(18.207.238.169) 您好!臺灣時間:2019/12/09 20:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:陳志銘
研究生(外文):Chih-Ming Chen
論文名稱:UASB串聯活性污泥系統處理養豬廢水之動力行為
論文名稱(外文):Kinetic Behavior of a Combined UASB-Activated Sludge Reactor System Treating Piggery Wastewater
指導教授:黃汝賢黃汝賢引用關係
指導教授(外文):Ju-Sheng Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:137
中文關鍵詞:養豬廢水上流式厭氣污泥床串聯活性污泥系統動力模式污泥顆粒特性模式驗證脫硝菌分率硝化菌分率有機物降解動力硝化動力脫硝動力
外文關鍵詞:combined UASB-activated sludge reactor systemdenitrification kineticssubstrate degradation kineticsdistributed fraction of nitrifiersgranule characteristicskinetic modeldistributed fraction of denitrifiersmodel verificationnitrification kineticspiggery wastewater
相關次數:
  • 被引用被引用:20
  • 點閱點閱:1214
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:196
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用上流式厭氣污泥床(UASB)串聯活性污泥(AS)反應器之分離污泥型系統處理養豬廢水 (取自台糖虎山農場經固液分離機、兼氣塘(HRT = 2 d)處理後之廢水;進流水質COD = 1,910∼2,060 mg/L;TKN = 396∼416 mg/L),系統之操作係將後段AS反應器出流水迴流至前段UASB反應器,前段UASB反應器除了可利用迴流水所挾帶之NOx--N配合進流廢水中之有機物進行生物脫硝外,亦可藉甲烷菌降解進流廢水中其餘之有機物,後段AS反應器則進行殘存有機物之降解及氨氮之硝化反應。
本研究在忽略UASB反應器質傳項之假設條件下(另由獨立批次反應器求得break-up與intact污泥顆粒之脫硝動力參數值近乎相同獲得證實),推導出UASB串聯AS反應器系統之COD降解和硝化/脫硝動力模式,並以獨立批次實驗求得系統中UASB和AS反應器之大部分生物動力參數(僅少部分者取自文獻值),系統穩定狀態操作下之實驗數據(十一個試程)亦用以驗證動力模式之適用性。
在適宜之操作條件下(如UASB反應器和AS反應器之水力停留時間、污泥齡以及系統出流水迴流比),系統對養豬廢水之COD、TKN及TN去除率分別為94.3%∼97.0%、∼100%及54.8%∼78.3%。將系統穩定狀態下之操作條件及水質、污泥濃度實驗數據依質量平衡計算,AS反應器之比硝化速率和比COD去除速率分別為0.18∼0.35 mg TKN/mg VSS-d和0.12∼0.26 mg COD/mg VSS-d;UASB反應器之比脫硝速率和比COD去除速率分別為0.025∼0.059 mg NOx--N/mg VSS-d和0.22∼0.41 mg COD/mg VSS-d;UASB反應器N2和CH4之氣體組成分別為56.4%∼97.0%和ND∼41.6%。
UASB反應器內之污泥可有效達到顆粒化(污泥顆粒之體積分率平均粒徑範圍為0.85∼1.56 mm),且污泥床下層之顆粒粒徑、污泥濃度及顆粒比重皆為最大,其次依序為污泥床中層、下層者。依獨立批次實驗結果,AS反應器之硝化和COD降解反應、UASB反應器之脫硝和COD降解反應以及不同污泥齡(�塶)下強化培養(enrichment culture)之硝化反應皆可用Monod型動力描述。依獨立批次實驗求得系統AS反應器之硝化菌分率介於0.47∼0.66之間;依UASB反應器之脫硝速率和甲烷產率(配合脫硝菌和甲烷菌增殖係數)求得系統UASB反應器之脫硝菌分率介於0.86∼1.00之間。
最後,根據動力模式模擬結果,系統UASB和AS反應器出流水COD、TKN及NOx--N濃度之模擬值以及系統COD、TKN及TN去除率之模擬值皆與系統穩定狀態操作下之實驗值頗為相符,足證本研究提出之COD降解和硝化/脫硝動力模式可被準確地用以預測系統及UASB和AS反應器出流水之水質。
A combined UASB–activated sludge (AS) reactor system treating piggery wastewater (pretreated by a solids-liquid separator followed by a facultative lagoon with an HRT of 2 days; COD = 1,910 – 2,060 mg/L, TKN = 396 – 416 mg/L) was used. To operate the combined reactor system, the effluent from the rear AS reactor is recycled to the front UASB reactor. Thus, the UASB reactor can proceed denitrification and methanogenesis, together with the utilization of inflow organics. Meanwhile, the AS reactor can proceed aerobic degradation of the remaining organics and nitrification.
Neglecting the effect of mass transfer on the overall reaction process (this assumption has been further confirmed by independent batch experiments with the use of break-up and intact granules), a kinetic model of substrate (COD) degradation and nitrification/denitrification in the combined reactor system is proposed. Independent batch experiments were carried out to determine most of the biological parameter values used in model simulation. In addition, all the experimental data obtained from the steady-state combined reactor system were used to verify the kinetic model.
