跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江育才
研究生(外文):Yuh-Tsair Jiang
論文名稱:添加硼對ZrAlCuNi塊狀非晶質合金熱穩定性的影響
論文名稱(外文):Thermal Stability of ZrAlCuNi Bulk Amorphous Alloy Doped with Boron
指導教授:鄭憲清
指導教授(外文):Jason S. C. Jang
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:91
語文別:中文
論文頁數:127
中文關鍵詞:非晶質合金熱穩定性玻璃轉換溫度活化能結晶溫度
相關次數:
  • 被引用被引用:4
  • 點閱點閱:492
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
鋯基非晶質合金在科學研究及運用上具有重要的特性,諸如高玻璃形成能力(glass-forming ability)及在低的臨界冷卻速率下仍有寬廣的過冷區域(super-cooled liquid region),且在工程運用上具有良好機械性質如高的拉伸強度(tensile strength)、彈性模數(elastic modulus)、衝擊破壞能(impact fracture energy)及抗腐蝕能力(corrosion resistance)等優異的工程特性。日本東北大學Inoue 與Masumoto 等二位教授曾提出「增加原子的堆積密度可有效的提昇非晶質合金的熱穩定性及機械強度」。故本研究即選用ZrNiAlCu非晶質合金添加較小的原子"硼"增加其堆積密度,且在低冷卻速率下製作試片,研究其熱穩定性及玻璃形成能力。
本實驗選用Zr、Al、Cu、Ni等純元素為主要成分,添加不同原子百分比的硼元素,調製所需的合金Zr65-xAl7.5Cu17.5Ni10Bx(X=0,2,4,6,8,10),在氬氣氛爐內利用電弧熔解(arc melting)及墜落鑄造(drop cast)方式於水冷銅模中,製成厚度0.5~2 mm的試片並利用單輥輪旋轉熔鑄(single roller melt spinning)技術製作厚約100~200μm的薄帶。在儀器分析方面使用X光繞射儀(X-ray diffraction,XRD)、掃描式電子顯微鏡(scanning electron microscopy,SEM )、穿透式電子顯微鏡(transmission electron microscopy,TEM)、熱差分析(differential thermal analysis,DTA)、示差掃描熱量計(differential scanning calorimetry,DSC)、高溫顯微鏡(hot stage optical microscopy)等研究合金的玻璃形成能力及熱穩定性並觀察其結晶行為與顯微結構的變化。
由實驗結果得知,Zr65-xAl7.5Cu17.5Ni10Bx可在較低的冷卻速率下獲得非晶質相。在顯微組織分析上,發現於部分非晶質基地內夾雜著奈米晶粒,其尺寸約為10 nm,並經鑑定此奈米晶結構為四面體的CuZr2型結晶(Tetragonal CuZr2 type)。在熱性質分析方面,其簡化玻璃溫度(Trg)高達0.55;玻璃轉換溫度(Tg)與結晶溫度(Tx)隨著硼元素的增加有上昇的趨勢,△Tx於添加4 at.%及6 at.%時出現最大值約為86℃,較基材為高;活化能(Kissinger plot)以添加2 at.﹪的硼元素時(X=2)最高,約為360 ±10 KJ/mol,較基材高約20﹪,顯見添加硼元素有助於提昇鋯基非晶質合金的玻璃形成能力及熱穩定性;在結晶動力分析部分,Avrami exponent值介於1.5~2.5之間,且由C.Wagner 提出之理論獲得証明,其結晶成長行為屬受擴散控制之成長機制,成核速率成遞減模式。
The Zr-base amorphous alloy has many significant features in scientific research and application, such as high glass-forming ability and wide super-cooled liquid region under low critical cooling rate. In engineering application, it provides good mechanical properties, such as high tensile strength, high elastic modulus, relatively high impact fracture energy and excellent corrosion resistance. Inoue and Masunoto (Northeast University, Japan) declared that “To increase atomic packing density can improve the thermal stability and mechanic strength in amorphous alloy”. Therefore, this research is focused on studying the thermal stability and glass-forming ability by increasing packing density of ZrNiAlCu amorphous alloy with adding smaller atom Boron. The test film was prepared under low cooling rate.
