跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:扈蔚山
研究生(外文):Wei-Shan Hu
論文名稱:五環素分子膜表面生長方向調控及其結構研究
論文名稱(外文):Structure and Orientation Control of Pentacene Film Induced by Self-assembled Monolayer-Modified Surfaces
指導教授:陶雨台
指導教授(外文):Yu-Tai Tao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:74
中文關鍵詞:有機場效電晶體五環素
外文關鍵詞:organic field effect transistorpentacene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
隨著近幾年來有機光學及電子材料的發現,與分子電子元件技術上的重要突破。使得有機電子元件的發展吸引廣泛的注意。五環素(pentacene)分子材料尤其受到廣泛的研究。這是由於它具有良好的載子移動率(mobility),其程度甚至接近非結晶相的矽半導體的載子移動率。所以非常適合作為有機場效應電晶體的傳導材料。本研究藉由使用具有不同末端官能基的自組裝單層分子薄膜,修飾金表面以改變表面性質。並研究其對五環素有機分子晶體在表面生長方向之影響。在本研究中,我們使用了反射式紅外線光譜(reflection-absorption IR),近邊緣X光吸收微結構光譜(near edge X-ray adsorption fine structure)以及X光低掠角繞射(grazing incidence X-ray diffraction),來鑑定五環素有機分子晶體薄膜在不同表面的結晶排列方向。利用原子力顯微鏡(atomic force microscope)與掃描式電子顯微鏡(scanning electron microscope),研究五環素有機分子晶體薄膜在不同表面的型態。結果顯示在所有以自組裝單層薄膜修飾後的表面, 五環素分子以其長軸接近垂直於基材表面的方向堆疊,而形成分子晶體,其堆疊方向不因表面官能機不同而改變。然而在未修飾的金表面,五環素分子以其分子面接近平行於基材表面的方向堆疊, 而形成分子晶體。我們也利用微米轉印技術(micro-contact printing)對金表面進行微區域的自組裝分子薄膜修飾,控制所蒸鍍上的五環素分子在微區域表面的堆疊方向。並藉由X光光電子顯微術(X-ray photoemission electron microscopy)對微區域進行光譜及影像分析。此具高度結晶方向性的分子晶體,將有助於研究載子在分子晶體中的非等向性傳導行為。

Abstract
In the past few years there has been an explosion of interest in electronic devices made from organic molecules for application in field effect transistors (FET). Pentacene is of particular interest because of its high field effect charge mobility in single crystal state, which approaches that of amorphous silicon. The electrical properties of polycrystalline films are inferior to those of single-crystal materials. Growth of appropriately oriented polycrystalline pentacene film may improve the charge mobility. In this work, we used self-assembled monolayers (SAMs) as alignment film to influence the orientation of pentacene film grown on it. For this purpose, pentacene films deposited on SAMs bearing different terminal functional groups have been studied by reflection-absorption IR, AFM, SEM, XRD and NEXAFS analyses. A film with roughly perpendicularly-oriented pentacene molecules was observed on SAM-covered Au surfaces, whereas parallel alignment was observed on bare Au surface. The X-ray photoemission electron microscope (X-PEEM) was used to analyze the orientation of pentacene molecules deposited on SAM patterned Au surface. The observation of highly oriented organic molecular crystal packing in these studies provides a chance for probing the carrier transport behavior via p-p stacking and intermolecular hopping mechanisms through the pentacene molecular crystals.

1. Introduction…………………………………………………1
1.1 Self-assembly……………………………………………………1
1.2 Self-assembled monolayer…………………………………..…1
1.3 Alkanethiol Self-assembled monolayer on Gold……………..3
1.4 Molecular electronics…………………………………………...5
1.5 Synchrotron Radiation………………………………………….9
2. Motivation…………………………………………………13
3. Experimental procedures…………………………………15
3.1 Chemicals………………………………………………………15
3.2 preparation of Self Assembled Monolayer ………………….17
3.3 Preparation of hard-PDMS stamp………………………...….18
3.4 Micro-contact printing………………………………………….19
3.5 Pentacene film deposition…................................................20
3.6 Reflection Absorption Infrared Spectroscopy……………….21
3.7 Near Edge X-ray Absorption Fine Structure Spectroscopy..22
3.8 X-ray Diffraction………………………………………………..26
3.9 Grazing incidence angle XRD………………………..………27
3.10 Atomic Force Microscopy (AFM)……………………………28
3.11 Scanning Electron Microscopy (SEM)……………………...30
3.12 Photoemission Electron Microscopy (PEEM)……………..31
4. Results and Discussion……………………………………35
4.1 Reflection absorption IR……………………………………….35
4.2 Near Edge X-ray Absorption Fine Structure (NEXAFS)…....40
4.3 Grazing incidence angle XRD………………………………...46
4.4 Atomic Force Microscope……………………………………..52
4.5 Scanning Electron Microscopy……………………………….57
4.6 Photoemission Electron Microscopy (PEEM)………………59
4.7 Device design and fabrication………………………………...64
5. Conclusions and Future Outlook……………...…………67
6. References………………………………………………….69