Under proper operating conditions (e.g., HRT, �塶, and Re), the combined reactor system could remove 94.3% – 97.0% of COD, ~100% of TKN and 54.8% – 78.3% of TN. According to mass-balance calculations, the specific nitrification rate and the specific substrate utilization rate in the AS reactor are 0.18 – 0.35 mg TKN/mg VSS-d and 0.18 – 0.35 mg COD/mg VSS-d, respectively; while the specific denitrification rate and the specific substrate utilization rate in the UASB reactor are 0.025 – 0.059 mg NOx--N /mg VSS-d and 0.22 – 0.41 mg COD/mg VSS-d, respectively. In addition, the biogas contents N2 and CH4 monitored in the UASB reactor aer 56.4% – 97.0% and ND – 41.6%, respectively.
Sludge granulation occurs in the UASB reactor; the average granule diameter (volume fraction basis) range from 0.85 to 1.56 mm, and the granule diameter in the lower-part of sludge bed is the largest, the middle-part of sludge bed the next and, the upper-part of sludge bed the smallest. From independent batch experiments, nitrification and substrate utilization in the AS reactor, denitrification and substrate utilization in the UASB reactor, and nitrification with enrichment culture and under various �塶 follow Monod-type kinetics. From independent batch experiments, the estimated distributed fractions of nitrifiers in the AS reactor range from 0.47 to 0.66. According to denitrification rates and methane production rates, together with yield coefficients of denitrifiers and methanogens, the distributed fractions of denitrifiers in the UASB reactor range from 0.86 to 1.00.
From the simulated results of the proposed model, the calculated residual concentrations of COD, TKN, and TN in the UASB and AS reactors are in good agreement with the experimental results; the calculated COD, TKN, and TN removal efficiencies of the combined reactor system are in good agreement with the experimental results. Accordingly, the proposed kinetic model can be appropriately used to predict treatment performance of the combined reactor system.
授 權 書 ………………………………………………………………….. 1
中文摘要 ………………………………………………………………….. Ⅰ
英文摘要 …………………………………………………………………. Ⅲ
目  錄 ………………………………………………………………….. Ⅴ
圖 目 錄 ………………………………………………………………….. Ⅹ
表 目 錄 ………………………………………………………………….. Ⅻ
符號說明 ………………………………………………………………….. XIV
第 一 章 緒論…………………………………………………………….. 1
1–1 研究動機……………………………………………………….. 1
1–2 研究目的……………………………………………………….. 2
第 二 章 文獻回顧……………………………………………………….. 4
2–1 養豬廢水之污染物特性及處理法…………………………….. 4
2-1-1 養豬廢水之組成與水質特性………………………………….. 4
2-1-2 養豬廢水之處理法…………………………………………….. 4
2–2 硝化/脫硝影響因素……………………………………………. 6
2-2-1 硝化…………………………………………………………….. 7
2-2-2 脫硝…………………………………………………………….. 10
2–3 生物脫氮程序………………………………………………….. 14
2-3-1 單一污泥型硝化/脫硝系統……………………………………. 14
2-3-2 分離污泥型硝化/脫硝系統……………………………………. 16
2-4 厭氣代謝反應………………………………………………….. 17
2-4-1 厭氣代謝反應機制…………………………………………….. 18
2-4-2 脫硝菌與厭氣菌之共生關係………………………………….. 20
2-4-3 影響厭氣生物程序穩定性之因素…………………………….. 21
2–5 上流式厭氣污泥床…………………………………………….. 24
2-5-1 發展與應用…………………………………………………….. 25
2-5-2 顆粒特性……………………………………………………….. 25
2-5-3 水動力學特性………………………………………………….. 27
2–6 活性污泥法概說……………………………………………….. 28
2-6-1 活性污泥法原理……………………………………………….. 28
2-6-2 活性污泥之形成……………………………………………….. 29
2-6-3 活性污泥之生物相…………………………………………….. 30
2-6-4 影響處理功能之環境因素…………………………………….. 31
