跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/10/02 13:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李伯亨
研究生(外文):Po-Heng Lee
論文名稱:下水污泥堆肥程序質能平衡之研究
論文名稱(外文):Mass and energy balances of sewage sludge composting process
指導教授:林志高林志高引用關係
指導教授(外文):Jih-Gaw Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:141
中文關鍵詞:下水污泥好氧性堆肥資源化溫度質能平衡含水率數學模式
外文關鍵詞:sewage sludgeaerobic compostingrecyclabletemperaturemass and energy balancethe moisture percentagemathematical formula
相關次數:
  • 被引用被引用:4
  • 點閱點閱:552
  • 評分評分:
  • 下載下載:94
  • 收藏至我的研究室書目清單書目收藏:1
由於台灣生活水準的提升與工商業高度的發達,國內生活污水及工廠所排放之污水量逐漸增加,造成了環境品質惡化;因此,政府將逐年提升都市下水道普及率 3%,來改善這個日益嚴重的環境問題,但污水處理後衍生出的龐大污泥量,將是一個潛在的棘手問題。因應未來龐大都市下水道污泥量,以及滿足民眾因環保意識型態的提升,而對環境品質要求愈趨嚴格的情況下,污泥堆肥化即為一套既環保又符合經濟效益的解決之道。
本研究將建立設計堆肥實廠所需的質能平衡數學模式,推導堆肥化過程中各種機制質能消長之量值,再用污泥堆肥化之實驗數據驗證此模式的適當性及精確度,以供未來設計堆肥實廠之參考,減少污泥的處理成本、加速堆肥化反應和改進腐熟堆肥成品的品質。
堆肥實驗以民生污水處理廠之污泥餅為基質,並以木屑和腐熟之堆肥成品做不同水分之調配;兩槽 110 公升實驗室規模反應槽 (Lab-Scale),分為密閉式和開放式,進行三批次共六組實驗,每批次初始污泥堆肥含水率調整各為 55%、60% 和 65%。一槽 13 立方公尺模廠規模實驗廠 (Pilot-Scale) 建置於八里污水處理廠內,進行一批次一組實驗,初始污泥堆肥含水率調整為 65%。110 公升實驗室規模反應槽所進行的六組污泥堆肥化實驗,結果顯示以開放系統之堆肥化反應較佳,溫度高於密閉系統約 3-5oC,顯示堆肥物與大氣接觸面積越多,堆肥化反應效果越佳。另外,因氣候因素以開放式初始含水率 55% 的堆肥化反應最佳,共減少 9.6 kg,其次為 60% 及 65%。13 立方公尺模廠式規模實驗廠所進行的六組污泥堆肥化實驗,總共減重 4.59 公噸,溫度維持 55oC 超過 15 天以上,已達到 U.S. EPA 305 法規的標準。將七組的實驗數據帶入質能平衡模式,其質量平衡與能量平衡之最大平均誤差值各為 46% 與 9.6%。另外,取高雄第一科技大學所進行的蔬菜堆肥數據一組,帶入質能平衡模式,其質量平衡與能量平衡之平均誤差值各為 34.7% 與 6.2%。
In order to correspond with the promotion of living standard in Taiwan, as a result the industry, and commerce are highly prosperous. Then the quantity of sewage sludge which is discharged by families and factories is increasing gradually, and that causes the decrease of the environment quality. Therefore, the government is going to raise the rate of drainage for 3% per year to improve this actual environmental problem. However, the huge sludge comes into being due to the sewage disposal, which will be a potential troublesome problem as well. In order to dispose of the huge sewage sludge quantity that increases year by year, and to satisfy the residents who strictly request a better environment due to the raise of environmental protection consciousness, sludge compost process will be the profitable solution that fits hygienic and economic.
This study constructs the mathematical formula of mass and energy balance, which is required for a design of a compost plant. It is necessary to: 1) infer and set up the energy and mass growth and decline the conditions during the composting process. 2) apply these data to estimate the suitability and accuracy of this formula, so as to be the reference for designing compost plant in the future, 3) decrease the sludge treatment and disposal costs, 4) accelerates the compost reaction and improve the quality of maturity compost.
The compost experiment uses the sludge cake made by Ming-Sheng sewage disposal plant as a source; then mix the wood dust and compost products with different water content. Two 110 L capacity Lab-Scales differentiate into shut type and open type. Three lots, totally six experiments are conducted. In the beginning, the moisture percentage of the sludge compost in each lot is modified to 55%, 60% and 65% each. One 13 m3 capacity Pilot-Scale is located inside the sewage disposal plant in Pa-Li, and one batch experiment is proceeded there.