In the experiment, Zr, Al, Cu and Ni pure element were selected as the main components and different atom percent of Boron was added to produce Zr65-xAl7.5Cu17.5Ni10Bx(X=0,2,4,6,8,10). Specimens with 0.5-2 mm thickness were prepared by arc melting under the Argon atmosphere furnace and drop cast in a water-cooled copper mold. Then ribbons of 100~200μm thickness were prepared by single roller melt spinning technology. Different techniques, such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC) and Hot Stage Optical Microscopy were utilized to study the glass-forming ability and thermal stability of these alloys and to observe their changes in crystallization behavior and microstructure.
From the experimental results, it is shown that Zr65-xAl7.5Cu17.5Ni10Bx can obtain amorphous phase under lower cooling rate. By the microstructure analysis, some nanocrystalline phases with size approximate 10 nm are found in some areas of the amorphous matrix. The nanocrystalline phase is recognized to the tetragonal CuZr2 type crystal. According to the thermal stability analysis, we found Reduced Glass Temperature (Trg)is up to 0.55 in this study. Glass Transition Temperature (Tg) and Crystalline Temperature (Tx) raise with the Boron addition. Not only 4 at. % but also 6 at. % Boron addition, △Tx of this crystal have maximum values, approximately 86℃. They are higher than that of base alloy. Activation energy(Kissinger plot)with the 2 at.﹪of Boron addition (X=2) reaches the highest value, 360 ± 10 KJ/mol, which is 20% higher than that of base alloy. Obviously, inserting Boron element can improve the glass-forming ability and thermal stability of the Zr-base amorphous alloy. From the crystallization kinetics analysis, we acquired the result of Avrami exponent is between 1.5-2.5. We also verify that the mechanism of crystallization growth behavior is diffusion control model of C.Wagner’s theory with a decreasing nucleation rate.
總目錄
頁次
中文摘要…………………………………………………………………………Ⅰ
英文摘要…………………………………………………………………………Ⅲ
致謝………………………………………………………………………………Ⅴ
總目錄……………………………………………………………………………Ⅵ
圖目錄……………………………………………………………………………Ⅹ
表目錄…………………………………………………………………………ⅩⅣ
第一章 前言……………………………………………………………………....1
第二章 理論基礎………………………………………………………………....4
2.1 概述……………………………………………………………………….4
2.2 塊狀非晶質合金發展歷程……………………………………………….5
2.3 非晶質合金的種類與特性……………………………………………….6
2.3.1 非晶態合金的種類………………………………………………….6
2.3.2 非晶質合金的特性………………………………………………….8
2.3.2.1 機械性質……………………………………………………...11
2.3.2.2 化學性質--耐蝕性…………………………………………...16
2.3.2.3 軟磁性………………………………………………………...18
2.3.2.4 其他重要性質………………………………………………...19
2.4 非晶質合金的製造方法………………………………………………...19
2.5 非晶質的形成條件……………………………………………………...20
2.6 非晶質的熱力學特性…………………………………………………...23
2.6.1 非晶質是平衡的介穩……………………………………………...23
2.6.2 玻璃轉換溫度(Tg)……………………………………………….24