2–7 生物反應動力………………………………………………….. 32
2-7-1 Michaelis-Menten Kinetics…………………………………….. 33
2-7-2 Monod Kinetics………………………………………………… 35
2-7-3 Lawrence and McCarty Kinetics……………………………….. 36
2-7-4 Haldane Kinetics…………………………………………….…. 37
2–8 硝化/脫硝動力…………………………………………………. 40
2-8-1 單段式硝化動力……………………………………………….. 41
2-8-2 單段式脫硝動力……………………………………………….. 43
2-9 生物動力常數之迴歸分析…………………………………….. 44
第 三 章 上流式厭氣污泥床串聯活性污泥系統之COD降解
和硝化/脫硝動力模式…………………………………………. 47
3–1 模式假設條件………………………………………………….. 47
3–2 模式推導……………………………………………………….. 48
3–3 模式計算……………………………………………………….. 52
第 四 章 實驗設備與方法……………………………………………….. 54
4-1 實驗設備……………………………………………………….. 54
4-1-1 上流式厭氣污泥床串聯活性污泥系統……………………….. 54
4-1-2 血清瓶反應器………………………..………………………… 54
4-1-3 玻璃燒杯反應器……………………..………………………… 56
4-1-4 儀器設備……………………..………………………………… 56
4–2 實驗方法……………………..………………………………… 57
4-2-1 試驗廢水……………………..………………………………… 57
4-2-2 上流式厭氣污泥床/活性污泥之馴養…………………………. 58
4-2-3 上流式厭氣污泥床串聯活性污泥系統之操作……………….. 59
4-2-4 硝化動力常數(活性污泥反應器之污泥)之探求………..……. 60
4-2-5 COD降解動力常數(活性污泥反應器之污泥)之探求……….. 61
4-2-6 脫硝、COD降解動力常數(UASB反應器之污泥)之探求.…. 61
4-2-7 UASB反應器CODutili/NO3--Nred值之探求(批次反應器)……. 62
4-2-8 不同污泥齡下強化培養硝化動力常數之探求(批次反應器)... 62
4-2-9 活性污泥反應器硝化自營菌分率(fn)之探求…………………. 63
4-2-10 活性污泥反應器硝化自營菌和好氧異營菌動力常數之探求.. 64
4-2-11 UASB反應器mixed culture動力常數之探求……………….. 65
4-2-12 水質分析…..…………………………………………………… 66
4-2-13 生物產氣分析………………………………………………….. 66
4-2-14 各階段處理水有機物成分之分子量分布測定……………….. 66
4-2-15 Intact和Break-up顆粒污泥之動力常數探求………………... 68
4-2-16 上流式厭氣污泥床生物顆粒特性分析……………………….. 69
4-2-17 Break-up污泥顆粒化之探討………………………………….. 72
第 五 章 結果與討論…..………………………………………………… 74
5-1 上流式厭氣污泥床串聯活性污泥系統操作性能…………….. 74
5-1-1 TKN去除/比硝化速率………………………………………… 74
5-1-2 TN去除/比脫硝速率…………………………………………... 78
5-1-3 COD去除………………………………………………………. 78
5-1-4 TP去除 ………………………………………………………… 81
5-1-5 生物代謝產氣………………………………………………….. 82
5-1-6 鹼度改變量…………………………………………………….. 83
5-1-7 各階段處理水有機物成分之分子量分布…………………….. 85
5-2 上流式厭氣污泥床顆粒特性…………….……………………. 86
5-2-1 UASB反應器顆粒特性……………………………………….. 86
5-2-2 UASB反應器污泥顆粒化…………………………………….. 89
5-3 硝化自營菌和好氧異營菌分率/脫硝異營菌和甲烷菌分率…. 93
5-3-1 活性污泥反應器硝化自營菌和好氧異營菌分率…………….. 93
5-3-2 UASB反應器脫硝異營菌和甲烷菌分率…………………….. 96
5-4 生物動力常數………………………………………………….. 97
5-4-1 硝化動力常數………………………………………………….. 97
5-4-2 脫硝動力常數………………………………………………….. 98
5-4-3 COD降解動力常數(UASB反應器之污泥)…………………..104
5-4-4 COD降解動力常數(活性污泥反應器之污泥)………………..106
5-5 硝化自營菌、好氧異營菌及脫硝異營菌、甲烷菌
之動力常數……………………………………………………..108
5-5-1 活性污泥反應器之硝化自營菌和好氧異營菌………………..108
5-5-2 UASB反應器之脫硝異營菌和甲烷菌………………………..111
5-6 Intact和Break-up污泥顆粒之動力常數……………………...113
5-7 動力模式之模擬與驗證………………………………………..113
5-7-1 動力參數和反應項……………………………………………..113
5-7-2 模式模擬與驗證………………………………………………..116
第 六 章 結論…………………………………..…………………………122
參考文獻 ………………………………………………………………..…124
誌  謝 …………………………………………………………………..136
自  述 …………………………………………………………………..137
曾四恭,1990。台灣省養豬廢水處理技術之研究。國立台灣大學環境工程研究所研究報告第238號,21-28。
曾四恭,1992。豬糞尿廢水中氮磷去除方法之研究。國立台灣大學環境工程研究所研究報告第310號,51。
黃正義、吳松雄,1981。豬舍廢水處理實務。第七屆廢水處理技術研討會論文集,353-360。
蕭明謙,1992。生物木屑墊床養豬法應用於傳統豬舍之探討。國立成功大學環境工程研究所碩士論文,118-119。
Abufayed, A. A., Schroeder, E. D. 1986. Performance of SBR/denitrification with a primary sludge carbon source. J. WPCF. 58 (5): 387-397.
Agrawal, L. K., Ohashi, Y., Mochida, E., Okui, H., Ueki, Y., Harada, H., Ohashi, A. 1997. Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes process. Wat. Sci. Tech. 36 (6-7): 433-440.
