., T. Rumenapf, G. Meyers, and H. J. Thiel. 1990. Genomic localization of hog cholera virus glygoproteins. Virology 174: 286-289.
Stegeman, A., A. Elbers, H. de Smit, H. Moser, J. Smak and F. Pluimers. 2000.The 1997-1998 epidemic of classical swine fever in Netherlands. Vet. microbiol. 73: 183-196.
Stewart, W. C., E. A. Carbrey, and J. I. Kresse. 1972. Transplacental hog cholera infection in immune sows. Am. J. Vet. Res. 33: 791-798.
Summerfield, A., S. M. Knotig and K. C. McCullough. 1998. Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J. Virol 72: 1853-1861.
Summerfield, A., S. M. Knotig, R. Tschudin and K. C. McCullough. 2000. Pathogenesis of granulocypenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. J. Virol 272: 50-60.
Susa, M., M. Koenig, A. Saalmuller, M. J. Reddehase, and H. J. Thiel. 1992. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J. Virol. 66: 1171-1175.
Terpstra, C., and A. J. de Smit. 2000. The 1997/1998 epizootic of swine fever in the Netherlands: control strategies under a non-vaccination regimen. Vet. Microbiol. 77: 3-15
Terpstra, C., and G. Wensvoort. 1988. The protective value of vaccine induced neutralizing antibody titers in swine fever. Vet. Microbiol. 16: 123-128.
Terpstra, C., and M. J. M. Tielen. 1976. Antibody response against swine fever following vaccination with the C. Strain. Zbl. Vet. Med. B. 23: 809-821.
Terpstra, C., M. Bloemraad, and A. L. J. Gielkens. 1984. The Neutralizing peroxidase-linked assay for detection of antibody against swine fever virus. Vet. Microbiol. 9: 113-120.
Thiel, H. J., R. Stark, E. Weiland, T. Rumenapf, and G. Meyers. 1991. Hog cholera virus: molecular composition of virions from a pestivirus. J. Virol. 65: 4705-4712.
Thurley, D. C. 1966. Disturbances in enchondral ossification associated with acute swine fever infection. Brit. Vet. J. 122: 177-180.
Trautwein, G. 1988. Pathology and pathogenesis of the disease. In Classical Swine Fever and Related Viral Infections, B. Liess (ed.), Martinus Nijhoff Publishing, Boston, USA, pp. 27-54.
Vaidya, H. C., and B. G. Beatty. 1992. Eliminating interferences from heterophilic antibodies in a two-site immunoassay for creatinine kinase MB by using F(ab’)2 conjugate and polyclonal mouse IgG. Clin. Chem. 38: 1737-1742.
Van Oirschot, J. T. 1979b. Experimental production of congenital persistent swine fever infections. II. Effect on functions of the immune system. Vet. Microbiol. 4: 133-147.
Van Oirschot, J. T. 1983. Congenital infections with nonarbo togaviruses. Vet. Microbiol. 8: 321-361.
Van Oirschot, J. T. 1988. Description of the virus infection. In Classical Swine Fever and Related Viral Infections, B. Liess (ed.), Martinus Nijhoff Publishing, Boston, USA, pp. 1-25.
Van Oirschot, J. T. 1999. Classical swine fever. In Disease of Swine, 8th ed., A. D. Leman, B. E. Straw, W. L. Mengeling, S. D,Allaire, and D. J. Taylor (eds.), Iowa State University Press, Ames, Iowa, USA, pp. 159-172.
Van Oirschot, J. T. and C. Terpstra. 1977. A congenital persistent swine fever infection. I. Clinical and virological observations. Vet. Microbiol. 2: 121-132.
Van Oirschot, J. T., D. de Jong, and N. D. N. H. J. Huffels. 1983. Effect of infections with swine fever virus on immune functions. II. Lymphocyte response to mitogens and enumeration of lymphocyte subpopulations. Vet. Microbiol. 8: 81-95.
Van Oirschot, J. T., D. Houwers, H. Rziha, and P. J. L. M. Moonen. 1988. Development of an ELISA for detection of antibodies to glycoprotein I of Aujeszky’s disease: a method for the serological differentiation between infected and vaccinated pigs. J. Virol. Meth. 22: 191-206.
Van Rijn, P. A., G. K. W. Miedema, G. Wensvoort, H. G. P. van Gennip, and R. J. M. Moormann. 1994. Antigenic structure of envelope glygoprotein E1 of hog cholera virus. J. Virol. 68: 3934-3942.
Van Rijn, P. A., H. G. van Gennip, and R. J. M. Moormann. 1999. An experimental marker vaccine and accompanying serological diagnostic test both based on envelope glycoprotein E2 of classical swine fever virus (CSF). Vaccine. 17: 433-440.
Van Rijn, P. A., H. G. van Gennip, E. J. de Meijer, and R. J. M. Moormann. 1993. Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia. J. Gen. Virol. 74: 2053-2060.
Van Zijl, M., G. Wensvoort, E. de Kluyver, M. Hulst, H. van der Gulden, A. Gielkens, A. Berns, and R. Moormann. 1991. Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. J. Virol. 65: 2761-2765.
Vandeputte, J., H L. Too, F. K. Ng., C. Chen, K. K. Chai, and G. A. Liao. 2001. Adsorption of colostral antibodies against classical swine fever, persistence of maternal antibodies, and effect on response to vaccination in baby pigs. Am. J. Vet. Res. 62:1805-1811.
Weide, K. D., G. L. Waxler, C. K. Whitehair, and C. C. Morrill. 1962. Hog cholera in gnotobiotic pigs. Clinical signs and gross pathologic findings in germ free and monocontaminated pigs. J. Am. Vet. Med. Assoc. 140: 1956-1961.
Weiland, E., R. Ahl, R. Stark, F. Weiland, and H. J. Thiel. 1992. A second envelope glycoprotein mediate neutralization of a pestivirus, hog cholera virus. J. Virol. 66: 3677-3682.
Wengler, G. 1991. Flaviviridae. In Classification and nomenclature of virus. Fifth report of the international committee on taxonomy of virus. Arch. Virol. Suppl. 2: 223-233.
Wensvoort, G., J. Boonstra, and B. G. Bodzinga. 1990. Immunoaffinity purification and characterization of the envelope protein E1 of hog cholera virus. J. Gen. Virol. 71: 531-540.
Wensvoort, G., M. Bloemraad, and C. Terpstra. 1988. An enzyme immunoassay employing monoclonal antibodies and detecting specifically antibodies to classical swine fever virus. Vet. Microbiol. 17: 129-140.
Yu, X., C. Tu, H. Li, R. Hu, C. Chen, Z. Li, M. Zhang, and Z. Yin. DNA-mediated protection against classical swine fever virus. Vaccine. 19: 1520-1525.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