2.6.3 簡化玻璃溫度(Trg) ……………………………………………..27
2.7 非晶質形成的熱力學及結構因素 …………………………………….27
2.7.1 合金效應 …………………………………………………………28
2.7.2 原子相互作用 ……………………………………………………28
2.7.3 尺度效應 …………………………………………………………33
2.7.4 化學鍵能 …………………………………………………………34
2.8 非晶質合金的熱穩定性 ……………………………………………….34
2.8.1 非晶質合金的壽命 ………………………………………………35
2.8.2 化學反應與結晶活化能 …………………………………………37
2.9 結晶動力學 …………………………………………………………….38
2.9.1 恆溫結晶 ………………………………………………………….38
2.9.2 晶粒成長控制機制………………………………………………...40
第三章 實驗流程….……………………………………………………………43
3.1 合金組成 ……………………………………………………………….43
3.2 合金熔煉與試片製作 ………………………………………………….44
3.2.1 墜落鑄造 …………………………………………………………44
3.2.2 薄帶製作 …………………………………………………………45
3.2.3 試片取樣 …………………………………………………………45
3.3 顯微組織分析 …………………………………………………………46
3.3.1 光學顯微鏡(OM) …………………………………………………46
3.3.2 掃描式電子顯微鏡(SEM)與EDS …………………………….….46
3.3.3 穿透式電子顯微鏡(TEM) ………………………………………..47
3.3.4 X-光繞射儀(XRD)…..…………………………………………….48
3.4 熱分析 ………………………………………………………………….48
3.4.1 熱差分析(DTA) …………………………………………………..49
3.4.2 示差掃描熱量計(DSC)……………………………………………49
3.4.3 高溫顯微分析……………………………………………………...50
3.5 微硬度分析 …………………………………………………………….50
第四章 結果與討論…………………………………………………………….57
4.1 顯微結構分析 …………………………………………………………..57
4.1.1 X-光繞射分析 ……………………………………………………...58
4.1.2 電子顯微鏡觀察 …………………………………………………...59
4.1.2.1 掃描式電子顯微鏡(SEM)…………………………………….59
4.1.2.2 穿透式電子顯微鏡(TEM)…………………………………….60
4.1.3 Hot stage金相觀察 ………………………………………………63
4.2 熱性質分析………………………………………………………………..63
4.2.1 玻璃形成能力 ……………………………………………………...63
4.2.1.1 玻璃轉換溫度(Tg)與液相線溫度(Tl)相對關係……………64
4.2.1.2 簡化玻璃溫度(Trg)……………………………..………………66
4.2.1.3 玻璃轉換溫度(Tg)與結晶化溫度(Tx)相對關係………………66
4.2.2 熱穩定性 …………………………………………………………...67
4.2.2.1 活化能-Kissinger plot ………………………………….…...68
4.2.2.2 活化能-JMA plot ………………………………………….……69
4.3 結晶動力分析 …………………………………………………………70
4.3.1 恆溫結晶及Avrami Exponent ……………………………….…..71
4.3.2 晶粒成長控制機制………………………………………………….72
4.4  機械性質分析………………………………………………………..…73
4.4.1 微硬度………………………………………………………………73
4.4.2 破斷面觀察及分析 ………………………………………………..75
第五章 結論 ………………………………………………………………119
參考資料……………………………………………………………………..121
參考資料
1. W. Klement, R. H. Wilens, P. Duwez, Nature 187, pp.869-874, 1960.
2. D. Turnbull, Contemp. Phys. 10, pp.473-477, 1969.
3. T. Masumoto and K. Suzuki eds., “Rapidly Quenched Metals Ⅳ”,Japan Institute of Metals, Sendai, 1981.
4. F. E. Luborsky eds. , “Amorphous Metallic Alloys” Butterworth, London, 1983.
5. S. Steeb and H. Warlimont eds. , “Rapidly Quenched Metals Ⅵ” Elsevier, Amsterdam, 1985.
6. A. Inoue, T. Zhang and T. Masumto:Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Mater. trans. JIM31, pp.177-183, 1990.
7. A. Inoue, T. Zhang and T. Masumto, Mater. trans:Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Metallic Mold Casting Method.. JIM31, pp.425-430, 1990.
8. A. Inoue, T. Zhang and T. Masumto:Amorphous Zr-Al-TM (TM=Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K. Mater. Trans. JIM32, pp.1005-1008, 1990.
9. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto:Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method. JIM33, pp.937-942, 1992.
10. A. Inoue, T. Zhang, N. Nishiyama, K. Ohbaand, T. Masumoto, JIM 34, pp.1234-1239, 1992.
11. A. Paker and W. L. Johnson:Preparation of 16 mm Diameter Rod of Amorphous Zr65Al7.5Ni10Cu17.5 Alloy. Appl.Phys.Lett.,67, pp.2342-2346, 1993.
12. R. Busch, S. Schneider, A. Peker and W. L. Jonson: Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10Be225 melts. Appl. Phys. Lett., 67, pp.1544-1546, 1995.
13. S. Schneider, A. Peker and W. L. Johnson, Appl. Phys. Lett., 67, pp.1544, 1995.
14. S. Schneider, P. Thiyagarajan and W. L. Johnson:Formation of nanocrystals based on decomposion in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Appl. Phys. Lett., 68, pp.493-498, 1996.
15. W. L. Johnson:Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys. Materials Science Forum 225-227, pp.35, 1996.
16. A. Inoue, T. Zhang, and T. Masumoto: Nanocrystalline Mixed Structure Prepared by Crystallization of Cu-Ag-La Amorphous Alloys. Mater. Trans. JIM 36, pp.391-395, 1995.
17. A. Inoue: Structural Studies of New Metallic Amorphous Alloys with Wide Supercooled Liquid Region. Mater. Trans. JIM 36, pp.883-887, 1995.
18. A. Inoue, M. Koshiba, T. Zhang, and T. Masumoto:Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0-10Nb(or Ta) 0-10B20 amorphous alloys. J. Appl. Phys. 83, pp.1967-1972, 1998.
19. T. Itoi and A. Inoue:Soft Magnetic Properties of Co-Based Amorphous Alloys with Wide Supercooled Liquid Region. Mater. Trans. JIM 39, pp.762-766, 1998.
20. A. Inoue, M. Koshiba, T. Zhang and A. Makino: Ferromagnetic Co-Fe-Zr-B amorphous alloys with glass transition and good high-frequency permeability. Appl. Phys. Lett., 73, pp.744-747, 1998.
21. A Inoue, T. Negishi, H. M. Kimura, T. Zhang, and A. R. Yavari:High Packing Density of Zr- and Pd-Based Bulk Amorphous Alloys. Mater. Trans. JIM 39, pp.318-322, 1998
22. A. Inoue, T. Zhang, and T. Masumoto:Glass-Forming Ability of Alloys. J. Non-Cryst. Solids 56-158, pp.473-480, 1993.
23. A.Inoue:Atabilization of Metallics Super Cooled Liquid and Bulk Amorphous Alloys. Acta Mater. 48, pp.279-306, 2000.
24. D. Turnbull, Solid State Phys. 3, pp.225, 1956.
25. D. Turnbull, Contemp. Phy. 10, pp.473, 1969.
26. D. R. Uhlmann, J. F. Hays, and Turnbull, Phy. Chem. Glasses 7, pp.159, 1966.
27. H. A. Davies, Phys. Chem. Glasses 17, pp.159, 1976
28. 戴道生、韓汝琪 等編著, “非晶態物理”,高等學校教學用書, 電子業出版社,pp.532, China. 11.1984.
29. 戴道生、韓汝琪 等編著, “非晶態物理”,高等學校教學用書, 電子業出版社,pp.570, China. 11.1984.
30. F. E. Luborsky, “Amorphous Metallic Alloys” , P1, USA, 1983.
31. ”固態物理” , 中國材料學會網頁, 2000.
32. Brenner, A, Couch, D. E. and Williams, E. K, J. Res, natn. Bur. Stand, 44, pp.109, 1950.
33. 陳力俊等著,”材料電子顯微鏡學”,國科會精儀中心, P268, Taiwan, 3. 1990.