Akunna, J. C., Bizeau, C., Moletta, R. 1993. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Wat. Res. 27 (8): 165-173.
Allsop, P. J., Chisti, Y., Moo-Young, M., Sullivan, G. R. 1993. Dynamics of phenol degradation by Pseudomonas putida. Biotechnol. Bioeng. 41 (3): 572-580.
Almeida, J. S., Julio, S. M., Reis, M. A. M., Carrondo, M. J. T. 1995. Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechnol. Bioeng. 46: 194-201.
Andrews, J. F. 1969. Dynamic model of the anaerobic degestion process. J. Sanitary Eng. Div. (ASCE). 95: 95-116.
Anthonisen, A. C., Loehr, R. C. and Prakasam, J. B. S. 1976. Inhibition of nitrification by ammonia and nitrous acid. J. WPCF. 48 (5): 835-852.
APHA, AWWA, WPCF. 1992. Standard Methods for the Examination of Water and Wastewater, 18th edition. American Public Health Association. Washington DC.
Argaman, Y., Brenner, A. 1986. Experimental evaluation of modeling alternatives and process parameters for the single-sludge nitrogen removal system. Wat. Sci. Tech. 18 (6): 149-161.
Bailey, J. E., Ollis, D. F. 1986. Biochemical engineering fundamentals. 2nd ed. McGraw-Hill, New York.
Balakrishnan, S., Eckenfelder, W. W. 1969 Nitrogen relationships in biological treatment process. III. Denitrification in the modified activated sludge process. Wat. Res. Perg. Press 3 (3): 177-188.
Barber, W. P., Stuckey, D. C. 1999. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a reviw. Wat. Res. 33 (7): 1559-1578.
Barbosa, R. A., Sant'anna Jr., G. L. 1989. Treatment of raw domestic sewage in an UASB reactor. Wat. Res. 23 (12): 1483-1490.
Barnard, J. L. 1973. Biological denitrification. Water. Pollut. Control. 72: 705-720.
Barth, E. F. 1972. Design of treatment facilities for the control of nitrogenous materials. Wat. Res. 6 (6): 481-483.
Beccari, M., Passino, R., Ramadori, R., Tandoi, V. 1983 Kinetics of dissimilatory and nitrite reduction in suspended growth culture. J. WPCF. 55 (1): 58-64.
Beckman, W. J., Avendt, R. J., Mulligan, T. J., Kehrberger, G. J. 1972. Combined carbon oxidation-nitrification. J. WPCF. 44 (10): 1916-1931.
Beer, W. J. and Gibbs, D. F. 1975. Chemical flocculation as a tertiary treatment for pig effluent. Wat. Res. 9: 1047-1050.
Bernet, N., Delgenes, N., Akunna, C. J., Delgenes, J. P., Moletta, R. 2000. Combined anaerobic-aerobic SBR for the treatment of piggery wastewater. Wat. Res. 34 (2): 611-619.
Bilanovic, D., Battistoni, P., Cecchi, F., Pavan, P., Mata-alvarez, J. 1999. Denitrification under high nitrate concentration and alternating anoxic conditions. Wat. Res. 33 (15): 3311-3320.
Boone, D. R., Worakit, S., Mathrani, I. M. Mathrani, R. A. 1986. Alkaliphlic methanogens from high-pH lake sediments. J. Systematic Appl. Microbiol. 7: 230-234.
Borchardt, T. A. 1966. Nitrification in the activated sludge process in sewage treatment theory and application. Univ. of Michigan, Dept. of Civil Eng., Ann Arbor, Mich.
Bortone, G., Gemelli, S., Rambaldi, A., Tilche, A. 1992. Nitrification, denitrification and biological phosphate removal in sequencing batch reactors treating piggery wastewater. Wat. Sci. Tech. 26 (5): 977-985.
Borzacconi, L., Ottonello, G., Castelló, E., Pelaez, H., Gazzola, A., Viňas, M. 1999. Denitrification in a carbon and nitrogen removal system for leachate treatmeny: performance of a upflow sludge blanket (USB) reactor. Wat. Sci. Tech. 40 (8): 145-151.
Cail, R. G., Barford, J. P. 1985. The development of granulation in an upflow floc digester and upflow anaerobic sludge blanket digester treating cane juice stillage. Biotech. Lett. 7 (7): 493-498.
Campos, C. M. M., Anderson, G. K. 1992. The effect of the liquid upflow velocity and substrate concentration on the start-up and steady-state periods of lab-scale UASB reactors. Wat. Sci. Tech. 25 (1): 41-50.
Carucci, A., Ramadori, R., Tomei, M. C. 1996. Kinetics of denitrification reactions in single sludge systems. Wat. Res. 30 (1): 51-56.
Chang, J. P., Morris, J. E. 1962. Studies on the utilization of nitrate by Micrococcus denitrificans. J. Gen. Microbiol. 29: 301.
Charley, R. C., Hooper, D. G., McLee, A. G. 1980. Nitrification kinetics in activated sludge at various temperatures and dissolved oxygen concentrations. Wat. Res. 14 (12): 1387-1396.