The moisture percentage of the sludge compost is changed to 65% in the beginning. Six sludge compost experiments are started off in the 110 升 capacity Lab-Scale. The outcome indicates the compost process runs better in the open system. The temperature is 3° to 5° hotter than the shut system, which proves the more compost touches with atmosphere, the better reaction compost process reveals. Furthermore, in the open system, the compost process reacts the best when the moisture possesses 55% in the beginning. It decreases 9.6 Kg in total. Secondly comes 60% and 65%. During the six sludge compost experiments proceeded in 13 m3 capacity Pilot-Scale, it totally decreases 4.59 ton. The temperature remains 55oC for over 15 days, which has already achieved the standard of U.S.EPA 305 regulation. To calculate 7 sets experiment data based on mass and energy balance, the average peak error in mass energy balance and energy balance is 46% and 9.62% each. In addition, to quote one set of vegetable compost data conducted by Kaohsiung First Science and Technology University into mass and energy balance. The average peak error in mass energy balance and energy balance appears 34.7% and 6.24%.
目 錄
中文摘要 ………………………………………………………… I
英文摘要 ………………………………………………………… II
誌謝 ………………………………………………………… IV
目錄 ………………………………………………………… V
表目錄 ………………………………………………………… VII
圖目錄 ………………………………………………………… IX
第一章 緒論…………………………………………………… 1
1.1 研究緣起……………………………………………… 1
1.2 研究目的……………………………………………… 4
第二章 文獻回顧……………………………………………… 5
2.1 國內外下水污泥產量現況與處理趨勢……………… 5
2.2 污泥堆肥農地利用之評估與法規之限制…………… 10
2.3 下水污泥適合堆肥的特性…………………………… 14
2.4 堆肥化程序處理之原理……………………………… 13
2.4.1 好氧堆肥程序………………………………………… 16
2.4.2 厭氧堆肥程序………………………………………… 18
2.5 微生物降解污泥中養分的代謝反應………………… 20
2.6 好氧堆肥法之種類…………………………………… 22
2.7 堆肥化過程微生物之菌相…………………………… 24
2.8 影響污泥堆肥化之因子……………………………… 29
2.9 堆肥程序中熱逸散之機制…………………………… 36
2.10 下水污泥堆肥廠建廠之經濟評估…………………… 39
第三章 質能平衡……………………………………………… 42
3.1 質量平衡……………………………………………… 42
3.1.1 水分質量平衡………………………………………… 43
3.1.2 揮發性有機物和灰分質量平衡……………………… 45
3.2 能量平衡……………………………………………… 49
第四章 實驗方法與設備……………………………………… 53
4.1 實驗方法概述………………………………………… 53
4.2 實驗器材與設備……………………………………… 54
4.3 實驗方法與步驟……………………………………… 60
4.3.1 基本性質分析………………………………………… 61
4.3.2 110 公升實驗室規模 (Lab-Scale) 反應槽污泥堆肥化實驗步驟……………………………………………
61
4.3.3 13 立方公尺模廠規模 (Pilot-Scale) 反應槽污泥堆肥化實驗步驟…………………………………………
63
4.3.4 污泥堆肥化實驗樣品之分析………………………… 64
4.4 蔬菜廢棄物堆肥化之實驗…………………………… 66
4.4.1 蔬菜廢棄物堆肥化之實驗設備……………………… 66
4.4.2 蔬菜廢棄物堆肥化之實驗材料……………………… 67
4.4.3 蔬菜廢棄物堆肥化之實驗方法……………………… 67
第五章 結果與討論…………………………………………… 69
5.1 龍潭核研所 110 公升實驗室規模含水量 65% 污泥堆肥實驗……………………………………………
69
5.1.1 堆肥反應物基本性質分析…………………………… 69
5.1.2 堆肥實驗結果………………………………………… 69
5.1.3 堆肥質能平衡結果…………………………………… 75
5.2 龍潭核研所 110 公升實驗室規模含水量 60% 污泥堆肥實驗……………………………………………
85
5.2.1 堆肥反應物基本性質分析…………………………… 85
5.2.2 堆肥實驗結果………………………………………… 85
5.2.3 堆肥質能平衡結果…………………………………… 91
5.3 龍潭核研所 110 公升實驗室規模含水量 55% 污泥堆肥實驗……………………………………………
99
5.3.1 堆肥反應物基本性質分析…………………………… 99
5.3.2 堆肥實驗結果………………………………………… 99
5.3.3 堆肥質能平衡結果…………………………………… 104
5.4 八里 13 立方公尺模廠規模含水量 65% 污泥堆肥實驗……………………………………………………
112
5.4.1 堆肥反應物基本性質分析…………………………… 112
5.4.2 堆肥實驗結果………………………………………… 112
5.4.3 堆肥質能平衡結果…………………………………… 115
5.5 50 公升實驗室規模含水量 67% 蔬菜廢棄物堆肥實驗………………………………………………………
123
5.5.1 堆肥反應物基本性質分析…………………………… 123
5.5.2 堆肥實驗結果………………………………………… 123
5.5.3 堆肥質能平衡結果…………………………………… 126
第六章 結論與建議…………………………………………… 131
6.1 結論…………………………………………………… 131
6.2 建議事項……………………………………………… 135
參考文獻 ………………………………………………………… 136
英文文獻
APHA, AWWA, and WEF “Standard Methods for Examination of Watewr and Wastewater,” 19th Edn. American Public Health Association, Washington, D.C., (1995)
Bach, P. D., Nakasaki, K., and Shoda, M. “Thermal balance in composting operations,” Journal Fermentation Technology, Vol.65(2), pp. 199-209. (1987)