34. P. Duwez and S. C. H. Lin:Amorphous Ferromagnetic Phase in Iron-Carbon-Phosphous Alloys. J. appl. Phys, 38, pp.4096-4110 ,1967.
35. H. S. Chen and C. E. Miller, Rev. Sci. Instrum, 41, pp.1237, 1970.
36.吳學陞 著, “新興材料-塊狀非晶質金屬材料”, 工業材料149期,pp.175 5.1999.
37. A. Inoue, T. Nakamura, N. Nishiyama and T.Masumoto:Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method. JIM33, pp.937-942, 1992.
38. 吳學陞 著, “新興材料-塊狀非晶質金屬材料”, 工業材料149期,pp.159 5.1999.
39. A. Inoue, Bulk Amorphous Alloys Practical Characteristics and Applications Institute for Material Research, Tohoku University Katahira 2-1-1, Sendai 980-8577, Japan.
40. 鄭振東 編譯, “非晶質金屬漫談”, 建宏出版社, pp. 39, Taiwan, 3.1990,
41. A. Inoue, Bulk Amorphous Alloys Practical Characteristics and Applications Institute for Material Research, Tohoku University Katahira 2-1-1, Sendai 980-8577,pp.38, Japan.
42. K. L. Chapra, thin Film Phenomena, Mc.Graw-Hill, 1969.
43. L. I. Naissel and R. Glag eds. , Handbook of Thin Film Technology, McGraw-Hill, 1974.
44. G. N. Jackson, Thin Solid Film, pp.209, 5 .1970.
45. W. Paul, and R. J. Temkin, Adv. Phys. ,pp531, 1973.
46. L. Holland. Vacuum Deposition of Thin Film, Champman and Hall, 1963.
47. 戴道生、韓汝琪 等編著, “非晶態物理”,高等學校教學用書, 電子業出版社, China, 11. 1984.
48. D. Turnbull, Contemp. Phys., pp.473, 10.1969.
49. G. S. Fulcher, J. Amer. Ceram. Soc. ,pp.1925-1931,1970.
50. K. A. Jackson, Nucleation Phenomena, American Chem. Soc., Washington, pp.37,1966.
51. S. R. Elliot, “Physics of Amorphous Materials”, pp.30, USA, 1990.
52. H. S. Chen:Glass metals. Rep. Prog. Phys., 43, pp.353-356, 1980.
53. H. S. Chen, et al., J. Appl. Phys. Letter, 10, pp.284-188, 1967.
54. H. S. Chen, et al.:Zridence of a Glass-Liquid Transition in a Gold-Germanium. J. Chem. Phys., 48, pp.2560-2565, 1968.
55. M. H. Cohen, et al.:Metastability of Amorphous Structure. Nature, 203, pp.964, 1964.
56. D. Wear, et al., Nature, 203, pp.779-784, 1971.
57. W. Kauzman, et al. Chem, Rev., 43, pp.219-225, 1948.
58. D. Turnbull, et al. Physics of Non-Crystalline Solides. Ed. By J. A. prins, pp. 41.1965.
59. R. J. Greet, et al.:Test of Adam-Gobbs Liquid Viscosity Model with 0-Terphenyl Specific-Heat Data. J. Chem. Phys., 47, pp.2185-2189, 1967.
60. J. H. Gibbs, et al.:Nature of the Glass Transition and Glass State. J. Chem. Phys., 28, pp.373-375, 1958.
61. M. Hansen, et al., in Constitution of Binary Alloys, pp.206 , 1958.
62. P. Duwez, et al. Trans. Met. Soc. AIME, 60, pp.605-612, 1967.
63. M. H. Cohen,:Molecular Transport in Liquids and Glasses. J. Chem. Phys., 31, pp.1164-1168, 1959.
64. H. S. Chen:Thermodynamic Considerations on the Formation and Stability of Metallic Glasses. Acta. Met. , 22, pp.1505-1511, 1974.