Chudoba, J., Čech, J. S., Chudoba, P. 1985. The effect of aeration tank configuration on nitrification kinetics. J. WPCF. 57 (11): 1078-1083.
Clarens, Manuel., Bernet, Nicolas., Delgenes, Jean-Philippe and Moletta, Rene. 1998. Effect of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiol. Ecology. 25: 271-276.
Collins, C. F. and Incorpera, F. P. 1978. The effect of temperature control on biological wastewater treatment process. Wat. Res. 12: 547-557.
Constantin, H., Fick, M. 1997. Influence of C-sources on the denitrification rate of a high-nitrate concentrated industrial wastewater. Wat. Res. 31 (3): 583-589.
Cooke, W. B. 1968. The occurrence of fungi in activated sludge. Proc.23th Purde Ind. Waste Conf., Purdue Univ., 132-140.
Cuervo-Lopez, F. M., Martinez, F., Gutierrez-Rojas, M., Noyola, R. A., Gomez, J. 1999. Effect of nitrogen loading rate and carbon source on denitrification and sludge settleability in upflow anoxic sludge blanket (UASB) reactors. Wat. Sci. Tech. 40 (8): 123-130.
Curds, C. R. and Cockburn, A. 1970. Protozoa in biological sewage treatment process- I, A survey of the protozoan fauna of british percolatinf fulters and activated sludge plants. Wat. Res. 4: 225-236.
Dangcong, P., Xingwen, Z., Qiting, J., Liangkui, X., De, Z. 1994. Effect of the seed sludge on the performance of UASB reactors for treatment of toxic wastewater. J. Chem. Tech. Biotechnol. 60 (6): 171-176.
Davies, T. R., Pretouius, W. A. 1975. Denitrification with a bacterial disc unit. Wat. Res. 9 (4): 459-463.
Dawson, R. N., Murphy, K. L. 1972. The temperature dependency of biological denitrification. Wat. Res. Perg. Press. 6 (1): 71-83.
Delwiche, C. C. 1956. Denitrification in a symposium inorganic nitrogen metabolism. (Edited by McElroy, W. D. and Glass, B.) Johns Hopkins. Baltimore: 233-259.
Denac, M., Miguel, A., Dunn, I. J. 1988. Modeling dynamic experiments on anaerobic degradation of molasses. Biotechnol. Bioeng. 31: 1-10.
Dinçer, A. R., Kargi, F. 2000. Kinetics of sequential nitrification and denitrification processes. Enzyme Microbiol. Technol. 27 (1): 37-42.
Dirasian, H. A., Molof, A. H., Borchardt, J. A. 1963. Electrode potential in digestion. J. WPCF. 35: 424-437
Eckenfelder, W. W. 1967. Effect of process variable on sludge floc formation and setting characteristics. J. WPCF. 39 (12): 1850-1859.
Edele, D.G. 1973. Livestock wastw management in a quality environment. Univ. of Illinois Unbana-Champaign.
Fang, H. H. P., Chung, D. W. C.1999. Anaerobic treatment of proteinaceous wastewater under mesophilic and thermophilic conditions. Wat. Sci. Tech. 40: 77-84.
Francis, C. W. and Mankin, J. B. 1977. High Nitrate Denitrification in continuous flow-stirred reactors. Wat. Res. 11 (3): 289-294.
Fukuzaki, S., Chang, Y., Nishio, N., Nagai, S. 1991. Characteristics of granular methanogenic sludge grown on lactate in a UASB reactor. J. Ferment. Bioeng. 72: 465-472.
Gaudy, A. F. 1980. Microbiology for environment scientistic and engineers. McGraw-Hill, Inc., New York.
Gaudy, A. F. and Turer, B. G. 1964. Effect of air flow rate on response of activated sludge to quantitative shock loading. J. WPCF. 36 (5): 767-781.
Gaudy, A. F., Lowe, W., Rozich, A. F., Colvin, R. 1988. Practical methodology for predicting critical operation range of biological systems treating inhibitory substrates. J. WPCF. 60 (1): 77-85.
Gee, C. S., Suidan, M. T., Pfeffer, J. T. 1990. Modeling of nitrification under substrate-inhibiting conditions, J. Envir. Eng. (ASCE) 116 (1): 18-31.
Glass, G., Silverstein, J. 1998. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Wat. Res. 32 (3): 831-839.
Grabińska-Łoniewska, A., Slomczynski, T., Kanska, Z. 1985. Denitrification studies with glycerol as a carbon source. Wat. Res. 19 (12): 1471-1477.
Grotenhuis, J. T. C., Plugge, C. M., Stams, A. J. M., Zehnder, A. J. B. 1991a. Role of substrate concentration in particle size distribution of methanogenic granular in UASB reactors. Wat. Res. 25 (1): 21-27.
Hallin, S., Pell, M. 1998. Metabolic properties of denitrifying bacteria adapting to methanol and ethanol in activated sludge. Wat. Res. 32 (1): 13-18.