Banat, F. A., Prechtl, S., and Franz, B. “Experimental Assessment of Bio-Reduction of Di-2-thylhylhexyl phthalate (DEHP) under Aerobic Thermophilic Condition,” Chemosphere, Vol. 39, pp. 2097-2106. (1999)
Barods,R. L., Hadley, P., and Kendle, A. “Composting guidance in the United Kingdom,” Biocycle, 33:6 (1992)
Briton, R. “German Composting Systems,” Biocycle, 33:6 (1992)
Bruce, A. M., Campbell, H.W., and Balmer, P. “Developments and Trends in Sludge processing Techniques,” 3th Edn. Reridel Publishing Company, Boston, (1983)
CEAA, “Guidelines for the Production and Use of Aerobic Composting,” Ontario Ministry of the Environment, (1991)
Dean, J. A. “Lange’s Handbook of Chemistry,” 4th Edn. McGraw-Hill, pp. 6.10-6.12. (1976)
Epstein, E. “The Science of Composting. Technomic Publishing Company,” Pennsylvania,” pp. 32-39. (1997)
Furhacker, M. and Haberl, R “Composting of Sewage Sludge in a Ratating Vessel,” Wat. Sci. Tech, Vol.32, pp. 121-125. (1995)
Gaudy, and Gaudy “Microbiology for Environmental Sciences and Engineers,” McGraw-Hill series in Water Resources and Environmental Engineering. (1980)
Haug, R. T., Hogan, J. A., Miller, F. C. and Finstein, M. S. “Physical modeling of the composting ecosystem,” Applied and Environmental Microbiology, Vol. 55(5), pp. 1082-1092. (1989)
Haug, R. T. “Compost Engineering: Principles and Practice. Technomic Publishing,” pp. 277-303. (1980)
Haug, R. T. “The Practical Handbook of Compost Engineering,” Boca Raton: Lewis Publisher, pp. 95-120. (1993)
Hartsock, D. R., Croteau, G. and Gage, J. “Uniform Aeration of Compost Media,” Proceedings of National Waste Processing Conference, ASME, New York , pp.215-219 (1994)
Hawksley, W. “Integrated Sludge Disposal Strategy,” Interim Report for Hong Kong, EPD. (1991)
Jeris, E. C., Shea P. J., and Rupp, F. “Cotrolling Environmental parameters for Optimun Composting,” Compost Science, Vol.14, No. 3, May-June (1973)
Kuhlman, L. R. “Windrow Composting of Agricultural and Municipal Wastes,” Conservation and Recycling, Vol.4, pp. 151-160 (1990)
Magalhaes, A. M. T., Shea P. J., Jawson, M. D., Wicklund, E. A. and Nelson, D. W. “Practical simulation of composting in the laboratory,” Waste Management and Research, Vol. 11(2), pp. 143-154. (1993)
Mears, D.R., Singley, M.E., Ali, G., and Rupp, F. “Thermal and physical properties of compost,” Energy Agriculture and Waste Management, pp. 59-85. (1975)
Powlesland, C. and Frost, R.C. “A Methodology for Undertaking BPEO,” Studies of Sewage Sludge Treatment and Dispoal, WRC Report PRD 2305-M/1 (1990)
Poincelot, R. P. “The Biochemestry of Composting,” in Composting of Municipal Resides and Sludges, Proceedings of the 1977 National Conference (1977)
Riley,G. A. “The Carbon Metabolism and Photosynthetic Efficiency of the Earth as a Whole,” Am. Sci. pp. 32 (1982)
Rawlinson, L., Kanak, A., and Sharp, R. “Management of Biosolids down under Australia and New Zealand,” in Proceedings of the Specialty Conference Series, Water Environment Fed. TT041, Portland, OR. (1992)
Robinzon, R., Kimmel, E. and Avnimelech, Y. “Energy and mass balances of windrow composting system,” American Society of Agricultural Engineer, Vol. 43(5), pp. 1253-1259. (2000)
Mears, D. R., Singley, M. E., Ali, C., and Rupp, F. “Thermal and Physical Properties of Compost,” Energy, Agriculture and Waste management, W. J. jewell, Ed (1975)
Miller, F. C. “Composting as Process Based on the Control of Ecologically Selective Factors,” Soil Microbial Ecology, pp.515-554 (1992)
Schulze, K.L. “Continuous Thermophilic Composting,” Appl, Microbiol, Vol.10, NO.2, pp.108-122 (1962)
Skjelhaugen, O. J. (1999) Thermophilic aerobic reactor for processing organic liquid waste. Water Reserch, Vol. 33, pp. 1593-1602.