Reference
1. D. Gracias, J. Tien, T. L. Breen, C. Hsu, G. M. Whitesides, Science 289, 1770 (2000).
2. J. D. Hartgerink, E. Beniash, S. Stupp, Science 294, 1684 (2001).
3. R. F. Ismagilov, D. Rosmarin, D. H. Gracias, A. D. Strook, G. M. Whitesides, Appl. Phys. Lett. 79, 439 (2001).
4. W. C. Bigelow, D. L. Pickett, W. A. Zisman, J. Colloid Interface Sci. 1, 513 (1946).
5. W. A. Zisman, Adv. Chem. Ser. 43, 1 (1964).
6. A. Ulman, Chem. Rev. 96, 1533 (1996).
7. L. H. Dubois, B. R. Zegarski, R. G. Nuzzo, Proc. Natl. Acad. Sci. U. S. A. 84,4739 (1987).
8. L. H. Dubois, B. R. Zegarski, R. G. Nuzzo, J. Am. Chem. Soc. 112, 570 (1990).
9. J. Sagiv, J. Am. Chem. Soc. 102, 92 (1980).
10. H. O. Finklea, L. R. Robinson, A. Blackburn, B. Richter, D. Allara, T. Bright, Langmuir 2, 239 (1986).
11. P. Fenter, P. Eisenberger, J. Li, N. CamilloneIII, S. Bernasek, G. Scoles, T. A. Ramnanarayanan, K. S. Liang, Langmuir 7, 2013 (1991).
12. H. Keller, P. Sirnak, W. Schrepp, J. Dembowski, Thin Solid Film 244, 799 (1994).
13. H. A. Biebuyck, Colin, G. M. Whitesides, Langmuir 10, 1825 (1994).
14. J. P. Folkers, C. B. Gorman, P. E. Laibinis, S. Buchholz, G. M. Whitesides, R. G. Nuzzo, Langmuir 11, 813 (1995).
15. D. L. Allara, R. G. Nuzzo, Langmuir 1, 54 (1985).
16. R. G. Nuzzo, D. L. Allara, J. Am. Chem. Soc. 105, 4481 (1983).
17. L. Strong, G. M. Whitesides, Langmuir 4, 546 (1988).
18. C. E. D. Chidsey, G. —Y. Liu, P. Rowntree, G. Scoles, J. Chem. Phys. 91, 4421 (1989).
19. E. Delamarche, B. Michel, H. A. Biebuyck, C. Gerber, Adv. Mater. 8, 719 (1996).
20. R. G. Nuzzo, L. H. Dubois, D. L. Allara, J. Am. Chem. Soc. 112, 558 (1990).
21. P. Fenter, P. Eisenberberger, Phys. Rev. Lett. 70, 2447 (1993).
22. A. Aviram, M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).
23. R. Metzger, B. Chen, U. Höpfner, M. V. Lakshmikantham, Do. Vuillaume, T. Kawai, X. Wu, H. Tachibana, T. V. Hughes, H. Sakurai, J. W. Baldwin, C. Hosch, M. P. Cava, L. Brehmer, G. J. Ashwell, J. Am. Chem. Soc. 119, 10455 (1997).
24. C. Zhou, M. R. Deshpande, M. A. Reed, L. Jones II, J. M. Tour, Appl. Phys. Lett. 71, 611 (1997).
25. J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, Science 286, 1550 (1999).
26. Y. Huang, X. Duan, Q. Wei, C. M. Lieber, Science 291, 630 (2001).
27. D. Kennedy, Science 294, 2442 (2001).
28. F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastava, Science 265, 1684-1686 (1994).
29. C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, D. M. de Leeuw, Appl. Phys. Lett. 73, 108, (1998).
30. G. H. Gelinck, T. C. T. Genus, D. M. de Leeuw, Appl. Phys. Lett. 77, 1487, (2000).
31. C. D. Sherraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, J. West, Appl. Phys. Lett. 80, 1088, (2002).
32. B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, Z. Bao, Appl. Phys. Lett. 78, 2229, (2001).
33. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo Science, 290, (2000).
34. T. F. Guo, S. C. Chang, S. Pyo, Y. Yang, Langmuir 18, 8142, (2002).
35. C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Science 286, 945-947 (1999).
36. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 401, 685-688 (1999).
37. C. D. Dimitrakopoulos; P. R. L Malenfant, Adv. Mater. 14, 99, (2002).
38. M. J. Loiacono, E. L. Granstrom, C. D. Frisbie J. Phys. Chem. B. 102, 1679 (1998).
39. D. J. Gundlach, Y. Y. Lin, T. N. Jacson, D. G. Schlom Appl. Phys. Lett. 71, 3853 (1997).
40. M. Műnch, Ph. D. thesis dissertation, University of Stuttgart (2000).
41. A. Rochefort, R. Martel, P. Avouris, Nano Lett. 2,877, (2002).
42. H. Meng, Z. Bao, Andrew J. Lovinger, Bo-Cheng Wang, Anthony M. Mujsce, J. Am. Chem. Soc. 123, 9214, (2001).
43. M. L. Swiggers, G. Xia, J. D. Slinker, A. A. Gorodetsky, G. G. Malliaras, R. L. Headrick, Brian T. Weslowski, R. N. Shashidhar, C. S. Dulcey, Appl. Phys. Lett. 79, 1300, (2001).