Hao, X. Doddema, H. J., van Groenestijn, J. W. 1997. Conditions and mechanisms affecting simulaneous nitrification and denitrification in a Pasveer oxidation ditch. Biores. Technol. 59: 207-215
Harper, S. R., Pohiland, F. G. 1986. Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnol. Bioeng. 28: 285-602.
Hayes, T. D., Theis, T. L. 1981. The distribution of heavy metals in anaerobic digestion. J. WPCF. 50: 61-72.
Heertjes, P. M., Kuijvenhoven, L. J. 1982. Fluid flow pattern in upflow reactors for anaerobic treatment of beet sugar factory wastewater. Biotechnol. Bioeng. 24 (2): 443-459.
Heertjes, P. M., van der Meer, R. R. 1978. Dynamics of liquid flow in an upflow reactor used for anaerobic treatment of wastewater. Biotechnol. Bioeng. 20 (10): 1577-1594.
Hendriksen, H. V., Ahring, B. K. 1996. Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket (UASB) reactor: operating performance. Wat. Res. 30 (6): 1451-1458.
Henze, M., Harremoes, P. 1983. Anaerobic treatment of wastewater in fixed film reactors. Wat. Sci. Tech. 15: 1-10.
Her, J. J., Huang, J. S. 1995. Denitrifying kinetics involving the distributed ratio of reductases. J. Chem. Tech. Biotechnol. 62 (3): 261-267.
Huang, J. S., Wu, C. S., Jih, C. G., Chen, C. T. 2001. Effect of addition of Rhodobacter sp. to activated-sludge reactors treating piggery wastewater. Wat. Res. 35 (16): 3867-3875.
Jih, C. G., Huang, J. S. 1994. Effect of biofilm thickness distribution on substrate-inhibited kinetics. Wat. Res. 28 (4): 967-973.
Klotter. 1969. Moglichkeiten zur denitrification V. Grundwassem (The possibility of denitrification of ground water) Vom Wasser. 36: 93-140.
Kodama, T., Shimada, K., Mori, T. 1969. Studies on anaerobic biphasic growth of a denitrifying bacterium Pseudomonas stuzeri. Plant and Cell Physiol. 10 (12): 855-865.
Kong, Z., Vanrolleghem P., Verstraete W. 1996. Simultaneous determination of inhibition kinetics of carbon oxidation and nitrification with a respirometer. Wat. Res. 30 (4): 825-836.
Kornaros, M., Zafiri C., Lyberatos G. 1996. Kinetics of denitrification by Pseudomonas denitrificans under growth conditions limited by carbon and/or nitrate or nitrite. Wat. Envir. Res. 68 (5): 934-945.
Kugelman, I. J., Chin, K. K. 1971. Toxicity synergism and antaginism in anaerobic waste treatment process. American Chem. Society. 105: 55-90.
Kugelman, I. J., MaCarty, P. L. 1965. Cation toxicity and stimulation in anaerobic waste treatment. J. WPCF. 37: 97-104.
Lawrence, A. W., McCarty, P. L. 1969. Kinetics of methane fermentation in anaerobic treatment. J. WPCF. 58 (1): 52-59.
Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., Klapwijk, A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22 (4): 699-734.
Lin, C. Y., Chen, C. C. 1999. Effect of heavy methals on the methanogenic UASB granule. Wat. Res. 33: 409-416.
Lin, Ying-FENG. and Chen Kuo-Cheng. 1995. Denitrification and methano-genesis in a co-immobilized mixed culture system. Wat. Res. 299
(1): 35-43.
Liu, Y., Boone, D. R., Chay, C. 1990. Methanohalophilis oregonense sp. nov., a methylotrophic methanogen grom an alkaline, saline aquifer, Internarional J. Systematic Bacteriol. 40: 111-116.
Ludzack, F. J., Ettinger, M. B. 1962. Controlling operation to minimize activated sludge effluent nitrogen. J. WPCF. 34 (9): 920-931.
MaCarty, P. L. 1964. Anaerobic waste treatment fundamentals-part II-environment requirements and control. Public Works. 95: 91-94.
Macki, R. I., Bryant, M. P. 1981. Metabolic activity of fatty acidoxidizing bactaeria and contribution of acetate, propinate, butyrate and CO2 to methanogenesis in cattle waste at 40 and 60℃. Appl. Envir. Microbiol. 41: 1363-1373.
Maestrojuan, G. M., Boone, D. R. 1991. Characterization of Methanosarcina barkeri MST and Methanosarcina vacuolata Z-761T. International J. Systematic Bacteriol. 41: 267-274.
Magbanua, B. S., Hoover, P. A., Campbell, P. J., Bowers, A. R. 1994. The effect of cosubstrates on phenol degradation kinetics. Wat. Sci. Tech. 30 (1): 67-77.
Malana, J. F., Pohland, F. G. 1992. Design of anaerobic processes for the trearment of industrial and municipal wastes. Technomic Publishing Co., Washington DC.
Mateju, V., Cizinska, S., Krejci, J., Janoch, T. 1992. Biological water denitrification-a review. Enzyme Microbiol. Technol. 14 (3): 170-183.