65. H. S. Chen:The glass Transition Temperature in Glassy Alloys: Effects of Atomic Sizes and the Heats of Mixing. Acta. Met., 22, pp.897-903, 1974.
66. H. S. Chen, non-Cryst. Solid, 12, pp.333-337, 1973.
67. J. Hafner:Structure and Thermodynamic of Liquid Metals and Alloys. Phys. Rev., A16, pp.351-356, 1977.
68. H. S. Chen, et al.:Formation, Stability and Structure of Palladium-Silicon Based Alloy Glasses. Acta. Met., 17, pp.1021-1027, 1969.
69. P. L. Maitrepierre, J. Appl. Phys., 40, pp.4826-4831, 1969.
70. J. Dixmixer, et al., Physics of Non-Crystalline Solids. Ed. By J.A. Prins, pp.67-75, 1956.
71. B. C. Giessen, et al., Physics and Chemistry of Liquid Metals, ed. By S. Z. Beer, pp. 633 , 1972.
72. S. Mader, et al.:Metastable Evaporated Thin Films of Cu-Ag and Co-Au Alloys-I Occurrence and Morphology of Phases. Acta Met., 15, pp.203-208, 1967.
73. G. A. Mansourl, et al.:Equilibrium Thermodyamic Properties of the Mixture of Hard Spheres. J. Chem. Phys., 54, pp.1523-1527, 1971.
74. B. J. Alder, J. Chem. Phys, pp.305, 1967.
75. H. S. Chen, et al., J. Non-Cryst. Solids, 13, pp.321-325, 1973/1974.
76. H. S. Chen, et al.:Role of Chemical Bonding in Metallic Glasses. Acta. Met., 21, pp.395-361, 1973.
77. G. S. Cargill, J. Appl. Phys., 41, pp.2248-2257, 1970.
78. D. E. Plok, Scripta Met., 4 (1970), 117, Acta Met., 20, pp.485-489, 1972.
79. S. Daves, et al., in Rapidly Quenched Metals Ⅲed. By Cantor, Vol.2, pp.425, 1978.
80. S. Takayama: Review Amorphous Structure and Their Formation and Stability. J. Mat. Sci., pp.164-166,11. 1976.
81. E. S. Freeman and B. Carroll, J. Phy. Chem., 62,394,1958.
82. 汪建民主編,李源弘著,材料分析,中國材料科學學會,p574,中華民國, 10.1998.
83. Homer E. Kissinger:Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, Vol. 29, No.11, pp.1702-1706, 1957.
84. H. S. Chen, et al., J. Appl. Phys. Letter, 11, pp.12-16, 1967.
85. J. W. Christian, “The Theory of Transformations in Metals and Alloys” , 1982. 8.
86. Shuichi Nojima, Hideki Tsutsut, Masaru Urushirsura Wataru Kosaka, Narundo Kato, and Tamaichi Ashida, ”A Dynamic Study of Crystallization of Poly(ε-caprolactone) and Poly(ε-caprolactone)/Poly(vinyl chloride) Blend”, Polymer Journal, Vol. 18, No. 6, pp.451-461, 1986.
87. D. V. Louzguine, A. Inoue.:Crystallization Behavior of Ti50Ni25Cu25 Amorphous Alloy. J. Mat. Sci., 35, pp.4195-4164, 2000.
88. C. Wagner, Z. Elektrochem. ,pp.565-581,1961, and I. M. Lifshitz and V.V. Slyozov, I. Phys. Chem. Solids,pp.19-35,1961.
89. J. W. Christian, “The Theory of Transformations in Metals and Alloys” , p489, 8.1982.
90. S. Daves, et al., in Rapidly Quenched Metals Ⅲed. By Cantor, Vol. 2, pp. 425, The Metals Soc., London, 1978.
91. H. S. Chen, et al., J. Appl. Phys. Letter, 11, pp.12-16, 1967.
92. D. Turnbull , Met. Trans. A, pp.695 ,1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top