44. M. Shitein, J. Mapel, J. B. Benziger, S. R. Forrest, Appl. Phys. Lett. 81, 268, (2002).
45. X. L. Chen, A. J. Lovinger, Z. Bao, J. Sapjeta, Chem. Mater. 13, 1341, (2001).
46. T. M. Pappenfus, R. J. Chesterfield, C. D. Frisbie, K. R. Mann, J. Casado, J. D. Raff, L. L. Miller, J. Am. Chem. Soc. 124, 4184, (2002).
47. W. A. Schoonveld, J. Wildeman, D. Fichou, P. A. Bobbert, B. J. Van Wees, T. M. Klapwijk, Nature 404, 977, (2000).
48. G. M. Whitesides, J. Aizenberg, A. J. Black, J. Am. Chem. Soc. 121, 4500, (1999).
49. L. Strong and G. M. Whitesides, Langmuir 4, 546 (1988).
50. C. D. Bain, E. B. Troughton, Y. —T. Tao, J. Evall, G. M. Whitesides, R. G. Nuzzo J. Am. Chem. Soc. 111, 321 (1989).
51. W. Brett Caldwell, Kaimin Chen, Chad A. Mirkin, Susan J. Babinec, Langmuir 9, 1945, (1993).
52. H. Scmid, B. Michel, Macromolecules 33, 3042 (2000).
53. T. W. Odom, J. Christopher Love, D. B. Wolfe, K. E. Paul, G. M. Whitesides, Langmuir 18, 5314 (2002).
54. B. Crone, A. Dodabalapur, Y. —Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 403, 521 (2000).
55. J. Stöhr, NEXAFS Spectroscopy (Springer, Berlin, 1991).
56. A. Cossy-Favre, J. Diaz, Y. Liu, H. R. Brown, M. G. Samant, J. Stöhr, A. J. Hanna, S. Anders, T. P. Russell, Macromolecules 31, 4957, (1998).
57. J. Stöhr, M. G. Samant, J, Lüning, A. C. Callegri, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, J. L. Speidell Science 22, 2299, (2001).
58. S. Anders, H. A. Padmore, R. M. Duarte, T. Renner, T. Stammler, A. Scholl, M. R. Scheinfein, J. Stöhr, L. Sẻve, B. Sinkovic, Rev. Sci. Instrum. 70, 3973, (1999).
59. R. N. Watts, S. Liang, Z. H. Levine, T. B. Lucatorto, F. Polack, M. R. Scheinfein, Rev. Sci. Instrum. 68, 3464, (1997).
60. H. Ade, B. Hsiao, Science 262, 1427, (1993).
61. D. Spanke, V. Solinus, D. Knabben, F. U. Hillebrecht, F. Ciccacci, L. Gregoratti, M. Marsi, Phys. Rew. B 58, 5201 (1998).
62. A. Scholl, J. Stöhr, J. Luning, J. W. Seo, J. Fompeyrine, H. Siegwart, J. P. Locquet, F. Nolting, S. Anders, E. E. Fullerton, M. R. Scheinfein, H. A. Padmore, Science 287, 1014 (2000).
63. C. Mainka, Paul S. Bagus, A. Schertel, T. Strunkus, M. Grunze, Ch. Wöll, Surf. Sci. 341, 1055, (1995).
64. R. J. Hamers, Nature 412, 489 (2001).
65. F. —J. Meyer zu Heringdorf, M. C. Reuter, R. M. Tromp, Nature 412, 517 (2001).
66. HyperChem 6.03 for Windows. Calculation method: Semi-empirical, AM1.
67. G. Varsanyi, S. Sioke, L. Nemes, M. A. Kovner, Vibration spectra of benzene derivatives (1921).
68. R. B. Campbell, J. Monteath Robertson J. Trotter, Acta Cryst. 14, 705, (1961).
69. C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, T. T. M. Palstra, Acta Cryst. C, 57, 939, (2001).
70. D. Holmes, S. Kumaraswamy, A. Matzeger, K. P. T. Vollhard, Chem. Eur. J. 5, 3399, (1999).
71. Y. Harda, H. Tabata, K. Ohno, Phys. Rew. Lett. 52, 2269 (1984).
72. S. Lukas, G. Witte, C. Wöll, Phys. Rev. Lett. 88, 028301, (2002).
73. P. G. Schroeder, C. B. France, J. B. Park, B. A. Parkinson, J. Apply. Phys. 91, 3010, (2002).
74. C. Zhou, M. R. Deshpande, M A. Reed, L. Jones II, J. M. Tour, Appl. Phys. Lett. 71, 611 (1997).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top