Metcalf & Eddy Inc. 1991. Wastewater Engineering: Treatment, Disposal, Reuse. International editions, McGraw-Hill, New York.
Morgan-Sagastume, J. M., Jimenez, B., Noyola, A. 1997. Trace studies in a laboratory and pilot-scale UASB reactor. Envir. Tech. 18: 817-825.
Morvai, L., Mihálta, P., Czakó, L., Péterfy, M., Holló, J. 1990. The influence of organic load on granular sludge development in an acetate-fed system. Appl. Microbiol. Biotechnol. 33 (7): 463-486.
Morvai, N., Mihaltz, P., Hollo, J. 1992. Comparison of the kinetics of acetate biomethanation by raw and granular sludges. Appl. Microbiol. Biotechnol. 36 (1): 561-567.
Narkis, N., Rebhun, M., Sheindorf CH. 1979. Denitrificaton at various carbon to nitrogen ratios. Wat. Res. 13: 93-98
Neufeld, R. D., Hill, A. J., Adekoya, D. O. 1980. Phenol and free ammonia inhibition to Nitrosomonas activity. Wat. Res. 14 (12): 1695-1703.
Okabe, S., Oozawa, Y., Hirata, K., Watanabe, Y. 1996. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C�杰 ratios. Wat. Res. 30 (7): 1563-1572.
Oleszkiewicz, J. A., Romanek, A. 1989. Granulation in anaerobic sludge bed reactors treating food industry wastes. Biological Wastes. 27 (3): 217-235.
Ong, S. K., Bowers, A. R. 1990. Steady-state analysis for biological treatment of inhibitory substrates. J. Envir. Eng. (ASCE) 116: 1013-1028.
Parkin, G. F., Owen, W. F. 1986. Fundamentals of anaerobic digestion of wastewaster sludges., J. Envir. Eng. (ASCE) 112: 867-920.
Poduska, R. A. 1974. Dynamics of nitrification in the activated sludge process. In Proc. of the 29th Ind. Waste Conf., Purdue Univ., West Lafayette, Ind., USA.
Pohland, F. G., Suidan, M. T. 1987. Prediction of pH stability in biological treatment systems. Chemi. Wastewater Tech. 23: 441-463.
Prakasam, T. B. S. 1972. Microbial nitrification and denitrification in concentrated wastes. Wat. Res. 6 (7): 859-869.
Quinlan, A. V. 1980. The thermal sensitivity of nitrification as a function of the concentration of nitrogen substrate. Wat. Res. 14 (10): 1501-1507
Roš M. 1995. Denitrification kinetics in an activated sludge system. Wat. Sci. Tech. 32: 323-330.
Rozich, A. F., Colvin, R. J. 1986. Effect of glucose on phenol biodegradation by hetergeneous population. Biotechnol. Bioeng. 28 (7): 965-971.
Sambhunath, G. 1975. Anaerobic acidogensis of wastewater sludge. J. WPCF. 47: 30-45.
Schmidt, J. E., Ahring, B. K. 1996. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng. 49 (2): 229-246.
Schoberl, R. F., Ahlert, R. C. 1975. Kinetic response of Pertur bed marine nitrification systems. J. WPCF. 47 (3): 472-476.
Schröder, M., Muller, C., Posten, C., Deckwer, W. D., Hecht, V. 1997. Inhibition kinetics of phenol degradetion from unstable steady-state data. Biotechnol. Bioeng. 54 (6): 567-576.
Seigin, M., Jenkins, D. and Parker, D. S. 1978. A unified theory of filamentous activated sludge bulking. J. WPCF. 50: 362-381.
Shammas, N. K. 1986. Interactions of temperature, pH, and biomass on the nitrification process, J. WPCF. 58 (1): 52-59.
Sharma, B., Ahler, R. C. 1977. Nitrification and nitrogen removal. Wat. Res. 11 (10): 897-925.
Shen, C. F., Kosaric, N., Blaszczyk, R. 1993. The effect of selected heavy metals (Ni, Co and Fe) on anaerobic granules and their extracellular polymeric substance (ECP). Wat. Res. 27 (1): 25-33.
Shieh, W. K., LaMotta, E. J. 1979. Effect of initial substrate concentration on the rate of nitrification in a batch experiment. Biotechnol. Bioeng. 21 (1): 201-211.
Speece, R. E. 1970. The effect of short-term temperature variation on methane production. J. WPCF. 42: 241-256.
Staab, K. F., Stotz, G., Bardtke, D. and Spang, H. J., 1983. Investigations on treatment of waste from pig fattening units up to a quality suitable for water course discharge.Agricultural Waste, 5: 189-204.
Stensel, H. D., Loehr R. C., Lawrence A. W. 1973. Biological kinetics of suspended-growth denitrification. J. WPCF. 45 (2): 249-261.
Stronach, S. M., Rudd, T., Lester, J. N. 1986. Anaerobic digestion process in industrial wastewater treatment. Springer-Verlag Co., New York.