Somen, J., Margetic, M., Valjavec, J., and Vuk, D. “Composting Sludges from Municipal Wastewater Treatment Plants from Two Slowenian Towns,”Journal of Hazardous Materials, Vol.37, pp. 165-170 (1994)
Spinosa, L., and Lotito, V. “Technical Requirements and Possibilities of Incineration,” Sewage Sluge treatment and Use: New Developments, Technological Aspects and Environmental Effects. Elsevier Applied Sciences, New York. (1989)
Spinosa, L., and Vesilind, P. A. “Sludge into Biosolids,” IWA, London, pp. 259-277. (2001)
U.S.EPA. 40CFR Parts 503. “National Sewage Sludge Survey,” Fed Regist. 54:23 (1990)
U.S.EPA. 40CFR Parts 257 and 503. “Standards for Disposal of Sewage Sludge,” Proposed Rule. Fed Regist. 55:218 (1989)
U.S.EPA. “Sludge Composting and Improved incinerator Performance,” EPA. (1990)
Vicky, L. M., Griffiths, B. S., Ritz, K., and Myers, M. “Microbial Activity in Composting,” Biocycle. (1985)
中文文獻
王鯤生「コソポスト化過程の動力學的解析」,日本東京大學博士論文 (1984)
廖俊喆「利用堆肥化法處理高濃度有機廢水之研究」,國立中央大學土木工程學研究所碩士論文 (1986)
陳榮耀、許清森「纖維質廢棄物之生化組成及其微生物分解」,工業技術142期,第60-68頁(1986)
張司凡「堆肥生活污水處理廠污泥資源化再利用支回顧及展望」,環境工程會刊,第11卷,第二期 (1990)
官路「下水污泥堆肥化操作因子之研究」,國立中央大學土木工程學研究所碩士論文 (1990)
賴耿陽「廢棄物處理工學」,後文書局,第214-215頁 (1993)
鄭幸雄「微生物去氮去磷之原理及程序控制」,養豬業與環保研討會論文集,台灣省畜產試驗所專輯16卷,第1-20頁(1993)
袁紹英「廢棄物堆肥化過程的微生物作用」,堆肥技術及其利用研討會論文集,第67-83頁 (1994)
林達昌、黃汝賢、洪錫楨「果菜市場廢棄物減量策略第一年」,行政院農委會 (1995)
鄭東益「污泥資源化固態醱酵之研究」,國立雲林科技大學環境與安全工程技術研究所碩士論文 (1997)
翁震炘「禽畜糞堆肥處理技術與獸醫公共衛生之探討」,國立中興大學獸醫學研究所碩士論文 (1998)
曾迪華「都市下水污泥再利用與資源化之整合型研究」,國科會工程處,台北 (1998)
謝錦松、黃正義「固體廢棄物處理」,淑馨出版社,第295-322頁 (1998)
童永黔、何公亮、曾仁國、劉信堂、吳江鑽、李文章「污泥最終處置最佳方案評估計畫-污泥堆肥化研究」,台北市政府工務局衛生下水道工程處委託研究計畫 (2002)
行政院衛生署食品衛生處「蔬菜化學成份分析」 (2003)
蔡人傑「蔬菜廢棄物好氧生物降解 (堆肥化)」,國立高雄第一科技大學環境與安全衛生工程研究所碩士論文 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top