Suidan, M. T., Najm, I. N., Pfeffer, J. T., Wang, Y. T. 1988. Anaerobic biodegradation of phenol: Inhibition kinetics and system stability. J. Envir. Eng. (ASCE) 114 (12): 1359-1376.
Sutton, P. M., Murphy, K. L., Dawson, R. N. 1975. Low tepmerature biological denitrification of wastewater. J. WPCF. 47 (1): 122-134.
Sutton, P. M., Murphy, K. L., Jank, B. E., Monaghan, B. A. 1975. Efficacy of biological nitrificaion. J. WPCF. 47 (11): 2665-2673.
Tay, J. H., Yan, Y. G. 1996. Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Wat. Envir. Res. 68 (12): 1144-1150.
Thauer, R. K., Jungermann, K., Decker, K. 1977. Energy conservation in chemotrophic anaerobic becateria. Bacteriol. Rev. 41: 100-180.
Tseng, C. C., Potter, T. G., Koopman, B. 1998. Effect of influent chemical oxygen demand to nitrogen ratio on a partial nitrification/complete denitrification process. Wat. Res. 32 (1): 165-173.
van Lier, J. B., Grolle, K. C. F., Stams, A. J. M., de Macario, E. C., Lettinga, G. 1992. Start-up thermophilic upflow anaerobic sludge bed (UASB) reactor with mesophilic granular sludge. Appl. Microbiol. Biotechnol. 37 (3): 130-135.
Wang, J., Araki, T., Ogawa, T., Matsuoka, M., Fukuda, H. 1999. A method of graphically analyzing substrate-inhibition kinetics. Biotechnol. Bioeng. 62 (2): 402-411.
Wang, Y. T., Gabbard, H. D., Pai, P. C. 1991. Inhibition of acetate methanogenesis by phenols. J. Envir. Res. 66: 794-799.
Weber, A. S., Tchohanoglous, G. 1984. Nitrification in water hyacinth treatment systems. J. Envir. Eng. (ASCE) 111 (10): 699-713.
Welander, U., Henrysson, T., Welander, T., 1998. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Wat. Res. 32 (5): 1564-1570.
Westrich, J. T., Berner, R. A. 1988. The effect of temperature on rates of sulfate reduction in marine sediments. Geomicrobiol J. 6: 99-117.
Wild, H. E., Sawyer, C. N., McMahon, T. C. 1971. Factors affecting nitrification kinetics. J. WPCF. 43 (9): 1945-1954.
Williamson, K. J., McCarty, P. L. 1975. Rapid measurement of Monod half-velocity coefficients for bacterial kinetics. Biotechnol. Bioeng. 17 (6): 915-924.
Zhu, S., Chen, S. 1999. An experimental study on nitrification biofilm performance using a series reactor system, Aquacultural Eng. 20: 245-259.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 丁志達,2000,「員工福利規劃新思潮」,管理雜誌,第309期,頁26-31。
2. 王方,2000,「長期照顧政策之反省與前瞻:結合福利與勞動政策之新思維」,社區發展季刊,第92期,頁44-54。
3. 周玟琪,1996,「從勞工階級動員觀點看母性保護立法─台灣與瑞典的比較」,勞資關係論叢,第4期,頁131-170。
4. 林宜輝,1998,「家庭政策支持育兒婦女就業制度之探討─兼論臺灣相關制度之改革」,社區發展季刊,第84期,頁95-111。
5. 施教裕,1997,「社會福利多元主義趨勢下的企業福利發展取向」,勞工行政,第106期,頁2-9。
6. 洪懿妍,1999,「服務業重整再出發-創意.通路引爆生機」,天下雜誌,特刊26期,頁202-206。
7. 陳忠良,1996,「日本育兒休業法實施的問題點分析」,勞工行政,第96期,頁8-13。
8. 許雅惠,2000,「家庭政策之兩難─從傳統意識型態出發」,社會政策與社會工作學刊,第4卷第1期,頁237-289。
9. 許碧芬、蕭文玲,2000,「高科技從業人員上司支持與工作─家庭衝突關係之研究」,科技管理學刊,第5卷第2期,頁39-56。
10. 傅立葉,1993,「現行僱用政策與個人工作─家庭需求的衝突」,研考雙月刊,第17卷第6期,頁48-54。
11. 黃國鐘,2001,「博愛、平等、自由─評「兩性工作平等法」整合版草案」,月旦法學雜誌,第71期,頁71-86。
12. 楊松德、洪榮昭、王麗容,1993,「企業福利措施對提昇工作意願與生產力之研究」,勞工研究,第110期,頁1-19。
13. 楊瑩,1997,,「英國的婦女權益保障立法與福利給付」,社區發展季刊,第79期,頁143-158。
14. 鄭麗嬌,1999,「美、德與法三國兒童照顧與家庭政策之比較研究」,理論與政策,第52期,頁107-130。
15. 劉梅君,1996,「女性人力資源開發與國家政策」,政大勞動學報,第5期,頁89-108。
 
系統版面圖檔 系統版面圖檔